Таблица квадратов
Таблица квадратовОпределение Калькулятор — квадрат числа Таблица квадратов
Скачать таблицу квадратовОпределение. Квадрат числа — есть данное число, возведенное во вторую степень (число умноженное само на себя).
a2 = a · a
«Квадратом» оно называется, потому что такая операция аналогична вычислению площади квадрата.
Калькулятор для вычисления квадрата числа
2 = 49 ≈ 0.4444444444444444
Ниже приведены две удобные таблицы квадратов натуральных чисел от 1 до 100.
Таблица квадратов чисел от 1 до 100
12 = 1 22 = 4 32 = 9 42 = 16 52 = 25 62 = 36 72 = 49 82 = 64 92 = 81 102 = 100 | 112 = 121 122 = 144 132 = 169 152 = 225 162 = 256 172 = 289 182 = 324 192 = 361 202 = 400 | 212 = 441 222 = 484 232 = 529 242 = 576 252 = 625 262 = 676 272 = 729 282 = 784 292 = 841 302 = 900 | 312 = 961 322 = 1024 332 = 1089 342 = 1156 352 = 1225 362 = 1296 372 = 1369 382 = 1444 392 = 1521 402 = 1600 | 412 = 1681 422 = 1764 432 = 1849 442 = 1936 452 = 2025 462 = 2116 472 = 2209 482 = 2304 492 = 2401502 = 2500 |
512 = 2601 522 = 2704 532 = 2809 542 = 2916 552 = 3025 562 = 3136 572 = 3249 582 = 3364 592 = 3481 602 = 3600 | 612 = 3721 622 = 3844 632 = 3969 642 = 4096 652 = 4225 662 = 4356 672 = 4489 682 = 4624 692 = 4761 702 = 4900 | 712 = 5041 722 = 5184 732 = 5329 742 = 5476 752 = 5625 762 = 5776 772 = 5929 782 = 6084 792 = 6241 802 = 6400 | 812 = 6561 822 = 6724 832 842 = 7056 852 = 7225 862 = 7396 872 = 7569 882 = 7744 892 = 7921 902 = 8100 | 912 = 8281 922 = 8464 932 = 8649 942 = 8836 952 = 9025 962 = 9216 972 = 9409 982 = 9604 992 = 9801 1002 = 10000 |
Распечатать таблицу квадратов
Таблица квадратов
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
1 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 | 361 |
2 | 400 | 441 | 484 | 529 | 576 | 625 | 676 | 729 | 784 | 841 |
3 | 900 | 961 | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
4 | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |
5 | 2500 | 2601 | 2704 | 2809 | 2916 | 3025 | 3136 | 3249 | 3364 | 3481 |
6 | 3600 | 3721 | 3844 | 3969 | 4096 | 4225 | 4356 | 4489 | 4624 | 4761 |
7 | 4900 | 5041 | 5184 | 5329 | 5476 | 5625 | 5776 | 5929 | 6084 | 6241 |
8 | 6400 | 6561 | 6724 | 6889 | 7056 | 7225 | 7396 | 7569 | 7744 | 7921 |
9 | 8100 | 8281 | 8464 | 8649 | 8836 | 9025 | 9216 | 9409 | 9604 | 9801 |
Распечатать таблицу квадратов
© 2011-2023 Довжик Михаил
Копирование материалов запрещено.
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Если Вы хотите связаться со мной, имеете вопросы, предложения или хотите помочь развивать сайт OnlineMSchool пишите мне [email protected]
натуральные числа, двузначные числа, распечатать фото в хорошем качестве с крупными цифрами
Мы составили таблицу квадратов натуральных чисел до 10 и двузначных чисел, которой удобно пользоваться: благодаря ей не нужно в уме возводить число во вторую степень. Достаточно распечатать таблицу и найти в ней подходящее значение
Таблица квадратов от 1 до 100. Фото: shutterstock.comАлександр Мельников Преподаватель информатики и математики Анна Стрельцова Автор КП
Содержание
- Таблица квадратов натуральных чисел
- Таблица квадратов двузначных чисел
- Таблица квадратов до 100
- Вопросы и ответы
Квадратом числа называют произведение на самого себя один раз или возведение во вторую степень.
Таблица квадратов натуральных чисел
Натуральные числа — те числа, которые мы используем при счете или при перечислении вещей, объектов. К натуральным относятся только полные и неотрицательные числа. В математике их много: поэтому мы сделали таблицу квадратов натуральных чисел от 1 до 10.
