Грозозащиты: что такое грозозащита?

Опубликовано

Содержание

что такое грозозащита?

 

Человечество с древнейших времен испытывает сакральный трепет и страх перед различными явлениями природы. Одним из них является гроза и зрелищное ее проявление – молния. Наибольшую опасность молния представляет для жилых зданий, промышленных предприятий и так называемых объектов критически важной инфраструктуры, выход которых из строя, может нанести ощутимый вред, как для крупных населённых пунктов, так и отдельных регионов.

По данным Всемирной метеорологической организации, на Земле каждый день случается примерно 50 тысяч гроз. Но гроза – это не просто гром с дождём. Наиболее опасное явление, которое она с собой несёт – это молния.

Из истории известен случай, произошедший с российскими учёными М. Ломоносовым и Г. Рихманом во время опытов по улавливанию атмосферного электричества в 1753 году в Санкт-Петербурге. Эти известные естествоиспытатели 18–го века разработали для своих жилых помещений «грозоулавливатели» и опробовали их во время сильной грозы над городом, но проведению эксперимента помешала внезапно появившаяся шаровая молния и эксперимент не удался.

Исследователи также пытаются найти способ использования молний в энергетике. Вопросами использования (аккумулирования) энергии грозовых разрядов в первой половине 20-го века в США занимался великий изобретатель и учёный Никола Тесла. Однако американские власти результаты исследований и экспериментов засекретили, а оригинальные экспериментальные установки уничтожили. Данная статья расскажет вам простыми словами о важных прикладных аспектах, связанных с этим природным явлением, а именно о защите объектов, инфраструктуры и человека от разрушительного воздействия грозы и молний.

Основные понятия и определения

Гроза – это природное явление, проявляющееся в виде разрядов атмосферного электричества, которые мы и привыкли идентифицировать как молнию. Также гроза сопровождается сильным акустическим эффектом (громом), иногда сильным порывистым ветром (шквалом), дождевыми проявлениями в виде ливня или града.

Когда между различными частями облака, а также между облаком и землей, достигается разность электрических потенциалов в несколько миллионов вольт, то возникает природное явление в виде электрического разряда, именуемое в науке – молния. Молнии могут быть длиной от 2-х и до 50 км, а их сила тока бывает и до 100-200 тыс. ампер. Температура в канале поднимается от 10 и даже до 50 тыс. градусов по Цельсию. Когда гроза вызвана разрядом молнии, направленным прямо на объект, она несет в себе угрозы, которые считаются первичными. А если гроза проявляется как наведение напряжения от разрядов молнии, то угрозы такого плана считаются вторичными.

По направлению разряда молнии подразделяются на:

  • нисходящие. Мы наблюдаем направленный сверху вниз разряд, который наносит свой удар по зданию или другому объекту;
  • восходящие. Здесь мы можем наблюдать такой разряд молнии, который идет от земли к облаку. Большинство ударов по высотным объектам (свыше 200 м) являются восходящими. И нисходящие, и восходящие молнии могут быть как отрицательными, так и положительными, т.е. по каналу молнии может протекать ток отрицательной или положительной полярности;
  • внутри и межоблачные. Это молнии между противоположными зарядами внутри одного облака или соседними облаками. Не представляют опасности для любых объектов, расположенных на земле.

Грозозащита (молниезащита / громозащита) – это совокупность мер по обеспечению защищенности сооружений, техники, человеческого общества, животного мира и общественной инфраструктуры от разрушительного действия молний. Выбор конструкции грозозащитных систем является важной составной частью строительного проекта в плане обеспечения безопасной среды обитания человека, сохранности зданий, сооружений и объектов жизнеобеспечения и промышленных коммуникаций от воздействия атмосферного электричества. Следует отметить, что в РФ существуют нормативы по категорированию уровней защищенности объектов и эффективности грозозащитных мер.

Это отражено в “Инструкции по устройству молниезащиты зданий и сооружений. РД 34.21.122-87”, «Инструкции по устройству молниезащиты зданий, сооружений и промышленных коммуникаций СО 153 – 34.21.122 – 2003», а также в других нормативных документах.

О принципах работы грозозащиты

В самых общих чертах это устройство представляет собой сочетание таких элементов, как молниеприемник, токоотвод и заземлитель. Три элемента в целом образуют молниеотвод, который перехватывает саму молнию и отводит ее ток в землю. Таким образом происходит защита объекта от последствий действия этой стихии. Комплексные мероприятия, проводимые с целью защиты человека, объекта, дома и других сооружений от прямых ударов молнии с помощью специальных приспособлений именуются внешней молниезащитой (или «external lightning protection system» – англ.).

Кроме вышеперечисленных и распространенных устройств, в последнее время стала известна и альтернативная система защиты от молний, называемая активной молниезащитой (early streamer emission). Такие системы стоят гораздо дороже обычных, а их «повышенная эффективность» пока не доказана техническими специалистами на практике.

Специалистами устанавливаются отдельно расположенные молниеотводы, но также установить молниеотвод возможно прямо на самом объекте.

Какую функцию выполняет молниеотвод, который установлен отдельно? С помощью такого устройства можно предотвратить эффект, когда ток растекается по самому объекту, и отвести ток сразу в землю.

Простая формула показывает радиус защитного действия такого молниеотвода на уровне земли: R = 1,5 * h, (формула приведена для зоны Б РД 34) где h – высота молниеприемника от уровня земли. Теперь рассмотрим случай установки молниеотвода специалистом непосредственно на самом сооружении.

При применении такого конструктивного решения, происходит процесс растекания тока по четко контролируемым путям для отведения тока. Вероятность возгорания и взрывоопасности снижается до ничтожно малых величин, потому что исключено воздействие на объект термическим способом.

В зависимости от видов молниеприемника наиболее распространены стержневые, тросовые и сетчатые молниеотводы. Идея и конструкция стержневого молниеотвода была впервые предложена и запатентована в 1752 г. в США выдающимся общественно-политическим деятелем и талантливейшим учёным Америки – Бенджамином Франклином. С той поры данный тип молниеотвода принято называть «стержнем Франклина».

Тросовый молниеприёмник, как видно из названия, представляет из себя натянутый между двумя «мачтами» металлический трос, который перехватывает молнию, нацеленную на объект под таким тросом. Для защиты одного строения может использоваться несколько тросовых молниеприёмников.

Другой тип молниеприёмника получил название молниеприёмной сетки. В практике молниезащиты специалисты укладывают сетчатые молниеприемники непосредственно на неметаллическую крышу здания, причем крыша должна быть горизонтальной. Любой уклон крыши может означать риск поражения молнией.

Популярность того или иного вида молниеприёмника различается в разных регионах и на разном типе объектов, поэтому назвать одного «лидером» по популярности невозможно. Если рядом с Вашим объектом близко расположено очень высокое здание, то при проектировании системы грозозащиты необходимо учитывать расстояние между объектами, а также ряд экономических показателей и других особенностей защищаемых сооружений. Токоотвод монтируется в стену строения, он протягивается до земли с достаточно короткой дистанцией, чтобы заряд очень быстро ушёл в землю.

Внутренняя молниезащита представляет собой комплекс превентивных мероприятий по обеспечению безопасности от вторичных действий молнии. Этот эффект проявляется обычно в виде индукции импульсного перенапряжения и занесённого высокого потенциала. Здесь применимы так называемые УЗИП. Эта аббревиатура расшифровывается как устройства защиты от импульсных перенапряжений. В английском языке существует терминология: «lightning surge protection» и «surge protection device».

Импульсные перенапряжения могут быть вызваны как прямым ударом молнии, так и непрямым ее ударом. Если молния ударяет вблизи строения или объекта, то речь идёт о вторичном воздействии молнии — импульсном перенапряжении.

Специалисты подразделяют УЗИП на 3 класса. Устройства первого класса устанавливают на всех объектах защищенных внешней системой и на объектах, расположенных рядом с высокими сооружениями, такими как мачты и с любыми другими строениями, с которыми имеют общее заземляющее устройство. Он рассчитан на такую надежность, которая позволяет выдержать полный ток молнии, ограничить его до нужного значения и при этом остаться неразрушенным.

УЗИП второго класса должен ограничивать пренапряжения, пропущенные через УЗИП 1 класса, а также индуцированные и коммутационные перенапряжения. Устанавливается после УЗИП 1 класса и предназначен до ограничения перенапряжений до уровня, который может выдержать большинство устройств. 2 класс может использоваться и в качестве первой ступени защиты, когда объект не оборудован внешней системой молниезащиты , и нет риска прямого удара молнии в объект и входящие в него сети и коммуникации (например, когда питание осуществляется кабелем). УЗИП третьего класса устанавливается после УЗИП 2 класса и предназначен для защиты чувствительных электронных приборов, а также при большой длине питающего кабеля, которая приводит к наведению повышенного напряжения. При монтаже систем молниезащиты специалистами применяется или принцип безопасности или бесперебойности. Если взята за основу безопасность, то недопустимо разрушение устройств защиты от импульсных перенапряжений и невозможно отключение молниезащиты. Но в таком случае разрешено отключение потребителей от снабжения электроэнергией. Защитный предохранитель для УЗИП при этом устанавливается в разрыв фазного провода (последовательное включение в фазу).

Применение грозозащиты и заземления

Обратимся к вышеупомянутым в этой статье нормативным документам. Если мы планируем защитить от воздействия грозы дом высотой до 60 м, то нужно иметь в виду, что существует 3 категории такой защиты. Третья категория защиты – это все обычные жилые помещения стандартной планировки, а также общественные здания. Но если в здании много этажей и оно очень высокое, то роль грозозащиты возрастает, так как тут возможны повреждения всякого рода слаботочных электроустановок. Особенно это характерно при использовании современных систем управления для «умных домов». Поэтому специалисты оборудуют такие дома специального рода ограничителями перенапряжений. Устанавливают эти системы в специальных местах, обозначенных на этапе планирования всей системы молниезащиты. А вот для жилых домов сельской местности в Российской Федерации нет обязательных требований для систем грозозащиты. По классификатору такие здания отнесены по молниезащите к 3-ей категории.

Специальные объекты (иногда их называют критически важными) – это те сооружения и инфраструктура, повреждение или разрушение которых влечёт за собой тяжёлые материальные последствия, а также угрожает здоровью и даже жизни человека. Они подлежат оборудованию системами грозозащиты, категория которых устанавливается в специальных требованиях на этапе составления проектной документации. К таковым относят объекты энергетики, телекоммуникаций и каналов связи, различные трубопроводы, железные дороги, автомобильные трассы, аэропорты, речные и морские причалы, газовые и нефтепромыслы, инфраструктуру информационно–коммуникационных технологий, военные части и объекты оборонного назначения. В связи с проникновением информационных технологий и Интернета в промышленную и другие сферы, оборудование, используемое в этих отраслях должно иметь устройства защитного заземления.

В заключение данной темы можно сделать следующие выводы: грозозащита, как компонент безопасности, является неотъемлемой частью современной промышленной и общественной инфраструктуры, позволяя тем самым экономить средства и защитить людей, сооружения и здания от разрушительного воздействия стихии атмосферного электричества.

 


Смотрите также:


Смотрите также:

Модуль грозозащиты — ОБО Беттерман

Модули грозозащиты

Модуль грозозащиты или разрядник позволяет защитить оборудование от:

  • Скачков, возникающих в питающей сети.
  • Импульсного перенапряжения.
  • Перегрузок по линиям связи.
  • Наводки, возникающей от питающей сети переменного тока и различного рода низкочастотных составляющих.
  • Косвенных последствий, возникающих при ударе молнии.
  • Выхода из строя различных компонентов сети передачи данных и пр.

Подробнее о возможностях этой продукции Вы можете узнать у специалистов компании ОБО Беттерманн в Вашем регионе.

ВАЖНО. Модули грозозащиты эффективны при предотвращении вторичных воздействий молнии. Они не защищают сеть в случае прямого попадания в кабель (кабеленесущую систему). Поэтому не стоит забывать об эффективных системах внешней молниезащиты.

Технические характеристики и функциональные особенности

ОБО Беттерманн выпускает различные типы модулей или разрядников. С помощью этой продукции Вы обеспечите эффективную грозозащиту:

  • Телефонной аппаратуры.
  • Электрических счетчиков с цифровым выходом, использующих интерфейсы RS-485, RS-232.
  • Компонентов, входящих в состав линий Ethernet.
  • Множества типов устройств передачи, обработки и хранения информации.

Подключение и эксплуатация

Модуль грозозащиты или разрядник, в зависимости класса, может монтироваться в различных местах. Это:

  • Главные распределительные щиты на входе в здание (как правило, до счетчика).
  • Вторичные распределители.
  • Непосредственно перед компонентами, входящими в сеть.

Оборудование для грозозащиты от ОБО Беттерманн может быть включено в состав различных систем. С их помощью может осуществляться защита телефонных сетей и абонентских устройств из их состава (с помощью модулей кроссовой защиты и абонентских). Также они используются при защите систем уплотнения абонентских линий. При защите ЛВС они включаются в состав линий на витых парах и Ethernet-сетей. Используется предлагаемое оборудование и при защите систем видеонаблюдения. В этом случае их монтаж осуществляется в непосредственной близости от места заземления экрана коаксиального кабеля.

Разобраться с местами включения модулей грозозащиты Вам помогут специалисты компании ОБО Беттерманн в Вашем регионе.

Грозозащита

Сети Ethernet, со времён своего изобретения, обрели небывалую популярность, и по ходу развития сетевой инфраструктуры, было разработано и внедрено множество стандартов физического уровня для передачи данных, начиная коаксиальным кабелем и заканчивая оптоволокном. Свою нишу среди них, со всеми своими преимуществами и недостатками, вполне оправданно заняла, так называемая, «витая пара». И даже если для прокладки внешних сетей повсеместно используется оптоволоконный кабель, то с ростом разновидностей телекоммуникационного оборудования возникла необходимость применения медных кабелей («витой пары») как внутри, так и вне зданий.

Данная тенденция повлекла за собой целый ряд проблем, связанных с такими явлениями, как индустриальные электромагнитные помехи и атмосферное электричество. В определенных условиях, из-за роста напряженности ЭМ-поля, порты устройств, подключенных к сети Ethernet, неминуемо выходят из строя. Для решения этой проблемы были разработаны и широко применяются устройства защиты от импульсных перенапряжений (УЗИП), в простонародье называемые «грозозащита».

Название «грозозащита» не совсем уместно в данном случае, так как никакое УЗИП не сможет защитить оборудование от прямого попадания молнии. Для защиты от грозового разряда применяют совсем другие методы. Молнию «приманивают», молниеотводами создают «привлекательные» для разряда места, то есть создают кратчайший путь для протекания тока разряда.
    Согласно исследованиям, проводимым для седьмого издания ПУЭ, в центральных регионах России грозовая интенсивность составляет 50 часов в год, при этом молния воздействует на 1 Км² местности 2 раза в год, а для южных регионов на 1 км²  — 5 раз в год.

                    
Рис.1 Карта районирования территории РФ по среднегодовой продолжительности гроз в часах

В предгрозовой период, в атмосфере увеличивается напряжённость электрического поля. В этом случае, образовавшиеся заряды неизбежно индуцируются на все воздушные линии связи, в результате чего разница потенциалов между сигнальными проводами и оборудованием может составлять несколько тысяч вольт. Это напряжение неизбежно приводит к пробою изоляции разделительных трансформаторов Ethernet-портов, и далее распространяется по схеме оборудования.


Рис.2


Также статический заряд может накапливаться в результате трения о кабель молекул воздуха и прочих проявлениях стихии. Гораздо хуже выглядит ситуация при удалённом грозовом разряде. В этом случае электромагнитный импульс, неся огромную энергию и индуцируясь на линии связи, не видит препятствия, проходя через паразитную ёмкость разделительных трансформаторов или пробивая их изоляцию, а при растекании тока молнии по поверхности земли, между разнесёнными на расстояние объектами, разница потенциалов может составлять тысячи вольт.


                             Рис.3                                  

Стоит отметить, что атмосферные явления могут быть не единственным источником возникновения перенапряжений. Также, зачастую, их источником могут являться коммутационные помехи при включении/отключении силового оборудования, при расположении кабельного сегмента в непосредственной близости от электротранспорта, частотно регулируемыми приводами электродвигателей и т.д. Нередко происходят случаи нарушения правил монтажа как слаботочных, так и силовых кабелей, в результате чего на сигнальные линии также наводится опасное для оборудования напряжение. От перечисленных выше явлений как раз и предназначены защищать УЗИП. Несмотря на то, что принцип работы всех УЗИП одинаков, и основан на отведении с линии передачи данных, наведённого электрического заряда, в систему заземления, рынок УЗИП изобилует разновидностями данных устройств и схемотехническими решениями при их проектировании.
    Компания «НАГ» являясь производителем телекоммуникационного оборудования, хорошо знакома с обращениями клиентов в службу ремонта, связанных с повреждениями Ethernet-портов, после неблагоприятных погодных условий или при неграмотном расположении линий связи. Основной причиной неисправностей в подобных ситуациях, в большинстве случаев, является отсутствие защиты от перенапряжений или неправильная их установка. В связи с этим, инженерами компании была разработана линейка УЗИП, способная удовлетворить все требования и обеспечить необходимую защиту оборудования.

Выбирая техническое решение при разработке УЗИП, пришлось отталкиваться не только от качества защиты оборудования, но также брать в расчёт суровые экономические реалии нашей страны, так как мало желающих покупать УЗИП ценой выше, чем стоимость ремонта защищаемого порта, а с учётом того, что оригинальные решения стоили бы на порядок дороже, и лишь на очень малую долю улучшали характеристики защиты, выбор был остановлен на классических решениях. Для большего понимания ситуации, ниже будет дано общее представление о том, как работают УЗИП, но для этого необходимо немного погрузиться в теорию и разобраться в схемотехнике подобных устройств.

Помехи на лини передачи бывают двух видов: дифференциальные и синфазные (см. рис.4). Дифференциальная помеха – разность потенциалов между проводниками в линии. При возникновении синфазного перенапряжения устройство работает следующим образом: если напряжение между проводниками превышает порог срабатывания супрессора VD3, его сопротивление резко падает, и по цепочке VD1-VD3-VD5 или VD2-VD3-VD4 (рис. 4, синяя стрелка) замыкает линию, ограничивая импульс на безопасном уровне, и выделяя излишки энергии в виде тепла. Синфазная помеха – разность потенциалов между проводниками линии и оборудованием. Для борьбы с этой помехой в схеме используется газоразрядник FV1, принцип работы которого аналогичен работе супрессора, только здесь энергия импульса, протекая через VD1(VD2)-FV1 или  FV1- VD4(VD5) (рис. 4, красная стрелка) уравнивает потенциалы с системой защитного заземления.

 
Рис.4

Примерами реализации подобной схемы являются «Грозозащита Ethernet SNR-SP-1.0» или «Грозозащита Ethernet SNR-SP-2.0». Разница между ними лишь в том, что первая является оконечным устройством, а вторую можно подключить в разрыв линии передачи данных. Также, в линейке присутствует «Грозозащита Ethernet Nag-APC», которая имеет конструкцию для установки в шасси для стандартной 19 дюймовой стойки. Данные грозозащиты можно применить на портах Ethernet 10/100/1000Base.

             

 Грозозащита Ethernet SNR-SP-1.0                         Грозозащита Ethernet SNR-SP-2.0                        

 

    
Грозозащита Ethernet Nag-APC

                   
                                 Шасси APC PRM24 для защит NAG-APC
 

Если защищаемый Ethernet-порт не поддерживает передачу данных на скорости в 1 Гбит/с, то в данном случае вполне может подойти и «Грозозащита Ethernet Nag-клон», рассчитанная на защиту одного порта, или «Грозозащита Ethernet Nag-клон-4», защищающая 4 Ethernet-порта.


Грозозащита Ethernet Nag-клон                                              Грозозащита Ethernet Nag-клон-4

Случаются ситуации, когда защищаемое устройство необходимо запитать по технологии PoE. Примером могут служить такие устройства, как IP-видеокамеры, маршрутизаторы, точки доступа и т.д. В данной ситуации также можно использовать рассмотренную конструкцию УЗИП, изменив некоторые номиналы деталей, так как разница потенциалов в сигнальных линиях согласно стандарту PoE, может составлять до 57 Вольт.


    Рис.4​

Изменение номинала приведёт к небольшому уменьшению скорости срабатывания схемы, но обеспечит необходимую защиту для оборудования. Примером подобного решения является «Универсальная грозозащита Дрозд». Она работает на портах Ethernet 10/100/1000Base.  «Грозозащита Nag-1.1 POE» применяется только на портах Ethernet 10/100Base, как и «Грозозащита PoE Nag-1P». Её можно использовать только совместно с устройствами, питание которых осуществляется по зарезервированным парам проводов (4;5 и 7;8). Подача питания по сигнальным проводам в данном устройстве не поддерживается.


        Универсальная грозозащита Дрозд      Грозозащита Nag-1.1POE      


 Грозозащита PoE Nag-1P      

Также, для предотвращения влияния неблагоприятных внешних условий, УЗИП серии «Дрозд» может устанавливаться в корпусы с необходимой степенью защиты от климатических и механических воздействий.

В случае, когда линия передачи данных оказывается в зоне действия разнообразных индустриальных помех, актуальным будет применение УЗИП с дополнительными индуктивно-ёмкостными фильтрами, которые исключат составляющую помехи, не препятствуя прохождению полезного сигнала. Примеры данного решения, это «Грозозащита Ethernet Nag-1.2» и «Грозозащита Ethernet Nag-4.2». Разница между ними  в количестве защищаемых портов, 1 и 4 порта соответственно. В силу конструктивных особенностей, эти УЗИП нельзя использовать совместно с устройствами, питаемыми по технологии POE, так как постоянное напряжение не сможет преодолеть преграду из индуктивно-ёмкостных фильтров. Эти устройства могут работать на портах Ethernet 10/100Base.


Грозозащита Ethernet Nag-1.2                            Грозозащита Ethernet Nag-4.2

Кроме устройств защиты Ethernet-портов, в линейке есть также «Грозозащита Nag-DSL», применяемая для защиты устройств подключаемых к телефонной линии, таких как телефонные аппараты или DSL-модемы.


Грозозащита Nag-DSL

Зачастую, в линии напряжения питания (~220В) также могут происходить скачки напряжения, приводящие к отказу питаемого оборудования. На этот случай можно воспользоваться устройством «Грозозащита NAG-E1.0», которое работает на том же принципе, что и все выше перечисленные УЗИП, с одной лишь разницей: в этом устройстве дополнительно установлены предохранители, сгорающие при скачке напряжения, поэтому после срабатывания защиты, предохранители нужно заменить.


Грозозащита NAG-E1.0

С подробными характеристиками перечисленных устройств, а также с их стоимостью вы всегда можете ознакомиться на нашем сайте.

Грозозащита и заземление системы видеонаблюдения

Видеонаблюдение рассчитано на длительную работу в любых условиях, но факторы риска выхода оборудования из строя все же существуют.

Одной из причин отказа может быть недостаточная защищенность от токовых перегрузок, создаваемых внешними воздействиями. Не так давно в эту категорию входили только атмосферные явления (молнии, грозы), сегодня это могут быть и техногенные причины, вызываемые наводками паразитных токов от промышленных объектов.

Статическое электричество, накапливаемое на элементах видеонаблюдения, также может быть причиной выхода из строя. Особенно этим «грешат» пластики и подвижные части оборудования, вызывающие трение.

Еще одна причина – это скачки напряжения при коммутационных переключениях. То есть включение блока питания или подключение патч-корда в разъем вполне может вызвать скачок напряжения, способный навредить электронике.


Роутер после грозы

На фотографии видно, что воздействие произошло со стороны разъемов подключения витой пары. Кстати, как мастер по ремонту различной электроники, могу сказать, что неисправности после ударов молнии и воздействия статического электричества очень плохо поддаются диагностике. Связано это, прежде всего, с очень кратковременным воздействием на оборудование, и зачастую таких повреждений, как на фото,не видно. Просто скачок настолько мал по времени, что визуально можно не выявить никаких повреждений, а вот внутри электронных компонентов – полная «каша». Они даже бывают вроде рабочими, но параметры изменены настолько, что их нормальное функционирование просто невозможно.

Заземление

Сразу можно сказать, что хорошая грозозащита без качественного заземления невозможна. Для того чтобы установка видеонаблюдения велась по всем правилам, нужно позаботиться о хороших заземляющих контурах. Конечно, если видеонаблюдение расположено только в помещениях, то этот момент можно и опустить. Но, скорее всего, в здании есть уже заземленная техника,и можно воспользоваться готовым вариантом, не организуя собственный заземлитель и токоотвод. Подробнее о видеонаблюдение для частного дома по ссылке.

Уличное расположение видеокамер требует наличия заземления – это аксиома. При его отсутствии приборы грозозащиты просто некуда будет подключать: оно необходимо для стока атмосферного или статического электричества. Контур заземления у опоры, на которой расположена видеокамера, может выглядеть так:

Сами молниеотводы, конечно, желательны, но использовать их стоит там, где это действительно необходимо. Например, в местности с близким расположением водоемов или если рядом находятся массивные металлоконструкции, которые являются концентраторами.