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
n² | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |
Таблица квадратов двузначных чисел
Чтобы вычислить квадрат двузначного числа, умножить число на самого себя. В результате получается уже четырехзначное число. Если при вычислении квадратов чисел до 10 достаточно вспомнить таблицу умножения, то посчитать квадрат двузначного числа в уме уже сложнее. Проще всего для таких вычислений использовать таблицу.
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
1 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 | 362 |
2 | 200 | 441 | 484 | 529 | 576 | 625 | 676 | 729 | 784 | 841 |
3 | 300 | 961 | 1024 | 1089 | 1156 | 1225 | 1296 | 1369 | 1444 | 1521 |
4 | 1600 | 1681 | 1764 | 1849 | 1936 | 2025 | 2116 | 2209 | 2304 | 2401 |
5 | 2500 | 2601 | 2704 | 2809 | 2916 | 3025 | 3136 | 3249 | 3364 | 3481 |
6 | 3600 | 3721 | 3844 | 3969 | 4096 | 4225 | 4356 | 4489 | 4624 | 4761 |
7 | 4900 | 5041 | 5184 | 5329 | 5476 | 5625 | 5776 | 5929 | 6084 | 6241 |
8 | 6400 | 6561 | 6724 | 6889 | 7056 | 7225 | 7396 | 7569 | 7744 | 7921 |
9 | 8100 | 8281 | 8464 | 8649 | 8836 | 9025 | 9216 | 9409 | 9604 | 9801 |
Скачать таблицу двузначных чисел
Таблица квадратов до 100
В таблице мы собрали квадраты чисел от 1 до 100: она пригодится как школьникам, так и студентам. Вы можете распечатать таблицу или пользоваться ей онлайн.
1²=1 | 11²=121 | 21²=441 | 31²=961 | 41²=1681 |
2²=4 | 12²=144 | 22²=484 | 32²=1024 | 42²=1764 |
3²=9 | 13²=169 | 23²=529 | 33²=1089 | 43²=1849 |
4²=16 | 14²=196 | 24²=576 | 34²=1156 | 44²=1936 |
5²=25 | 15²=225 | 25²=625 | 35²=1225 | 45²=2025 |
6²=36 | 16²=256 | 26²=676 | 36²=1296 | 46²=2116 |
7²=49 | 17²=289 | 27²=729 | 37²=1369 | 47²=2209 |
8²=64 | 18²=324 | 28²=784 | 38²=1444 | 48²=2304 |
9²=81 | 19²=361 | 29²=841 | 39²=1521 | 49²=2401 |
10²=100 | 20²=400 | 30²=900 | 40²=1600 | 50²=2500 |
51²=2601 | 61²=3721 | 71²=5041 | 81²=6561 | 91²=8281 |
52²=2704 | 62²=3844 | 72²=5184 | 82²=6724 | 92²=8464 |
53²=2809 | 63²=3969 | 73²=5329 | 83²=6889 | 93²=8649 |
54²=2916 | 64²=4096 | 74²=5476 | 84²=7056 | 94²=8836 |
55²=3025 | 65²=4225 | 75²=5625 | 85²=7225 | 95²=9025 |
56²=3136 | 66²=4356 | 76²=5776 | 86²=7396 | 96²=9216 |
57²=3249 | 67²=4489 | 77²=5929 | 87²=7569 | 97²=9409 |
58²=3364 | 68²=4624 | 78²=6084 | 88²=7744 | 98²=9604 |
59²=3481 | 69²=4761 | 79²=6241 | 89²=7921 | 99²=9801 |
60²=3600 | 70²=4900 | 80²=6400 | 90²=8100 | 100²=10000 |
Скачать таблицу двузначных чисел
Популярные вопросы и ответы
Отвечает Александр Мельников, преподаватель информатики и математики онлайн-школы «Коалиция», эксперт ЕГЭ и ОГЭ, сертифицированный преподаватель проекта «Математическая вертикаль».
Как пользоваться таблицей квадратов?
Таблица квадратов — это таблица, содержащая квадраты чисел. Квадрат числа — это результат умножения какого-либо числа на самого себя, то есть число, возведенное во вторую степень.
В таблице пересечение цифр слева в столбце и сверху в строке дает квадрат искомого числа. Например, нужно найти квадрат числа 15. В столбце слева берем первую цифру данного числа «1». В самой верхней строке берем вторую цифру данного числа «5». На пересечении данных цифр получаем квадрат числа 15, то есть 225.
Таблицу квадратов также можно использовать для извлечения квадратного корня — обратной операции возведения в квадрат. Например, √225=15.
Как быстро выучить таблицу квадратов?