Одно важное замечание: от самого молниеотвода до заземляющего контура должен быть проложен проводник без изгибов, смоток и петель. Только таким образом достигается максимальная эффективность ухода в землю мощного электрического разряда. Петли и кольцевые смотки играют роль сопротивления току и сами являются источниками электромагнитных излучений; также при ударе молнии они нередко загораются и расплавляются.

Приборы грозозащиты

Из рисунка выше видно, что приборы грозозащиты должны быть установлены на обоих концах линий связи и питания. То есть если воздействие внешних напряжений обращено на шлейфы, то элементы грозозащиты должны защищать слаботочную электронику с обеих сторон. Но их, конечно же, лучше всего расположить как можно ближе к видеокамерам, коммутаторам или видеорегистраторам. Это нужно для того, чтобы сократить незащищенные участки соединительных линий.


Установка грозозащиты непосредственно около видеокамер в коммутационной коробке

На фото видны платы защиты по питанию в верхних углах, а в нижних – устройства для защиты витой пары SP004.

Тоже самое оборудование располагается и в коробках в непосредственной близости от коммутаторов и регистратора.

Устройства грозозащиты могут быть выполнены в разном форм-факторе, предназначаться для различных напряжений питанияи разнообразных интерфейсов видеокамер и сопровождающего их оборудования.

Например, вариант для разъемов SUB-D идеально подходит для защиты интерфейсов V-24,RS485: они используются в промышленном оборудовании и в том числе – для интеграции видеонаблюдения в другие охранные системы.


Грозозащита для коаксиального кабеля

Принцип работы грозозащиты

Конечно, не всем интересно, как это работает: работает и ладно! Но знать основные принципы и не купить «кота в мешке» интересно многим. Грозозащита строится на следующих электронных элементах:

  • варисторы – разновидность резисторов, которые уменьшают свое сопротивление при резком скачке напряжения
  • супрессоры – стабилизаторы, которые открываются при повышении напряжения;
  • газонаполненные разрядники – инертный газ внутри баллончиков уменьшает сопротивление;
  • плавкие предохранители – теряют способность проводить ток при скачках напряжения.

Из этого списка самые невостребованные – устройства, которые основываются на работе плавкого предохранителя. У них очень большое время срабатывания и прибор успевает сгореть до того, как тонкий проводник перегорит. Но и это еще не все: при высоковольтном разряде ничего не стоит пробить также небольшой воздушный диэлектрик и все равно спалить туже видеокамеру.

Самый действенный метод – это когда разряд уходит в землю: такой принцип обеспечивают варисторы, супрессоры и газонаполненные разрядники. Они ставятся между сигнальными жилами и землей. При их пробое происходит, так скажем, «замыкание» питающей или сигнальной линии на заземление, предотвращая тем самым распространение импульса высокого напряжения дальше места этого замыкания.

У них не только более низкий порог срабатывания, но и принцип, обратный предохранителю. То есть предохранитель разрывает цепь, а, например,варистор, наоборот, замыкает.

Все устройства с таким принципом работы называются УЗИП (устройство защиты от импульсных перенапряжений). Они делятся на три категории по предназначению класса защиты:

  1. Категория В – обеспечивают защиту при прямом попадании молнии.
  2. Категория С – монтируются в силовые щиты или используются для обеспечения безопасности распределяющих сетей.
  3. Категория Д – слаботочные устройства, которые обеспечивают защиту приборов.

В заключение можно сказать, что затраты при монтаже систем видеонаблюдения, учитывая установку качественной грозозащиты, не идут ни в какое сравнение с тем, что, возможно, будет нуждаться в замене при выгорании из-за попадания высокого напряжения в инфраструктуру сети.

Что нужно знать об устройстве грозозащиты

Во время грозы мощные разряды электричества пронизывают воздух. Это – молнии. Они могут быть восходящими, нисходящими и межоблачными. Наиболее опасны первые две разновидности, так как разряды идут сверху вниз, прицельно в здание, или с поверхности земли к облаку.

Во время грозы между тучами и поверхностью земли формируется заряд электричества. Величина его может иметь огромные значения. Кроме прямого попадания молнии в здание, существует также опасность выгорания начинки электрооборудования и повреждения сети от резкого перепада потенциалов. Опасность попадания молний грозит как жилым постройкам, так и предприятиям промышленного назначения и объектам инфраструктуры. Такой природный феномен может сопровождаться силой тока, достигающей несколько сотен тысяч ампер. Последствия могут быть как первичными, от самой грозы и непосредственно молнии, так и вторичными.

Предотвратить возможный пожар и разрушение электроники в результате попадания молнии помогает комплекс мер, нацеленных на обеспечение молниезащиты здания. Конструкция системы должна соответствовать нормативам уровней защищенности объектов от атмосферного электричества.

Принципы работы

Основной принцип приемника молнии заключается в том, что она ударяет обычно в наиболее высокие здания и деревья. Именно поэтому устройство помещается в самой наивысшей точке постройки, чтобы принять удар стихии на себя и обезопасить здание от громадного заряда электрического тока и напряжения. Наивысшей точкой здания может быть как элемент кровли, дымоход, телевизионная антенна, так и высокое дерево, находящееся недалеко от жилого дома.

Система предотвращает разрушение электрических линий и приборов путем их отключения от сети во время колебания электромагнитного поля. В конструкции грозозащитных систем применяются устройства разного типа, но принцип работы у них один и тот же – при появлении высокого напряжения система отключает цепь от общей электросети. Устройства грозозащиты содержат предохранители, которые сгорают быстрее электроприборов, но это происходит довольно редко, поскольку большинство колебаний электромагнитного поля гасит заземление. Земля в системе необходима для переноса заряда, в противном случае он будет скапливаться на корпусе прибора или оборудования и может повлечь за собой поражение человека разрядом электрического тока.

Грозозащита и заземление

Заземление является важной частью системы. Именно через него электрический разряд, пойманный молниеприемником, отводится в землю. Элементы системы заземления находятся по всему зданию, а металлические элементы у основания отводят разряд глубоко в землю. Последняя должна быть заранее проверена. Это важно для предотвращения скопления заряда на корпусе прибора или детали. Следует избегать заземления канализационных и отопительных труб, так как последние обладают повышенным сопротивлением.

При этом «зануление» не требуется. Так как понятие «ноль», представляет собой шину, служащую для того, чтобы замкнуть цепь и провести ток дальше. «Зануление» в системе грозозащиты приводит к частым ее срабатываниям, к ложным призывам к работе. В итоге это сопровождается необходимостью прерывания работы устройства. Введение «нуля» допускается только в случаях, когда нельзя или нет возможности заземления.

Устройство грозозащиты

Модуль грозозащиты состоит из молниеотводов и дополнительных устройств, которые обеспечивают защиту приборов. В самых общих чертах схема молниеотвода состоит из трех элементов: приемник, токоотвод и заземлитель. Наличие молниеотвода позволяет отвести разряд атмосферного электричества от самого здания в землю и предотвратить возгорание и другие негативные последствия непосредственного контакта с молнией. Это достигается за счет возникающей разницы потенциалов, при котором диод замыкается и это приводит к отведению напряжения в область земли. Место диода может занимать любое другое защитное средство. При проектировании молниеприемника необходимо учитывать такие параметры, как общая площадь территории, высота здания, требующих защиты, соседних деревьев, тип кровли дома.

Среди устройств, которые обеспечивают подобную защиту приборов, можно упомянуть:

  • варисторы – разновидность резисторов, которые уменьшают свое сопротивление при резком скачке напряжения;
  • супрессоры – стабилизаторы, которые открываются при повышении напряжения;
  • газонаполненные разрядники – инертный газ внутри баллончиков уменьшает сопротивление;
  • плавкие предохранители – теряют способность проводить ток при скачках напряжения.

Устройства грозозащиты применяют как в электрических цепях, так и на линиях передачи сигналов.

Классификация грозозащиты

Существует 3 класса приборов грозозащиты:

1 класс (категория В) – обеспечивают защиту при прямом попадании молнии.

2 класс (категория С) – монтируются в распределительные щиты в качестве второго звена защиты, или для обеспечения безопасности токораспределяющих сетей.

3 класс (категория Д) – периферийные устройства, которые обеспечивают защиту приборов.

Расстояние между периферическими устройствами и самими приборами не должно превышать 10-15 метров.

В выборе грозозащиты необходимо склоняться к фирменным, а не самодельным устройствам. Так как последние отличаются меньшей степенью защиты.

Профессиональные устройства грозозащиты имеют:

  1. Наименьшие сопротивления.
  2. Работоспособность сохраняется вне зависимости от падения напряжения.
  3. Способность выносить большие нагрузки.

Также довольно часто самодельные или некачественные системы защиты могут не справляться с прямым попаданием молнии или же с высоким напряжением. Они лишь позволяют снизить процент вреда оборудованию, но не могут его защитить на все 100%. Поэтому недорогие устройства могут быть использованы лишь на время, пока нет возможности установить качественное оборудование.

В настоящее время введение в проектирование общественных зданий и частных домов установки системы грозозащиты необходимо для того, чтобы обезопасить дом, оборудование и людей от возможного риска возгорания и его последствий. Качественное современное оборудование, проектирование и правильные монтажные работы позволят чувствовать себя в своем доме как в настоящей крепости.

Заказать расчет молниезащиты зданий и сооружений со скидкой

Грозозащита I-Pro — устройство грозозащиты

             Кабельный сегмент обязательно должен защищаться с двух сторон. Установка устройства защиты только на одной стороне кабеля гарантированно приводит к повреждению оборудования на незащищенной стороне.

Ниже представлены варианты подключения

  1. Для защиты IP видеокамер

  2. Для защиты компьютера

  3. др

В некоторых устройствах I-Pro, используемых для защиты IP видеокамер, есть возможность заземления экрана магистрального кабеля к «мягкой» земле через металлизированный разъём.

Модели устройств для защиты видеонаблюдения:

Схема подключения защиты видеонаблюдения:

!!! При наличии подключения устройств к разным источникам питания с разных сторон сегмента кабеля, заземлять устройство защиты разрешено только с одной стороны !!!

  • Подключение нескольких видеокамер

!!! При наличии подключения устройств к разным источникам питания с разных сторон сегмента кабеля, заземлять устройство защиты разрешено только с одной стороны !!!

 

 

 

Модели устройств для защиты компьютерной сети:

    Схема подключения защиты сети ethernet:

К защищаемому порту устройства, через короткий патч-корд подсоединяется блок грозозащиты и далее к магистральному кабелю.

 


Ниже на рисунке представлена типовая схема по которой подключаются грозозащита Ethernet I-Pro-Ultra , грозозащита Ethernet I-Pro-Standart , грозозащита Ethernet I-Pro-Mini.

 

 

 

Заземление кабеля — к этим разъемам подключаются экраны кабелей (не обязательно). На нее так же «стекают» свободные пары. 
Заземление грозозащиты — заземление  устройства грозозащиты
 

 – питание по свободным парам (жилы 4-5, 7-8). Стандарт Fast Ethernet подразумевает использование для сигнала  только двух пар – оранжевой и зеленой. Согласно данной схеме, полюс передается по синей паре, а минус по коричневой.

 

 

Контакт    10/100 Мб/сек (метод B)    
Pin 1 сигнал Rx +
Pin 2сигнал Rx —
Pin 3сигнал Tx +
Pin 4 питание DC +
Pin 5питание DC +
Pin 6сигнал Tx —
Pin 7питание DC —
Pin 8питание DC —

 

     Использование не отдельных жил, а пар целиком, необходимо для уменьшения сопротивления шлейфа линии и, как следствие, для уменьшения потерь мощности в кабеле.

 

 

    В устройствах грозозащиты имеет важное значение порядок подсоединения  кабеля от коммутатора и магистрального кабеля. На нижней стороне платы  есть надписи » PORT и «LINE» соответственно.

 

 
 

 

Обязательно ли заземлять устройство грозозащиты?

        При отсутствии заземления, грозозащита продолжает так же хорошо защищать от дифференциального перенапряжения, заземление улучшает лишь защиту от синфазных ударов, если напряжение импульсов превышает 2 киловольта. Практика показывает, что и такое бывает. С другой стороны, есть мнение, что подключение заземления ухудшается защита сети от дифференциальных импульсов, которые в реальной сети возникают гораздо чаще синфазных.

По правилам СНиП занулять нельзя. В жизни — это Ваш собственный выбор. Теоретически, если занулять на глухозаземлённую нейтраль (вот так называется рабочий ноль, проложенный по СНиП), а не заземлять — хуже не будет, благодаря наличию в моделях I-Pro PoE-B гальванической развязки конденсаторами.

Экран кабеля, если действительно заземлён на одном конце устройства — значительно улучшает ситуацию. Но снижает дальность, т.к. вносит дополнительную паразитную ёмкость между проводами.

 

Порядок подключения устройств грозозащиты

 

 

  • Подключение устройства (грозозащиты) производить с соблюдением всех правил электробезопасности!!! (изолированный инструмент, изолирующие коврики и рукавицы, контроль отсутствия опасных напряжений на проводниках и тд).

 

  • К клеммнику грозозащиты «Мягкая земля” подключаются экраны кабелей (не обязательно)
  • К клеммнику грозозащиты «Жёсткая земля” подключается провод заземления
  • К разъёму грозозащиты «LINE” подключается магистральный кабель
  • К разъёму грозозащиты «PORT” подключается кабель защищаемого устройства
  • Не путать стороны грозозащиты «PORT” и «LINE”!!!

Грозозащита сетевого оборудования | Статьи MikroComp

Грозозащита сетевого оборудования

Внутри помещения. Возле wi-fi.

Снаружи помещения. Возле wi-fi


Возле сетевого оборудования

Грозозащита предназначена для защиты оборудования от импульсной электромагнитной наводки, снижения амплитуды наведенных помех, защиты от вторичных воздействий молнии, а также снятия статического разряда. Иными словами она предназначена для защиты Wi-Fi оборудования от статического электричества, источником которого может быть молния, атмосферные осадки, расположенные рядом силовые линии электропередач (высоковольтные ЛЭП, силовой кабель лифта и т. д.), электропроводка, импульсные помехи. Сильный ветер также может стать причиной накопления статического электричества. Все это может привести к выходу из строя оборудования. В устройстве, например, может выгореть LAN порт или порт 100 Мбс превратиться в 10 Мбс.
Как правило Грозозащита представляет собой диодный мост с защитным диодом. Принцип действия заключается в том, что диод замыкает накоротко защищаемые провода, когда между ними возникает разница потенциалов больше 6–7 вольт, и выводит избыточное статическое напряжение на заземление.

ВНИМАНИЕ! Эксплуатация грозозащиты при отключенном проводнике защитного заземления запрещена!

Заземление должно быть ОБЯЗАТЕЛЬНЫМ и качественным (не батареи и прочие чердачно-подвальные конструкции), плохо заземленная Грозозащита это хуже, чем ее отсутствие. Категорически запрещено заземлять на водопроводные трубы или трубы отопления.

Занулять грозозащиту крайне нежелательно. Зануление Wi-Fi оборудования может привести к отгоранию «нуля» и выгоранию оборудования.

Чтобы максимально обезопасить оборудование, защиту устанавливают с обоих концов кабеля (особенно при длине кабеля более 70 м). Стоит помнить, что сопротивление даже небольшого (к примеру, 50 метров) участка кабеля не равно нулю, и таким образом разряд может стечь на любой конец линка.

При установке грозозащиты, необходимо использовать экранированную «витую пару» FTP с экранированными коннекторами. Коннекторы должны быть надежно соединены с экраном «витой пары».

Экран кабеля нежелательно подключать к заземлению двух разных зданий, поскольку между ними может быть разность потенциалов. Иногда она достигает несколько десятков вольт, и это приводит к ложному срабатыванию грозозащиты.

Если Грозозащита предназначена для защиты 4 проводников «витой пары», то остальные 4 проводника должны быть заземлены.

Следует отметить, что Грозозащита не дает 100% гарантии защиты от статического напряжения. Причиной этому может быть невысокая скорость срабатывания диода, невозможность быстро вывести на заземление большой статический заряд от молнии, некачественное заземление с высоким сопротивлением растекания. Как правило, Грозозащита обеспечивает защиту в 95–99% случаев, что является хорошим показателем.

Поэтому для защиты wi-fi и сетевого оборудования мы рекомендуем обязательно использовать грозозащиту.

Мы предлагаем широкий выбор различных устройств грозозащиты.

От моделей для установки возле wi-fi оборудования, с поддержкой Poe и которые можно также установить сразу внутрь корпуса маршрутизатора грозозащита Ethernet РГ4PoE , также моделей внешнего исполнения Грозозащита Ethernet РГ4PoE-IP54.

Варианты для установки возле сетевого оборудования или компьютера внутри здания Грозозащита Ethernet РГ6 (розетка—вилка) и Грозозащита Ethernet РГ6(розетка—розетка) .

И различных вариантов много-портовой защиты оборудования Групповой модуль защиты РГ4-12LSA, Устройство защиты Ethernet РГ4 12 портов и т. д.


Обзор молниезащиты

— Институт молниезащиты

Общая информация по отрасли

Институт молниезащиты — это общенациональная некоммерческая организация, основанная в 1955 году с целью продвижения образования, осведомленности и безопасности в области молниезащиты. Индустрия молниезащиты началась в Соединенных Штатах, когда Бенджамин Франклин постулировал, что молния — это электричество, и что с помощью металлического стержня можно отвести молнию от здания.Молния является прямой причиной более 50 смертей и 400 травм ежегодно, и трудно защитить людей на открытых открытых площадках. Прямые удары молнии причиняют ущерб от пожара, превышающий 200 миллионов долларов в год, и страховые компании прямо или косвенно оплачивают претензии на миллиарды долларов, связанные с молнией. Большая часть этих имущественных потерь может быть сведена к минимуму, если не устранена, путем применения надлежащей молниезащиты для конструкций. LPI стремится к тому, чтобы современные системы молниезащиты обеспечивали наилучшее качество как материалов, так и методов установки, обеспечивая максимальную безопасность.

Национальная ассоциация противопожарной защиты . (NFPA) публикует документ № 780 под названием «Стандарт установки систем молниезащиты» считается национальным руководством по проектированию полных систем молниезащиты в Соединенных Штатах. NFPA опубликовало свой первый документ по молниезащите в 1904 году. Документы NFPA, такие как Национальный электротехнический кодекс (NEC — NFPA 70), Национальный кодекс по топливному газу (NFPA 54) и Единый пожарный кодекс (NFPA 1), разрабатываются комитетом для проверки. принятие новой информации по безопасности по конкретным вопросам, связанным с пожаром.

Стандарт защиты от молний № 780 пересматривается с трехлетним циклом для обновления. NFPA 780 включает молниезащиту для типовых строительных конструкций в четвертой главе как требования к обычным конструкциям. Документ 780 охватывает многие специальные конструкции от хранилищ опасных материалов до лодок и кораблей и открытых сооружений для пикников, а также дает рекомендации по личной безопасности на открытом воздухе. NFPA 780 предоставляет лучшее, что мы знаем сегодня в теории и технологиях, о системах защиты, протестированных опытными профессионалами отрасли в юридически признанном формате.

Испытания компонентов материалов молниезащиты на заводе перед отправкой для включения в список и маркировки проводятся Underwriters Laboratories, Inc. (UL) . Стандарт UL 96 отвечает минимальным требованиям к конструкции молниеприемников, кабельных жил, фитингов, соединителей и крепежных деталей, используемых в качественных системах молниезащиты. В UL есть инспекционный персонал, который регулярно посещает производственные предприятия, чтобы проверить соответствие требованиям для дальнейшего использования утвержденных товарных этикеток.

Полевые проверки завершенных установок молниезащиты также могут быть организованы с UL через подрядчиков по установке, перечисленных в их программе. UL выпускает продукт «Master Label» для систем, полностью соответствующих их Стандарту UL 96A в течение многих лет. Стандарт 96A основан на общих требованиях NFPA 780, но UL имеет техническую группу по стандартам (STP) для проверки требований к более удобному для проверки формату, что приводит к некоторым различиям. UL также будет проверять на соответствие некоторым другим национально признанным стандартам (например, NFPA 780) для полностью соответствующих систем.Некоторые частичные конструкции могут быть доступны для полевой инспекции в рамках их программы «Письмо с выводами».

Институт молниезащиты (LPI) принимает последнюю редакцию стандарта NFPA 780 в качестве справочного документа для проектирования систем. LPI выступает за использование UL в качестве стороннего инспекционного органа для компонентов в соответствии с их документами UL 96. LPI публикует этот документ # 175 , основанный на NFPA 780, с дополнительными пояснительными материалами, полезными для установщика и персонала инспекторов.

LPI предоставляет отраслевую программу самоконтроля для сертификации участников подмастерьем, мастером-установщиком и дизайнером-инспектором. Люди сдают экзамены, которые включают требования перечисленных выше Стандартов молниезащиты и применение этих принципов к примерам проектирования. Продление членства требуется каждый год, при этом дополнительные экзамены сдают примерно каждые три года при обновлении национальных стандартов. Заключение контрактов со специалистами, прошедшими квалификацию в рамках процесса LPI, обеспечивает дополнительный уровень гарантии качества для первоначальной установки системы и ресурс для будущих проверок и обслуживания существующих систем.

LPI внедрила программу проверки для завершенных установок под названием LPI-IP . LPI-IP предоставляет услуги по сертификации более тщательно и полно, чем любая предыдущая программа проверки от LPI или других, доступных в настоящее время на рынке. Благодаря использованию контрольно-пропускных пунктов, проверок и инспекций на месте сертификация системы LPI-IP обеспечивает безопасность с привлечением квалифицированного монтажного персонала и независимых инспекторов. LPI-IP предлагает «Главный сертификат установки» для полных конструкций, «Восстановленный мастер-сертификат установки» для ранее сертифицированных конструкций и «Осмотр ограниченного объема» для частичных систем в определенных контрактах.Это критически важный элемент для специалиста, владельца и страховщика имущества, обеспечивающего проверку качественных установок молниезащиты сторонним независимым источником.

Системы молниезащиты для сооружений, как правило, не являются требованием национальных строительных норм и правил, хотя стандарты могут быть приняты властями, имеющими юрисдикцию для общего строительства или определенных помещений. Поскольку молниезащита может рассматриваться как вариант, крайне важно, чтобы разработчик, строительный подрядчик и страховщик имущества были знакомы с национальными стандартами для обеспечения наивысшего уровня безопасности. Системы молниезащиты отлично защищают людей от физических опасностей, структурных повреждений зданий и отказов внутренних систем и оборудования. Полученная ценность начинается с правильного проектирования, продолжается с помощью методов качественного монтажа и должна включать проверку и сертификацию. Конечная цель — безопасная гавань, безопасность инвестиций и устранение потенциального простоя системы в противовес одному из самых разрушительных природных явлений.

Общая информация о системе

Стандарты США для полных систем молниезащиты включают NFPA 780, UL 96 и 96A и LPI 175 . Эти стандарты основаны на фундаментальном принципе обеспечения разумно прямого металлического пути с низким сопротивлением и низким сопротивлением для прохождения тока молнии, а также принятия мер по предотвращению разрушения, пожара, повреждения, смерти или травмы, когда ток течет с крыши. уровни ниже класса.Стандарты представляют собой консенсус властей в отношении основных требований к конструкции и характеристикам квалифицированных конструкций и продуктов. Ожидается, что полная система защиты, основанная на принципах надежной инженерии, исследованиях, протоколах испытаний и полевом опыте, обеспечит безопасность людей и конструкций от молнии и ее побочных эффектов. Стандарты постоянно пересматриваются в отношении новых продуктов, строительных технологий и подтвержденных научных разработок, направленных на устранение опасности молнии.Хотя материальные компоненты могут казаться очень похожими, конфигурация общей конструкции системы за последние 25 лет кардинально изменилась, чтобы отразить современный образ жизни.

Есть пяти элементов , которые должны быть на месте для обеспечения эффективной системы молниезащиты. Устройства для защиты от ударов должны быть пригодны для прямого попадания молнии и должны иметь рисунок, чтобы принимать удары до того, как они достигнут изоляционных строительных материалов. Кабельные жилы направляют ток молнии через конструкцию без повреждений между заглушками вверху и системой заземляющих электродов внизу.Система заземляющих электродов уровня ниже должна эффективно перемещать молнию к ее конечному пункту назначения вдали от конструкции и ее содержимого. Соединение или соединение системы молниезащиты с другими внутренними заземленными металлическими системами должно быть выполнено таким образом, чтобы исключить возможность попадания молнии в боковую вспышку изнутри. Наконец, устройства защиты от перенапряжения должны быть установлены на каждом служебном входе, чтобы остановить проникновение молнии от инженерных сетей и дополнительно уравнять потенциал между заземленными системами во время грозовых разрядов.Если эти элементы правильно идентифицированы на этапе проектирования, включены в аккуратную рабочую установку и в здании не происходит никаких изменений, система защитит от повреждений молнией. Элементы этой системы пассивного заземления всегда выполняют аналогичную функцию, но общая конструкция индивидуальна для каждой конкретной конструкции.