Если мы говорим о сдаче ОГЭ и ЕГЭ базового уровня по математике, то учить таблицу квадратов необязательно, так как она будет в справочном материале. А вот для ЕГЭ по профильной математике это делать нужно: справочные материалы не предоставляются. Пригодится таблица квадратов и позже, при обучении в вузе. Вот несколько советов, как это сделать.
1. Если число заканчивается на 0, его легко возвести в квадрат — необходимо только дописать пару нулей: 60 х 60 = 3600.
2. Если число заканчивается на 5, то следует умножить первую цифру (x) на (x+1) и дописать к полученному числу «25». 65 х 65 = 6 х 7 = 42 приписываем 25 и получаем 4225.
3. Можно воспользоваться формулой (a + b)2 = a2 + 2ab + b2 . Как мы уже выяснили, возводить в квадрат числа, оканчивающиеся на 0, очень просто. Следовательно, а — это число, которое делится на 10, а b — остаток от деления на 10. Приведем пример. Возведем в квадрат 32. 32 можно представить как 30 (число делится на 10) и 2 (остаток от деления на 10): (30+2)2 = 302 + 2 х 30 х 2 + 22 = 900 + 120 + 4 =1024.
Для начала нужно выучить таблицу квадратов первого десятка, так как она используется чаще всего: 121, 144, 169, 196, 225, 256, 289, 324, 361. И важно запомнить, что не бывает квадратов, последняя цифра в которых 2, 3, 7, 8. Также часто используются квадраты таких чисел как 21, 24, 25, 26: они встречаются чаще других.
Выучить данные значения квадратов можно довольно быстро: попробуйте просто ежедневно выписывать значения в тетрадь.
Как извлечь корень числа без таблицы квадратов?
Число необходимо разложить на простые множители, например 1225 = 5 х 5 х 7 х 7 = 5272. Значит, √1225 = √(5272) = 5 х 7 = 35. Благодаря разложению на множители можно извлечь корень из многозначного числа, выходящего за рамки таблицы квадратов.
3-8Калькулятор дробей
Этот калькулятор дробей выполняет базовые и расширенные операции с дробями, выражения с дробями в сочетании с целыми, десятичными и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Калькулятор помогает найти значение из операций с несколькими дробями. Решайте задачи с двумя, тремя и более дробями и числами в одном выражении.
Правила выражений с дробями:
Дроби — для деления числителя на знаменатель используйте косую черту, т.е. для пятисотых введите 5/100 . Если вы используете смешанные числа, оставьте пробел между целой и дробной частями.
Смешанные числа (смешанные числа или дроби) сохраняют один пробел между целым числом и дробью
и используют косую черту для ввода дробей, например, 1 2/3 . Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта одновременно является знаком дробной части и деления, используйте двоеточие (:) в качестве оператора деления дробей, т. е. 1/2 : 1/3 .
Decimals (десятичные числа) вводятся с десятичной точкой . и они автоматически преобразуются в дроби — т. е. 1,45 .
Математические символы
Символ | Название символа | Символ Значение | Пример |
---|---|---|---|
+ | плюс знак | Дополнение | 1/2 + 1/3 |
— | Умножение | 2/3 * 3/4 | |
× | Пейн.1/2 • сложение дробей и смешанных чисел: 8/5 + 6 2/7 • деление целых чисел и дробей: 5 ÷ 1/2 • сложные дроби: 5/8 : 2 2/3 • десятичная дробь: 0,625 • Преобразование дроби в десятичную: 1/4 • Преобразование дроби в процент: 1/8 % • сравнение дробей: 1/4 2/3 • умножение дроби на целое число: 6 * 3/4 • квадратный корень дроби: sqrt(1/16) • сокращение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22 • выражение со скобками: 1/3 * (1/2 — 3 3/8) • составная дробь: 3/4 от 5/7 • кратные дроби: 2/3 от 3/5 • разделить, чтобы найти частное: 3/5 ÷ 2/3 Калькулятор следует известным правилам для порядка операций . Наиболее распространенные мнемоники для запоминания этого порядка операций: BEDMAS — скобки, экспоненты, деление, умножение, сложение, вычитание BODMAS — Скобки, Порядок, Деление, Умножение, Сложение, Вычитание. GEMDAS — символы группировки — скобки (){}, показатели степени, умножение, деление, сложение, вычитание. MDAS — Умножение и деление имеют тот же приоритет, что и сложение и вычитание. Правило MDAS является частью порядка операций правила PEMDAS. Будь осторожен; всегда выполняйте умножение и деление перед сложением и вычитанием . Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны оцениваться слева направо.
|