Компоненты молниезащиты изготовлены из материалов , устойчивых к коррозии, и они должны быть защищены от ускоренного износа.Многие компоненты системы будут подвергаться воздействию атмосферы и климата. Комбинации материалов, образующих электролитические пары в присутствии влаги, не должны использоваться. Компоненты токоведущей системы должны обладать высокой проводимостью. Преобладающие почвенные условия на площадке будут влиять на компоненты подземной системы. Срок службы системы и цикл обслуживания / замены зависят от выбора материала и местных условий. Системные материалы должны быть согласованы с используемыми конструкционными материалами, включая облицовки, колпачки, кожухи вентиляторов, различные кровельные системы, чтобы поддерживать влагозащитную оболочку в течение предполагаемого срока службы здания.

Медь, медные сплавы (включая латунь и бронзу) и алюминий являются основными материалами компонентов системы. Они служат наилучшим сочетанием функций для переноса тока и защиты от атмосферных воздействий. Поскольку алюминиевые материалы имеют немного меньшую токонесущую способность и механическую прочность, чем изделия из меди аналогичного размера, перечисленные и маркированные материалы для молниезащиты включают детали большего физического размера. Например, чтобы считаться эквивалентным, воздушный терминал минимального размера будет иметь диаметр ½ дюйма в алюминии по сравнению с диаметром 3/8 дюйма в меди.

Вода, стекающая с меди, окисляет алюминий и гальванизированные поверхности, поэтому при согласовании конструкции системы необходимо учитывать гальванические аспекты для устранения возможных проблем при установке. Квалифицированные биметаллические фитинги используются для согласования компонентов системы для необходимых переходов от алюминия к меди. Они могут включать перечисленные продукты для этой цели или, в некоторых случаях, компоненты из нержавеющей стали. Алюминий никогда не контактирует с землей или почвой. Алюминий никогда не должен контактировать с лакокрасочными поверхностями на щелочной основе или непосредственно в бетон.

Если какое-либо изделие подвергается необычному механическому повреждению или смещению, оно может быть защищено молдингом или покрытием, но необходимо проявлять осторожность, чтобы противоударные устройства и другие компоненты, устанавливаемые на крыше, могли выполнять свою функцию при приемке навесного оборудования. Компоненты молниезащиты под ударными клеммами могут быть скрытыми внутри здания ниже уровня крыши во время строительства или при доступе. Скорость тока молнии и разделение потока между несколькими путями не позволят компонентам нагреться до любой мгновенной температуры возгорания, опасной для типичных строительных материалов.Включение системы в конструкцию позволяет соединять структурный металлический каркас и внутренние заземленные системы и обеспечивает защиту от проблем смещения и обслуживания, которые полезны для продления срока службы системы.

Материалы, подходящие для использования в системах молниезащиты, перечислены в списке , помечены и протестированы как в соответствии со стандартом UL 96. Конструкция проводника включает максимальное увеличение площади поверхности для переноса молнии и гибкость конфигурации для выполнения изгибов и поворотов, необходимых при установке. Основания аэровокзала эффективно передают удар от оконечного устройства к проводнику кабеля и надежно крепятся к различным поверхностям здания в суровых погодных условиях. Фитинги для сращивания должны поддерживать контакт с проводниками, длина которых должна быть достаточной для передачи тока и выдерживать воздействие окружающей среды. Заземляющие электроды должны обеспечивать надлежащий контакт с землей для рассеивания заряда и удовлетворять требованиям по пригодности для жизненного цикла в различных составах почвы. Размеры скрепляющих устройств позволяют обеспечить надлежащее соединение систем для выравнивания потенциалов по всей конструкции.Устройства защиты от импульсных перенапряжений соответствуют требованиям более высоких уровней тока для удовлетворения потребностей, связанных с молниеприемниками.

Прекращение забастовки

Устройства защиты от ударов выполняют системную функцию по подключению прямых молниеприемников. Они представляют собой зонтик от проникновения молнии в непроводящие строительные материалы для защиты от пожара или взрыва. Любое металлическое тело толщиной 3/16 дюйма или более, выступающее над конструкцией, выдержит удар молнии, не прожигая.Поэтому в некоторых случаях строительные элементы могут быть включены в качестве прекращения забастовки. Высокие мачты или подвесные заземляющие провода, аналогичные средствам защиты линии электропередачи, могут служить в качестве защиты от удара. В большинстве случаев, однако, малые специальные молниеотводы составляют большинство систем защиты от ударов. Эти ненавязчивые компоненты предпочтительны из-за простоты монтажа и эстетических соображений, и их можно скоординировать в наиболее эффективную конфигурацию для всех типичных строительных конструкций.

Окружающая нас атмосфера электрически заряжена, но свободный воздух поддерживает относительно сбалансированное распределение ионов. Когда мы поднимаем в воздух здание, дерево или даже человека, в меньшей степени, мы меняем этот электрический баланс. Электрическое поле накапливается для изменения точек в геометрии наземных объектов. Такие элементы, как гребни и особенно концы гребней, края зданий с плоской крышей и даже больше, углы становятся точками накопления ионов, которые увеличивают восприимчивость к ударам молнии.Надлежащая система устройств защиты от ударов учитывает эти реалии за счет использования молниеприемников в сконфигурированной схеме, предназначенной для использования точек естественного накопления ионов в здании для втягивания молнии в систему защиты. Чем выше конструкция и чем серьезнее плоские изменения (например, от вертикальной стены до горизонтальной плоской крыши), тем больше возможностей для крепления на этих критических стыках. Проектирование системы воздушных терминалов , выступающих всего на 10 дюймов над этими структурными точками акцента и вдоль гребней и краев, было доказано более чем столетней практикой для обеспечения перехвата примерно 95% зарегистрированных вспышек молний, ​​включая большинство жестокий.Некоторые удары молнии с меньшим потенциалом теоретически могут возникать на плоских плоскостях вдали от устройств защиты от ударов, разработанных в соответствии со стандартами, но последствия находятся в допустимых пределах для обычного строительства. Учитывая более низкий уровень энергии, необходимый для байпаса, другие компоненты структурного заземления, включенные в полную систему молниезащиты, и случайную вероятность соединения с компонентом системы в любом случае, этот метод защиты здания считается наиболее эффективным.

Защита самых высоких и выступающих элементов здания с помощью устройств защиты от удара, в зависимости от геометрии здания, также обеспечивает некоторый уровень защиты для нижних пристроек конструкции или элементов, находящихся в «тени» более высоких полностью защищенных областей. Зона защиты существует от любого устройства для защиты от вертикальных ударов и даже больше от вертикального полностью защищенного уровня здания. Зона защиты описана в Стандартах молниезащиты с использованием сферической модели с радиусом 150 футов (46 метров) для идентификации объектов, находящихся под защитой более высоких элементов системы, или расширения зданий на расстояния, требующие дополнительной защиты с помощью дополнительных ударных клемм.Это похоже на катание мяча диаметром 300 футов (92 метра) с высоты по зданию, а затем по зданию на противоположный уровень во всех мыслимых направлениях. Если мяч касается изолированного строительного материала, то добавляется дополнительная ударная клемма. Зоны, поддерживаемые ударными клеммами, ударными клеммами и уклонами, а также вертикальные стены, тогда находятся под защитой правильно спроектированных элементов системы. Эта геометрическая модель для защиты целых конструкций основана на последнем этапе процесса присоединения молнии и снова покрывает более 90% возможных ударов.На более ответственных конструкциях, таких как те, которые содержат взрывчатые вещества или легковоспламеняющиеся жидкости и пары, модель уменьшается до сферы радиусом 100 футов (30 метров), которая покрывает более 98% зарегистрированных ударов молний.

Система защиты от ударов защищает конструкцию от ударов молнии, обеспечивая предпочтительные точки крепления. В большинстве случаев предпочтительнее использовать медные или алюминиевые молниеотводы из-за их проводимости и устойчивости к погодным условиям.Квалифицированные выступающие металлические строительные элементы также могут выполнять эту функцию. В особых обстоятельствах, когда нельзя допустить проникновения молнии, использование высоких мачт и воздушных заземляющих проводов, используемых в модели с уменьшенной зоной, может обеспечить дополнительную защиту. Защита таких вещей, как стандарты освещения или деревья, может обеспечить некоторую защиту области на основе модели зоны. Конструктивная конфигурация ударной нагрузки — это первый ключевой элемент в обеспечении полной системы молниезащиты.

Проводники

Система проводов . Компонент полной молниезащиты включает в себя кабели основных размеров, конструкционную сталь здания, а также соединительные или соединительные провода с внутренними заземленными системами здания.Основные проводники выполняют токопроводящую функцию от устройств защиты от удара до системы заземления. Основные кабели изготовлены из меди или алюминия с высокой проводимостью, которые хорошо работают во внешних условиях. Молния ищет путь к земле, поэтому даже при использовании очень проводящих материалов кабели должны прокладываться горизонтально или вниз. Это похоже на концепцию самотечного потока воды на наклонных плоских участках в водосточные желоба или в водосточных желобах в водосточные системы.Кабели необходимо прокладывать, используя длинные плавные изгибы не менее 90 градусов. Молния создает значительную механическую нагрузку на кабели, в результате чего могут быть повреждены острые изгибы или углы, а в худшем случае молния может перекинуться через дугу. Эту механическую силу можно сравнить с отправкой воды под давлением через пожарный шланг — проводник будет пытаться выпрямиться, вызывая опасность повреждения стыковых фитингов, креплений или самого проводника.

Медные и алюминиевые жилы основных кабелей для молниезащиты разработаны по стандарту гладкого переплетения или канатной свивки с использованием отдельных проводов меньшего сечения.Такая конструкция обеспечивает максимальную площадь поверхности на единицу веса проводника для размещения молнии, которая быстро распространяется по поверхности. Эта конструкция также позволяет упростить изгиб и формирование системы проводников вдоль, вокруг и над элементами конструкции здания. Открытые проводники крепятся с максимальным интервалом в три фута, чтобы удерживать систему на месте от ветра и непогоды. Все устройства защиты от удара должны быть подключены к проводникам с минимумом двух путей к системе заземления. Устройства защиты от ударов, покрывающие различные области конструкции, должны быть соединены между собой для образования единой системы либо посредством проводов на крыше, либо через токоотводы, либо путем соединения элементов системы заземления для разных уровней или выступов крыши. Жилы молниеотводов могут быть скрыты под или внутри конструкции — на чердаках и в стенах, или в бетонных насыпях — потому что скорость молнии снижает возможность нагрева проводников до температуры искрового воспламенения строительных материалов, намного ниже опасного уровня.

Нисходящие или токоотводы — это элементы системы основных проводов, которые обычно переносят молнию от системы уровня крыши к системе заземления. Это может быть кабельный провод или сплошной стальной каркас , соответствующий требованиям , толщиной 3/16 дюйма или больше, или их комбинация. Арматурная сталь или арматура неприемлемы в качестве замены проводника кабеля, но каждый нисходящий вывод кабеля должен быть прикреплен к несущему каркасу вверху и внизу каждого вертикального участка.Все устройства защиты от удара должны иметь как минимум два пути к земле, чтобы разделить молнию по нескольким путям, поэтому в самом маленьком здании должно быть минимум два нисходящих вывода. Нисходящие линии для больших зданий могут быть рассчитаны с интервалами в 100 футов в среднем для площади периметра здания, хотя системные компоненты для специальных элементов конструкции здания могут потребовать дополнительных токоотводов для удовлетворения требований к нескольким путям. Важно рассчитать площадь защищаемого периметра, чтобы получить правильное распределение нисходящих водостоков для коньковых крыш, которые включают в себя заделки от ударов только вдоль вершины.

Обеспечение множественных путей для тока молнии имеет большое преимущество в снижении общей энергии на любом проводнике. Это влияет не только на размер проводника, но и удерживает молнию на указанных путях, чтобы свести к минимуму боковую миграцию внутренних систем и уменьшить потенциальные проблемы внутренней индукции. Стандарты молниезащиты требуют минимального количества по периметру, но большее количество путей может быть очень полезным для обеспечения клетки защиты для оборудования и людей внутри.Тот факт, что стальная рама , конструкция создает наибольшее количество квалифицированных вертикальных путей, соединенных горизонтально на многоуровневых структурах, делает его использование в качестве нисходящих проводов предпочтительным для обеспечения улучшенной защиты от проникновения побочного эффекта молнии. Несмотря на то, что кабельные жилы необходимы для нисходящих кабелей в бетонных конструкциях, необходимое соединение арматуры помогает создать аналогичную сеть защиты в проектах высотного строительства.

Заземление

Правильно выполненные заземляющие соединения необходимы для эффективного функционирования системы молниезащиты, так как они служат для распределения молнии по земле.Это не означает, что сопротивление заземляющего соединения должно быть низким, а скорее, что распределение металла в земле или на ее поверхности в крайних случаях должно быть таким, чтобы обеспечить рассеивание разряда молнии без причинения ущерба.

Низкое сопротивление желательно, но не обязательно, что может быть продемонстрировано крайними случаями, с одной стороны, здания, покоящегося во влажной глинистой почве, а с другой стороны, здания, стоящего на голом камне. В первом случае, если грунт имеет нормальное удельное сопротивление, сопротивление надлежащего заземляющего электрода должно быть меньше 50 Ом, и два таких соединения с землей на небольшом прямоугольном здании опытным путем были признаны достаточными.В этих благоприятных условиях просто обеспечить адекватные средства для рассеивания энергии вспышки без возможности серьезного повреждения. Во втором случае было бы невозможно выполнить хорошее заземление в обычном смысле этого слова, потому что большинство видов горных пород изолируют или, по крайней мере, обладают высоким удельным сопротивлением; следовательно, чтобы получить эффективную основу, необходимы более сложные средства. Наиболее эффективные системы представляют собой разветвленную сеть проводов , проложенную на поверхности скалы, окружающей здание, к которой подключены токоотводы.Сопротивление между таким устройством и землей может быть высоким, но в то же время распределение потенциала вокруг здания по существу такое же, как если бы оно покоилось на проводящей почве, и результирующий защитный эффект также по существу такой же. Система заземляющих электродов для защиты от молний служит для отвода молнии в любой слой почвы и отвода ее от конструкции.

Сеть заземляющих электродов будет определяться в основном опытом и суждением лица, планирующего установку, с должным учетом минимальных требований Стандартов, которые предназначены для охвата обычных случаев, которые могут возникнуть, соблюдая Имейте в виду, что, как правило, чем шире доступный металл под землей, тем эффективнее система заземления.Схема заземления зависит от характера почвы: от одиночных заземляющих стержней, когда почва глубокая, до использования нескольких электродов, заземляющих пластин, радиальных проводов или подземных проводных сетей, где почва неглубокая, сухая или с плохой проводимостью. Каждый нисходящий кабель должен заканчиваться соединением заземляющего электрода, предназначенным для системы молниезащиты. Электроды или электроды системы связи не должны использоваться вместо электродов заземления молнии. Конечный продукт должен включать соединение отдельных заземляющих электродов разных систем.

По возможности, заземляющие электроды следует подключать снаружи к фундаментной стене или на достаточно большом расстоянии, чтобы избежать заглубленных опор, заглушек труб и т. Д. Заземляющие электроды следует устанавливать ниже линии замерзания, где это возможно. Материалы, используемые для заземляющих электродов, должны подходить к любому щелочному или кислотному составу почв для длительного срока службы.

Во время разряда молнии по системе проводников заземляющие электроды следует рассматривать как точки, через которые протекает сильный ток между системой защиты от удара молнии и землей вокруг конструкции. Следовательно, размещение с целью отвода потока тока от конструкции наиболее выгодным образом является важным. Это будет реализовано путем размещения заземляющих устройств на внешних оконечностях, таких как углы и внешние стены конструкции, и избегая, насколько это возможно, протекания тока под зданием. В некоторых случаях, особенно когда речь идет о пристройках к существующему зданию, может возникнуть необходимость разместить отводы и заземление внутри и под конструкцией.

Заземляющий контур , окружающий конструкцию, соединяющую все нисходящие кабели у их основания и / или устройства заземляющих электродов, является лучшим способом уравнять потенциал для всей системы молниезащиты. Всегда можно иметь разные значения сопротивления заземляющих электродов даже на одной и той же конструкции.

Поскольку разделение молнии по нескольким путям начинается в точке завершения удара и проходит через систему проводников к земле, разные значения сопротивления электродов могут нарушить эту функцию.Контур заземления решает эту потенциальную проблему и обеспечивает разветвленную сеть проводов для улучшения системы заземления. Контур заземления требуется для каждой конструкции , превышающей 60 футов в высоту. Если соединительный контур нельзя установить в земле, его можно разместить внутри конструкции, чтобы выполнить это требование. Этот контур уровня земли также обеспечивает соединение с другими заземленными системами здания.

Все заземляющие средства в конструкции или на ней должны быть соединены между собой для обеспечения общего потенциала земли с использованием молниеотвода основного размера.Это включает в себя систему заземляющих электродов молниезащиты, заземления системы электрических, коммуникационных и антенн , а также металлические трубопроводы. Системы , входящие в конструкцию, такие как линии воды, газа и сжиженного нефтяного газа, металлические трубопроводы и т. Д. Подключение к газовым линиям должно производиться заказчиком. сторона счетчика, чтобы избежать выхода из строя катодной защиты линий обслуживания. Если все эти системы подключены к непрерывной металлической системе водопровода, требуется только одно соединение между заземлением молниезащиты и водопроводом.Системное соединение может быть выполнено в нескольких точках возле входов в конструкции для систем, или может использоваться одно жесткое соединение на шине заземления. Приведение всех заземленных систем здания к одному и тому же потенциалу на определенном уровне — это первый шаг к защите внутренних компонентов и людей от молнии. Он начинает процесс склеивания против боковых ударов от компонентов системы к внутренним системам здания.

Выравнивание потенциалов (соединение)

Основные токоведущие компоненты системы молниезащиты были описаны в их самой ранней форме Бенджамином Франклином.Современные методы изготовления компонентов и конструкции, включающие систему в конструкции и внутри нее, изменили внешний вид системы, но философия, лежащая в основе прекращения удара, проводимости и заземления, остается аналогичной — принять молнию и отправить ее на землю. Наиболее существенные изменения в конструкции системы молниезащиты происходят из-за адаптации того, как мы строим и оснащаем современное здание, или того, что мы могли бы назвать «фактором внутренней сантехники». Современное здание «» включает в себя металлические трубопроводы, такие как водопровод, канализация и газовые системы, а также схемы для электрических и коммуникационных систем, которые обеспечивают внутренние пути для молнии, чтобы повредить компоненты и приблизить людей к опасности.

В начале удара молнии в систему может произойти немедленное повышение до 1 000 000 вольт на основных компонентах, переходящее к 0 вольт на земле. Любая другая независимо заземленная система здания в непосредственной близости от компонентов молниезащиты будет иметь напряжение 0 вольт, поэтому естественная тенденция заключается в том, что некоторые или все молнии покидают нашу токоведущую систему и вспыхивают на альтернативный путь заземления. Если расстояние между потенциальными путями достаточно мало, дуга или боковая вспышка могут возникать через воздух или строительные материалы, что создает возможность возгорания или взрыва.

Поскольку внутренние заземленные системы здания пронизывают конструкцию, этот потенциал существует на уровне крыши, на стенах здания или в них и даже потенциально ниже уровня земли. Молния распространяется от заземляющих электродов системы у поверхности земли и может возвращаться по металлическим трубам или другим основаниям обратно в здание. Альтернативные пути от внутренней заземленной схемы не предназначены для проведения тока молнии (опасность возгорания), а соединения в металлических трубах не предназначены для использования в качестве токонесущих устройств, приводящих к тепловой деформации или ударам.Оборудование внутри сооружений, от раковины, подключенной как к водопроводной, так и к канализационной линиям, до персонального компьютера, подключенного как к электросети, так и к телефонным или антенным цепям, становится дополнительными точками для дугового разряда молнии между независимо заземленными системами , создавая значительные разрушения.

Полная система молниезащиты решает эту проблему посредством соединения или соединения металлических систем здания с системой молниезащиты для создания общего потенциала земли .Когда заземленные системы соединены вместе, у молнии нет причин покинуть наш проектный путь прохождения тока, потому что не существует произвольной дуги по точкам. Требуется соединить каждую заземленную систему здания и систему непрерывных металлических трубопроводов с системой заземляющих электродов молниезащиты вблизи уровня земли. Низкопрофильные конструкции могут нуждаться во взаимном соединении систем только около уровня крыши, когда они находятся в непосредственной близости от компонентов системы молниезащиты.По мере того, как конструкции становятся выше, возникает потребность в соединении верхней части вертикального расширения каждой внутренней заземленной системы с системой крыши с молниезащитой. Наконец, в многоэтажном строительстве системы заземления здания соединяются между собой на уровне земли, на уровне крыши и на промежуточных уровнях, чтобы обеспечить достаточное выравнивание потенциалов между длинными проводниками во избежание возникновения дуги.

Внутренняя дуга между заземленными системами также зависит от количества путей от системы молниезащиты на крыше до системы заземления.Чем больше путей, тем больше мы разделяем молнию на сегменты с более низким напряжением, тем меньше вероятность возникновения дуги через любую среду и альтернативные системы. Включение стальной надстройки в систему молниезащиты обеспечивает наличие колонн, балок и промежуточных соединений для максимального разделения молнии и, таким образом, минимизации разницы потенциальных проблем внутри. Стандарты требуют, чтобы кабельные нисходящие провода соединялись с арматурной сталью (арматурой) в литых колоннах вверху и внизу каждого участка, создавая аналогичный эффект, хотя эта механическая структурная система не считается подходящей для проведения тока молнии сама по себе.Арматурная сталь, заземленные внутренние системы и молниезащита также должны быть соединены между собой с интервалом в 200 футов по вертикали для поддержания выравнивания потенциалов.

Соединение вместе заземленных систем обычно выполняется с помощью арматуры меньшего размера и кабелей или проводов , проложенных на крышах конструкций. Соединение для выравнивания потенциалов — это не то же самое, что обеспечение пропускной способности по току. Однако во многих случаях проще использовать полноразмерные компоненты системы, потому что в конструкции они размещаются близко к желаемым точкам соединения.Когда мы склеиваем внутри конструкции или ниже уровня, более типичным является использование полноразмерных компонентов, главным образом для большей механической прочности в соответствии с реалиями строительства.

Расширение системы молниезащиты за счет включения системы заземления соединение для любой конструкции является критическим элементом, основанным на индивидуальном проектировании здания для проживания и процессов, характерных для его предполагаемого использования.

Защита от перенапряжения

Системы молниезащиты

разработаны в первую очередь как системы противопожарной защиты — чтобы не дать зданию сгореть дотла и потерять людей и оборудование внутри.Включение металлических услуг в конструкцию обеспечивает пути, по которым молнии могут следовать из внешней среды и создавать опасности внутри. Мы связываем или соединяем заземления и трубы с системой молниезащиты, чтобы частично избежать этой проблемы. Следующим шагом является обеспечение защиты цепей, связанных с электрическими линиями, линиями связи и / или данных, которые могут передавать молнию в конструкцию. Самые серьезные проблемы связаны с инженерными коммуникациями , которые представляют собой разветвленные системы, установленные на столбах или заглубленные, которые могут передавать дополнительные непрямые удары в здание.Полная система молниезащиты в соответствии со стандартами включает устройства защиты от перенапряжения на каждом входе служебных проводов здания, независимо от того, являются ли они коммунальными или, возможно, монтируются в конструкции, например, антенная система.

Устройства защиты от перенапряжения для входов в здание предназначены для «плавания» по линии, обнаружения проблем с перенапряжением и передачи избыточной энергии непосредственно на землю. УЗИП, предназначенные для грозовых перенапряжений, должны быстро реагировать на появление резко возрастающей формы волны и быть в состоянии поддерживать соединение с землей во время сильного перенапряжения, а затем возвращаться к своей роли мониторинга.Большинство устройств имеют два или более внутренних элемента для выполнения этой задачи и реагируют примерно на 150% от стандартного рабочего напряжения системы. Элементы SPD можно рассматривать как самопожертвованные и могут со временем сгореть, защищая от множества небольших скачков (например, стандартных коммутационных скачков при передаче энергии) или нескольких массивных скачков, таких как прямые молнии. Поэтому важно, чтобы SPD был доступен для просмотра или имел световые индикаторы или другие идентификаторы, чтобы знать, что ваша защита работает, как задумано.Поскольку служебные входы для различных систем работают при разном напряжении, компоненты SPD должны иметь индивидуальный размер для каждой системы и обычно упаковываются индивидуально для выполнения определенных функций, но если службы входят в подсобное помещение для распределения по всему зданию в общей зоне, одно SPD может быть спроектированным так, чтобы выполнять несколько функций в одном корпусе. Поскольку добавление длины пути заземления служит только для замедления времени реакции компонентов SPD, устройство SPD следует подключать как можно напрямую к системе заземления всегда с минимальной длиной провода.

Правильно установленные устройства защиты от перенапряжения на всех входах на фидерах проводов цепи защищают массивный вход молнии в конструкцию, сохраняя проводку от возгорания и в целом защищая такие объекты, как большие двигатели, осветительные приборы и другое надежное оборудование. Это конкретное требование Стандартов — защищать здание от разрушения. Внутри каждой современной структуры у нас есть множество устройств, которые работают при низком напряжении, включая печатные платы, действительно не предназначенные для работы на уровне пропускания 150%, только для SPD.

Также возможны индукционные эффекты для внутренней проводки и оборудования даже с хорошо спроектированной системой молниезащиты. Ток мощного прямого удара молнии в конструкцию создает магнитное поле, исходящее от проводников, поэтому в любой ближайшей альтернативной цепи может возникать некоторое добавленное напряжение за счет индукции. Хотя только в Стандартах по молниезащите и Национальном электротехническом кодексе защита от перенапряжения для внутреннего оборудования рассматривается как дополнительная, это может быть критически важной потребностью в защите для владельца. Защита аудио / видео компонентов, систем связи, компьютерного оборудования и / или технологического оборудования может иметь большое значение для качества предприятия, непрерывности бизнеса без перерывов и физической защиты пользователей оборудования. УЗИП, установленные на используемом оборудовании, должны обеспечивать защиту всех цепей, питающих устройство, чтобы обеспечить общую точку заземления. Поскольку системы утилизационного оборудования, как правило, специфичны для объекта, обычно требуется индивидуальная оценка для определения рентабельных решений.

Когда устройства защиты от перенапряжения посылают энергию в систему заземления, это мгновенное соединение всех систем электропроводки обеспечивает выравнивание потенциалов для этих металлических систем, так же как соединение между компонентами системы молниезащиты и альтернативным заземлением системы здания обеспечивает общее соединение. Достижения в области технологий продолжают изменять среду структур, в которых мы живем, работаем и развлекаемся. Применение SPD вместе с токоведущими компонентами и соединением заземленных систем здания обеспечивает полный пакет для полной системы молниезащиты для защиты конструкции, людей и оборудования внутри.

Осмотр и обслуживание

Открытые компоненты для системы молниезащиты — это медь, алюминий или другой металл, предназначенный для проведения тока, обеспечения контактных соединений и сохранения работоспособности в открытой погодной среде. Как и в случае с любым другим строительным элементом, изготовленным из аналогичных материалов, окисление или коррозия компонентов не ожидается при нормальных условиях в течение продолжительного периода времени или обычного «срока службы» конструкции .Компоненты системы, скрытые внутри конструкции между крышей и перекрытием, защищены от атмосферных воздействий и неправильного обращения. Система заземляющих электродов может быть защищена от атмосферных воздействий погодных условий, но подвержена потенциальной деградации из-за состава почвы и влаги. Можно ожидать, что правильная первоначальная установка обеспечит защиту навсегда или, по крайней мере, в течение разумного срока службы конкретного здания.

Существуют дополнительные особенности строительства, использования нами зданий и даже неизвестные в местных условиях, которые требуют рассмотрения технического обслуживания для системы молниезащиты.Пассивную систему заземления, такую ​​как молниезащита, нелегко оценить неспециалистам — вы не можете щелкнуть выключателем или включить кран, чтобы проверить, находится ли он в рабочем состоянии.

Есть очевидные моменты, когда изменения в структуре вызывают необходимость в обслуживании или расширении исходной системы. Замена кровли здания, внесение дополнений в конструкцию здания или добавление вентиляционных труб или антенн для новых внутренних процессов — очевидные области, требующие пересмотра и обработки.Не так очевидно, но, как сообщается, главной причиной для обязательной проверки систем является привычка рабочих из других профессий удалять и не переустанавливать компоненты системы, потому что они не понимают важности общей конструкции системы молниезащиты . Также возможно, что соседний технологический стек будет выделять вещество, переносимое ветром к компонентам вашей системы, которое разрушает материалы намного быстрее, чем ожидалось. Любой из этих элементов требует периодических проверок и технического обслуживания, чтобы гарантировать работоспособность системы в условиях удара молнии, но это, безусловно, может быть проигнорировано с серьезными непредвиденными последствиями.

Программа осмотра и возможного технического обслуживания должна быть реализована для обеспечения постоянной эффективности системы на конструкции. Визуальный осмотр может выполняться ежегодно с использованием контрольного списка и умеренного обучения вашего поставщика молниезащиты, чтобы учесть любой мелкий ремонт, такой как незакрепленная арматура, неправильное крепление, повреждение оголенных кабелей, замена снятого оборудования или повреждение устройств защиты от перенапряжения. Это может сделать обычный специалист по обслуживанию здания или даже владелец здания под руководством.Если специалист по молниезащите не привлекается для каждой ежегодной проверки, то с интервалом в пять лет будет важно проводить «тестовую» проверку с привлечением знающего человека — инспектора или установщика — для более тщательной проверки.

Полная испытательная проверка будет включать визуальные проверки наряду с проверкой целостности для проверки эффективности системы от крыши до уровня, и наземные испытания для проверки функции скрытых подземных электродов.Программа обеспечения качества, разработанная для обслуживания вашей системы молниезащиты, устранит неожиданности, которые могут привести к катастрофическим последствиям.

Реализация системы молниезащиты включает в себя искусство, науку, мастерство и технологическую интуицию. Это специализированная отрасль со своими собственными стандартами, разработанными специально для борьбы с великим случайным разрушителем природы. Как и в любом другом начинании, подготовка, обучение и сертификация лиц, участвующих в проектировании, установке и проверке полной системы молниезащиты, определяют высшее качество. Lightning Protection Institute фокусирует наши усилия на обучении профессионалов, владельцев, пользователей и широкой общественности безопасной и эффективной молниезащите и предоставляет качественные ресурсы через наше членство для выполнения этой важной услуги для всей строительной отрасли.

О TLP

Год основания

1910

История

Джордж Томпсон начал свою деятельность в Оватонне, штат Миннесота, в качестве подрядчика по установке систем.В 1930 году компания переехала в Миннеаполис, штат Миннесота, и начала производить компоненты систем молниезащиты. Джон Томпсон взял на себя управление компанией в 1940-х годах и выстроил производство в национальном масштабе, который с тех пор расширился до международного масштаба под последующим владением Робертом У. Линдквистом и Алланом П. Стеффесом.

Миссия / Цель:

Целью компании

Thompson было и всегда будет предоставление компонентов системы молниезащиты только самого высокого качества, доступных в любом месте.Эта приверженность качеству также находит свое отражение в наших инженерно-технических операциях и обслуживании клиентов, в которых не принимаются короткие пути, а долгосрочное удовлетворение потребностей клиентов имеет первостепенное значение.

Квалификация / Опыт

Вся продукция Thompson проверена и внесена в списки Underwriter’s Laboratories и полностью соответствует критериям Института защиты от молний и Национальной ассоциации противопожарной защиты. Наш список UL одобрен для соответствия канадским стандартам CSA.Наше высшее руководство имеет более чем 100-летний опыт работы в отрасли, а весь проектный и полевой персонал полностью сертифицирован Институтом молниезащиты.

Операции

Продукты

Благодаря лучшей в Америке линейке компонентов мы предлагаем полную защиту от поражения молнией для всех конструкций, от домов до больниц, от школ до дымовых труб, от высотных зданий до опасных объектов. Линия продуктов Thompson является самой широкой и наиболее технически совершенной в отрасли.Наши ключевые компоненты отличаются превосходной литой конструкцией. Мы — единственная фирма в отрасли, предлагающая этот более высокий уровень качества, который обеспечивает гораздо лучший внешний вид, а также большую прочность и лучшие характеристики готовых компонентов и систем. Поскольку конструкция каждой системы молниезащиты уникальна для конкретного здания, часто требуются нестандартные компоненты. Мы поддерживаем возможность полного производственного цикла по производству специальных компонентов ограниченным тиражом в соответствии с уникальными конструктивными или архитектурными требованиями.Чтобы дополнить и завершить нашу стандартную линейку компонентов молниезащиты, Thompson также предлагает широкий спектр сопутствующего оборудования и продуктов, которые могут использоваться в сочетании со структурной молниезащитой для обеспечения безопасности от других возможных угроз молний. Эти дополнительные позиции включают:

  • Система предупреждения о молнии «Blitz-Alert».
  • Самолет и системы статического заземления для чувствительных / опасных зон.
  • Молниезащита мачты / воздушной линии защиты от молнии.
  • Заземляющие маты / сетки из сплошной меди и медной проволоки различных размеров и конфигураций.
  • Твердые заземляющие стержни из нержавеющей стали и чистой меди.
  • Р.Ф. защитное оборудование и системы.
  • Химически усиленные заземляющие устройства.
  • «Flangeguard» разрядник для изолированных стыков подземных трубопроводов и широкий спектр устройств защиты от перенапряжения и переходных процессов для любого применения или системы.
  • Доступ к земле / испытательные колодцы из ПВХ со стальными крышками.

Услуги

Thompson предлагает бесплатные сметы по всем проектам. Наш инженерный / проектный отдел поможет в проектировании и компоновке систем на любом типе конструкции. Мы также разрабатываем индивидуальные компоненты для уникальных приложений молниезащиты или статического заземления. Вам предлагается предоставить эскизы и данные для ваших конкретных требований. Для полного проектирования / предложения услуг отправьте план крыши с показанным механическим оборудованием, план первого этажа, фасадные фасады здания и секции стен краев крыши.Чтобы помочь вам, Thompson имеет всемирную сеть местных агентов, дистрибьюторов и дилеров. Свяжитесь с нашим заводом, чтобы узнать имя ближайшего к вам представителя.

Операционный район

Национальный и международный

Ключевые контакты

Главный исполнительный директор : Аллан П. Стеффес

Президент : Джеффри М. Стеффес

Секретарь : Джеффри М. Стеффес

Операционный менеджер : Джеффри М.Steffes

Менеджер по установке : Джеффри М. Стеффес

Помощник руководителя : Джуди А. Дальберг

Контролер : Николь Э. Квист

гроза | Определение, типы, структура и факты

Гроза , сильное кратковременное погодное нарушение, которое почти всегда связано с молнией, громом, плотными облаками, сильным дождем или градом и сильными порывистыми ветрами. Грозы возникают, когда слои теплого влажного воздуха поднимаются большим быстрым восходящим потоком в более прохладные области атмосферы.Там влага, содержащаяся в восходящем потоке, конденсируется, образуя возвышающиеся кучево-дождевые облака и, в конечном итоге, осадки. Столбы охлажденного воздуха затем опускаются к земле, ударяясь о землю сильными нисходящими потоками и горизонтальными ветрами. В то же время электрические заряды накапливаются на частицах облаков (каплях воды и льда). Разряды молнии возникают, когда накопленный электрический заряд становится достаточно большим. Молния нагревает воздух, через который проходит, так интенсивно и быстро, что возникают ударные волны; эти ударные волны слышны как раскаты и раскаты грома.Иногда сильные грозы сопровождаются закрученными воздушными вихрями, которые становятся достаточно концентрированными и мощными, чтобы образовывать торнадо.

гроза

Гроза с молнией.

© Пол Лэмпард / stock.adobe.com

Британская викторина

Молния: факт или вымысел?

Безопасны ли небоскребы от ударов молнии? Кристаллы льда помогают в производстве молний? Узнайте больше о самом электрическом явлении в природе в этой викторине.

Грозы, как известно, случаются почти во всех регионах мира, хотя они редки в полярных регионах и нечасты на широтах выше 50 ° N и 50 ° S. Таким образом, умеренный и тропический регионы мира являются наиболее подверженными риску. до грозы. В США районами максимальной грозовой активности являются полуостров Флорида (более 80 грозовых дней в году, а в некоторых районах более 100), побережье Мексиканского залива (60–90 дней в году) и горы Нью-Мексико (50 –80 дней в году).В Центральной Европе и Азии в среднем от 20 до 60 грозовых дней в году. Было подсчитано, что в любой момент в мире происходит около 1800 гроз.

В этой статье рассматриваются два основных аспекта гроз: их метеорология (т. Е. Их формирование, структура и распространение) и их электризация (т. Е. Генерация молний и громов). Для отдельного освещения связанных явлений, не охваченных в этой статье, см. Торнадо , шаровые молнии, бусовые молнии, а также красные спрайты и синие струи.

Грозовые образования и структура

Вертикальное движение атмосферы

Самые короткие, но сильные возмущения в ветровых системах Земли затрагивают большие области восходящего и нисходящего воздуха. Грозы не являются исключением из этого правила. Говоря техническим языком, считается, что гроза возникает, когда атмосфера становится «нестабильной к вертикальному движению». Такая нестабильность может возникнуть, когда относительно теплый легкий воздух перекрывается более прохладным и тяжелым воздухом. В таких условиях более холодный воздух имеет тенденцию опускаться, вытесняя более теплый воздух вверх.Если поднимается достаточно большой объем воздуха, образуется восходящий поток (сильный поток поднимающегося воздуха). Если восходящий поток влажный, вода конденсируется и образует облака; конденсация, в свою очередь, высвобождает скрытую тепловую энергию, дополнительно подпитывая восходящее движение воздуха и увеличивая нестабильность.

гроза: структура

Когда атмосфера становится достаточно нестабильной, чтобы сформировать большие мощные восходящие и нисходящие потоки (как показано красными и синими стрелками), образуется возвышающееся грозовое облако.Иногда восходящие потоки бывают достаточно сильными, чтобы расширить верхнюю часть облака до тропопаузы, границы между тропосферой (или нижним слоем атмосферы) и стратосферой. Щелкните значки в левой части рисунка, чтобы просмотреть иллюстрации других явлений, связанных с грозами.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Когда в нестабильной атмосфере инициируются восходящие движения воздуха, поднимающиеся частицы теплого воздуха ускоряются по мере того, как они поднимаются через более прохладную среду, потому что они имеют меньшую плотность и более плавучие.Это движение может создать модель конвекции, при которой тепло и влага транспортируются вверх, а более холодный и сухой воздух транспортируется вниз. Области атмосферы, где вертикальное движение относительно велико, называются ячейками, а когда они переносят воздух в верхнюю тропосферу (самый нижний слой атмосферы), они называются глубокими ячейками. Грозы возникают, когда глубокие ячейки влажной конвекции организуются и сливаются, а затем производят осадки и, в конечном итоге, молнии и гром.

Восходящие движения могут быть инициированы в атмосфере разными способами. Распространенным механизмом является нагревание поверхности земли и прилегающих слоев воздуха солнечным светом. Если поверхностного нагрева достаточно, температура нижних слоев воздуха будет расти быстрее, чем верхних слоев, и воздух станет нестабильным. Способность земли быстро нагреваться — вот почему большинство гроз формируется над сушей, а не над океанами. Неустойчивость также может возникать, когда слои холодного воздуха нагреваются снизу после того, как они перемещаются по теплой поверхности океана или по слоям теплого воздуха.Горы также могут вызывать восходящее атмосферное движение, действуя как топографические барьеры, заставляющие подниматься ветры. Горы также действуют как высокоуровневые источники тепла и нестабильности, когда их поверхности нагреваются Солнцем.

Мировая картина повторяемости гроз

Грозы чаще всего происходят в тропических широтах над сушей, где воздух, скорее всего, быстро нагреется и образует сильные восходящие потоки.

Encyclopædia Britannica, Inc.

Огромные облака, связанные с грозами, обычно начинаются как изолированные кучевые облака (облака, образованные конвекцией, как описано выше), которые вертикально развиваются в купола и башни.Если имеется достаточная нестабильность и влажность, а фоновый ветер благоприятен, тепло, выделяемое при конденсации, еще больше усилит плавучесть поднимающейся воздушной массы. Кучевые облака будут расти и сливаться с другими ячейками, образуя огромное кучевое облако, простирающееся еще выше в атмосферу (6000 метров [20 000 футов] или более над поверхностью). В конечном итоге образуется кучево-дождевое облако с его характерной верхней частью в форме наковальни, вздымающимися сторонами и темным основанием. Кучево-дождевые облака обычно производят большое количество осадков.

Системы молниезащиты | DEHN США

Скачки — заниженный риск

Функция системы молниезащиты — защищать конструкции от пожара или механического разрушения, а также предотвращать ранения или даже гибель людей в зданиях. Общая система молниезащиты состоит из внешней молниезащиты (молниезащита / заземление) и внутренней молниезащиты (защита от перенапряжения).

Функции внешней системы молниезащиты

  • Перехват прямых ударов молнии через систему молниеприемника
  • Безопасный разряд молнии на землю через токоотвод
  • Распределение тока молнии в земле через систему заземления

Функции внутренняя система молниезащиты

  • Предотвращение опасного искрения в конструкции путем установления эквипотенциального соединения или сохранения безопасного расстояния между компонентами LPS и другими электропроводящими элементами

Уравнивание потенциалов молнии

Уравнивание потенциалов молнии уменьшает разность потенциалов, вызванную токами молнии.Это достигается соединением между собой всех изолированных проводящих частей установки с помощью проводов или устройств защиты от перенапряжения.

Элементы молниезащиты

Согласно стандарту EN / IEC 62305 система молниезащиты состоит из следующих элементов:

  • Система молниеприемника
  • Токоотвод
  • Система заземления
  • Разделительные расстояния
  • Уравнивание потенциалов молнии

Классы LPS

Классы LPS I, II, III и IV определены как набор строительных правил, основанных на соответствующем уровне молниезащиты (LPL).Каждый набор включает зависящие от уровня (например, радиус катящейся сферы, размер ячейки) и независимые от уровня правила построения (например, поперечные сечения, материалы).

Чтобы обеспечить постоянную доступность сложных систем данных и информационных технологий даже в случае прямого удара молнии, требуются дополнительные меры для защиты электронных устройств и систем от скачков напряжения.

Harrisburg Молниезащита, установка громоотвода и система молниезащиты

A PA, OH, MD, WV, VA, DE Специалист по молниезащите

Президент: Джеффри Галамб-старший.

Джефф работает в сфере молниезащиты с 1973 года. Джефф начал свою карьеру в компании Bonded Lightning Protection в Мэриленде. В 1976 году Джефф покинул Bonded, чтобы основать собственный бизнес. Первая компания, принадлежащая Джеффу, называлась Professional Lightning Protection и располагалась в Хагерстауне, штат Мэриленд. В 1978 году компания была переведена в Питтсбург, штат Пенсильвания, в его родной город, и переименована в J&J Lightning Protection Co — в честь его имени и имени его сына Джеффа, отсюда и J&J.

J&J Lightning Protection поддерживалась до 1987 г. В то время компания была переименована и зарегистрирована на имя J&G Lightning Protection, Inc.

Джеффри Галамб-старший имеет сертификат мастера установки, номер карты 852, выданный Институтом защиты от молний. Кроме того, он более 35 лет является членом IBEW Local # 26, Вашингтон, округ Колумбия. Джеффри Галамб-старший отвечает за управление оценочным отделом и надзор за всеми сферами деятельности из офиса, включая торги, выставление счетов и планирование проектов.

Опасность молнии

Типичная молния может выдерживать до 30 миллионов вольт. Увеличение количества коммунальных услуг, дорогостоящее электронное оборудование и металлические строительные компоненты сделали сегодняшние конструкции особенно уязвимыми для поражения молнией. Правильно установленная система молниезащиты, соответствующая стандартам безопасности США (NFPA и UL), обеспечит безопасный путь к земле для разрушительной энергии молнии. Три основных компонента для полной молниезащиты:

  • Система молниезащиты (молниеотводы):
    Эта взаимосвязанная система состоит из молниеотводов (стержней), проводника (кабеля), соединения и заземления, предназначенных для защиты конструкции и находящихся в ней людей.
  • Грозозащитные разрядники:
    Эти устройства устанавливаются на электрической панели обслуживания, чтобы предотвратить попадание опасного высокого напряжения в конструкцию через входящие провода. Разрядник работает как фильтр для ослабления входящего напряжения, предотвращая, таким образом, электрический пожар или взрыв, вызванный молнией.
  • Ограничители перенапряжения:
    Они устанавливаются между устройством или компьютером и электрической розеткой, чтобы обеспечить подавление скачков напряжения в точке входа от скачков напряжения, вызванных молнией.Для конструкций, содержащих чувствительное электронное оборудование, может потребоваться серия индивидуальных ограничителей перенапряжения. Ограничители перенапряжения не являются обязательным компонентом одобренной UL системы молниезащиты и могут быть реализованы вместе с системой молниезащиты по усмотрению владельца или в соответствии с рекомендациями установщика.

Дополнительные услуги:

  • Громоотводы
  • Установка молнии
  • Известные проекты

Защита от молний и безопасность | III

Молния и страхование

Стандартные полисы страхования домовладельцев и предприятий, а также исчерпывающая часть полиса автострахования покрывают убытки, например, пожар, вызванный ударом молнии. Некоторые полисы также обеспечивают покрытие ущерба, причиненного скачками напряжения.

Тем не менее, гораздо лучше предотвратить повреждение от молнии, чем бороться с его последствиями.

Защитите свой дом, установив систему молниезащиты

Система молниезащиты (LPS) обеспечивает определенный путь, по которому может распространяться молния. Институт молниезащиты (LPI) объясняет, как работают LPS в этой инфографике. Сеть молниеотводов или молниеотводов на крыше подключена к серии токоотводов, которые переносят ток в сеть заземления.Таким образом, система надежно направляет разрушительную силу удара молнии в землю, не повреждая структуру вашего дома или офиса и его содержимое.

Молниезащита — это не проект «сделай сам» — обратитесь к специалисту по молниезащите, внесенному в список UL, для установки системы в соответствии с национальными стандартами безопасности.

Защитите свой дом и электронику от скачков напряжения

Электрические скачки от молнии могут проникнуть в здание по линиям электропередачи и вызвать электрический пожар, а также повредить электрическую систему вашего здания, ваши приборы и вашу бытовую электронику.

Обычные удлинители обеспечивают слабую защиту от перенапряжения. Для обеспечения наилучших мер защиты следует установить устройства защиты от перенапряжения (SPD), внесенные в список UL, для фильтрации и отвода вредных электрических разрядов. Большинство электроэнергетических компаний сдают в аренду или продают устройство защиты от перенапряжения для электросчетчика, чтобы «подавить» входящие перенапряжения; лицензированные электрики могут установить аналогичную защиту.

Для защиты ценной электроники, такой как компьютеры, домашние развлекательные центры, игровые системы и технологии умного дома, установите включенные в список UL ограничители скачков напряжения и рассмотрите возможность отключения дорогой электроники, когда вы знаете, что приближается шторм.

Защитите себя и свою семью с помощью мер предосторожности

  • Когда гремит гром, уходят в дом. Во время шторма лучше всего укрыться в доме или другом полностью закрытом здании. Внутри не стойте рядом с открытыми окнами, дверными проемами или металлическими трубами. Не разговаривайте по телефону и избегайте контакта с мелкой бытовой техникой, такой как тостеры и фены. Поскольку вода проводит электричество, держитесь подальше от водопровода, раковин, ванн и радиаторов отопления.
  • Если вы знаете, что приближается шторм, избегайте известных опасностей и опасных мест. Сюда входят области, где вы будете самым высоким объектом — например, поле для гольфа. Водоемы также привлекают молнии, поэтому избегайте озер, пляжей или открытых водоемов и ловите рыбу с лодки или причала. Никогда не катайтесь на тележках для гольфа, сельскохозяйственном оборудовании, мотоциклах или велосипедах во время грозы.
  • Если вы попали на улицу во время грозы, укрывайтесь в автомобиле с твердым покрытием или в низине, например, в туннеле или даже в пещере, если это необходимо. Держитесь подальше от заборов, изолированных деревьев и других проводящих объектов, таких как телефонные столбы, линии электропередач и трубопроводы.Они представляют опасность из-за возможной боковой вспышки, то есть напряжения от расположенного поблизости объекта, пораженного молнией.
  • Если вы оказались в открытом поле без ближайшего укрытия, и у вас начали встать дыбом волосы, пригнитесь, положив руки на колени, и балансируйте на подушечках пальцев. Статическое электричество в ваших волосах является признаком того, что вот-вот ударит молния, и идея состоит в том, чтобы как можно меньше контактировать с землей. Никогда не ложитесь и не кладите руки на землю.

Следующие шаги: Для получения дополнительных советов по защите дома прочтите, как защититься от кражи со взломом.

Защита домов и собственности от удара молнии!


КАЧЕСТВО, МАСТЕРСТВО И ОБСЛУЖИВАНИЕ. Обширный опыт более 60 лет!


Сертифицированный мастер-установщик и дизайнер
ИСТОРИЯ Wolf Lightning Protection Corporation ведет свою историю с Германии, где молниезащита была и остается важной частью строительных технологий.Основанная в 1955 году компания Wolf Lightning Protection Corporation была одной из крупнейших компаний по установке молниеотводов в Германии.

В 1983 году в США была основана корпорация Wolf Lightning Protection Corporation. Сегодня это ведущая компания по защите от молний в Грузии.


НАША МИССИЯ


Wolf Lightning Protection Corporation стремится предоставлять новейшие немецкие разработки и мастерство в сочетании с передовыми американскими технологиями в области молниезащиты.Его страсть заключается в защите жизней и домов от ударов молнии. Wolf Lightning Protection Corporation гордится тем, что выполняет свою работу профессионально, точно и чисто.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *