Какую прочность набирает бетон за 7 суток: График набора прочности бетона, таблица прочности бетона

Опубликовано

Содержание

Условия твердения бетона и уход за ним

В процессе твердения в бетоне протекают реакции гидратации, в ходе которых минералы цемента, взаимодействуя с водой, образуют новые соединения. Обезвоживание бетона в ранние сроки в результате испарения может замедлить или прекратить процесс твердения и привести к недобору прочности, а также вызвать большие его усадки и растрескивание.

При благоприятных условиях твердения прочность бетона непрерывно повышается. Для нормального твердения бетона необходима положительная температура 20±2°С с относительной влажностью окружающего воздуха не менее 90%.

При нормальных условиях твердения нарастание прочности бетона происходит довольно быстро и бетон (на портландцементе) через 7—14 дней после приготовления набирает 60—70% своей 28-дневной прочности. Затем рост прочности замедляется.

Если бетон твердеет все время в воде, то его прочность будет выше, чем при твердении на воздухе. При твердении бетона в сухой среде вода из него через несколько месяцев испарится и тогда твердение практически прекратится. Объясняется это тем, что внутренняя часть многих зерен цемента не успевает вступить в реакцию с водой. Поэтому для достижения бетоном необходимой прочности нельзя допускать его преждевременного высыхания. В теплую сухую и ветреную погоду углы, ребра и открытые поверхности бетона высыхают быстрее, чем внутренние его части. Необходимо предохранить эти элементы от высыхания и дать им возможность достигнуть заданной прочности.

При твердении бетона всегда изменяется его объем. При твердении бетон дает усадку, которая в поверхностных зонах происходит быстрее, чем внутри, поэтому при недостаточной влажности бетона в период твердения на его поверхности появляются мелкие усадочные трещины. Кроме того, трещинообразование возможно в результате неравномерного разогрева бетонного блока вследствие выделения тепла при схватывании и твердении цемента. Трещины снижают качество, прочность и долговечность бетона.

Рост прочности бетона в значительной степени зависит от температуры, при которой происходит твердение. Твердение бетона при температуре ниже нормальной замедляется, а при температуре ниже 0°С практически прекращается; наоборот, при повышенной температуре и достаточной влажности процесс твердения ускоряется.

Продолжительность твердения имеет большое практическое значение при бетонных работах. Ускорять твердение необходимо, когда требуется быстро нагрузить конструкции эксплуатационной нагрузкой или распалубить в ранние сроки, а главным образом при работах зимой и изготовлении бетонных и железобетонных изделий.

Для ускорения твердения бетона применяют добавки-ускорители, вводимые при приготовлении бетонной смеси. Оптимальное содержание добавок-ускорителей устанавливается экспериментальным путем строительной лабораторией.

Чтобы свежеуложенный бетон получил требуемую прочность в назначенный срок, за ним необходим правильный уход: поддержание его во влажном состоянии, предохранение от сотрясений, повреждений, ударов, а также от резких изменений температуры.

Отсутствие ухода может привести к получению низкокачественного, дефектного и непригодного бетона, а иногда к разрушению конструкции несмотря на хорошее качество применяемых материалов, правильно подобранный состав смеси и тщательное бетонирование. Особенно важен уход за бетоном в течение первых дней после укладки. Недостатки ухода в первые дни могут настолько ухудшить качество бетона, что практически их нельзя будет исправить даже тщательным уходом в последующие дни.

Благоприятные температурно-влажностные условия для твердения бетона обеспечивают путем предохранения его от вредного воздействия ветра и прямых солнечных лучей, систематической поливкой. Для этого открытые поверхности свежеуложенного бетона укрывают полиэтиленовой пленкой и поливают водой. В зависимости от климатических условий частота поливки должна быть такой, чтобы поверхность бетона в период ухода все время была во влажном состоянии. В сухую погоду открытые поверхности поддерживают во влажном состоянии до достижения бетоном 50—70% проектной прочности.

В жаркую погоду поливают также деревянную опалубку. При снятии опалубки до истечения срока поливки (например, опалубки колонн, стен, боковых щитов балок) поливают и распалубленные вертикальные поверхности бетонных конструкций. Наиболее эффективно вертикальные и круто наклонные поверхности поливать непрерывным потоком воды через систему трубок с мелкими отверстиями. В жарком сухом климате этот способ полива применяют обязательно. При температуре ниже +5° бетон не поливают.

Низкая температура является главной проблемой сопровождающей зимнее бетонирование. Для начала стоит упомянуть  каким образом отрицательная температура может повлиять на процесс схватывания и твердения бетона. Существует две основных причины:

— затормаживание процесса гидратации цемента (увеличение сроков набора прочности бетона)

— вымерзание воды, входящей в состав бетона (полная остановка процесса набора прочности)

   Низкая температура (0 − +10 градусов) существенно затормаживает процесс гидратации цемента, то есть растягиваются сроки набора прочности бетона. К примеру: в нормальных условиях (+20 градусов Цельсия) за неделю бетон набирает до 70% прочности. При температуре окружающего воздуха +5 градусов, срок набора 70% марочной прочности бетона может растянуться на 3-4 недели. В такую погоду рекомендовано добавление добавок, ускоряющих гидратацию, чтобы бетон ускоренными темпами набирал марочную прочность.

   И если низкая положительная температура тормозит процесс схватывания и набора прочности бетона, то отрицательная — полностью его останавливает. Причина тому – вымерзание воды в молодом бетоне. Сам процесс гидратации цемента невозможен в отсутствие воды. Вода является необходимым компонентом для образования цементного камня. Цемент должен находиться в контакте с водой (влагой) в течение всего времени созревания.

    При бетонировании в отрицательных температурах, основная задача – не дать замерзнуть воде, входящей в состав бетона. 

Существует несколько основных способов сохранения воды затворения бетона от вымерзания:

— применение противоморозных добавок в бетон (ПМД)

— использование электропрогрева бетона

— укрывание бетона пленкой ПВХ, утеплителями и т.п.

— сооружение временного укрытия с прогревом тепловыми пушками.

   Применение противоморозных добавок в бетон — наиболее распространённый способ, применяемый при бетонировании в зимних условиях. Так называемый зимний бетон производится в различных вариациях, отличающихся между собой процентным содержанием добавок. Роль химических добавок – активировать процессы твердения и понизить температуру замерзания жидкой фазы. Кроме этого строитель должен помнить:

— чтобы обеспечить твердение бетона в теплой и влажной среде до набора критической прочности, внутренний запас теплоты в бетоне  создают   путем подогрева материалов, составляющих   бетонную смесь;

— после окончания укладки смеси поверхность бетона нужно сразу же утеплить щитами или матами, что поможет сохранить теплоту выделяющуюся при химической реакции цемента с водой (экзотермия цемента) и поддерживать необходимые условия для твердения бетона. Изолированный от холодного воздуха бетон твердеет за счет тепла, внесенного в бетонную смесь при ее приготовлении, а также тепла, выделяемого в процессе экзотермической реакции твердения цементного теста;

— запрещается применять смерзшийся заполнитель.

   Электропрогрев бетона чаще применяется на стройках, где имеется техническая возможность использовать трансформаторы большой мощности (30-80 кВт).  Электрический прогрев бетона зимой  лучший метод, при проведении монолитных работ.

   Укрывание бетона – наиболее рациональный метод бетонирования в зимнее время, при граничных температурах воздуха +3 − -3. Схватывание и твердение бетона – изотермический процесс, то есть: при застывании и наборе прочности, цемент, контактируя с водой, выделяет тепло. Для этого необходимо свежеотлитую конструкцию из бетона укрыть ПВХ плёнкой, или утеплителем. В некоторых случаях, если при бетонировании в зимнее время применялся обычный бетон без противоморозных добавок, а температура воздуха резко упала до низких минусовых значений (-5 − -15º) целесообразно использовать газовые или электрические пушки.

  Если будет использоваться дополнительный прогрев тепловыми пушками, то укрытие из плёнки ПВХ укладывается не на поверхность бетона, а на временный каркас из досок, брусков и т.п . Создаётся нечто наподобие низкой «палатки» или «шатра» над бетонной конструкцией и под это укрытие ставятся тепловые пушки. Чем выше будет температура под шатром, тем быстрее будет идти процесс набора прочности, и соответственно, раньше можно будет прекратить прогрев.

Движение людей по забетонированным конструкциям, а также установка на них лесов и опалубки допускается только тогда, когда бетон достигает прочности не менее 1,5 МПа. Движение автотранспорта и бетоноукладочных машин по забетонированной конструкции допускается только по достижении бетоном прочности, предусмотренной проектом производства работ.

Марки и классы бетона: твердение и набор прочности

Наши цены на бетон всех марок >>>

Главные параметры бетонной смеси

Базовые показатели степени качества бетона – это марка или класс бетонной смеси. При покупке продукции на эти параметры следует обратить особое внимание. К второстепенным факторам относят коэффициенты водонепроницаемости, подвижности и морозостойкости. Самое главное – выбрать товар по типу марки или класса: они неизменны в течение всего периода эксплуатации.

А вот прочность бетонной смеси, например, напротив, параметр достаточно изменчивый. Он может варьироваться в течение всего периода терпения, увеличиваясь и нарастая. Так, при соответствующих климатических и погодных условиях прочность наберет расчетный (проектный) показатель только через 28 суток твердения. Вообще процессы твердения бетонной смеси и набора прочности могут идти несколько лет.

Марка бетона определяется в зависимости от количества цемента в общем составе.

Какие диапазоны классов и марок существуют?

Показатель

Диапазоны и пример

марка бетона

Общий диапазон: от М50 до М1000

(например, М200, М400, М450, М500 и т.д.).

Основной диапазон: чаще всего применяют марки от м100 до м500.

класс

Общий диапазон: от В 3,5 до 80

(например, В 10, В 12,5, В 22,5, В 30 и т.д.).

Основной диапазон: в большинстве случаев используют класс от В 7,5 до В 40.

Методы определения основных показателей и контрольные пробы

Выбор и последующая покупка зависят от указанного в проекте типа марки и класса бетонной смеси. Если такой документ отсутствует, следует обратиться за помощью к строителям. Специалисты выдадут соответствующие рекомендации. Однако можно попробовать разобраться в данном деле самостоятельно.

Итак, что обозначают цифры на маркировке? Значения 200, 400 и т.д. (на маркировках м200, м400 и т.д.) – это соотношение предела прочности на сжатие, выраженное в расчете 1 кгс. на 1 кв.см. Показатель указывает среднее значение. Большинство строительных компаний и организаций подобного профиля чаще всего заказывают бетон именно в марках. Однако класс бетона является также довольно часто встречающимся параметром, используемым в современном строительстве. Цифры класса указывают не средний, как цифры марки, а гарантированный показатель прочности.

Как проверить бетонную смесь на соответствие указанным показателям марки и класса?

Для начала во время разгрузки бетона возьмите пробу смеси, отлив два-три кубика размером 15х15х15 см. Чтобы это сделать, достаточно, например, сколотить из дощечек формы такого размера. Кстати, перед взятием пробы полученные ящики следует увлажнить, иначе сухое дерево впитает в себя большое количество влаги (это может негативно повлиять на гидратацию важного компонента – цемента).

Пробу необходимо проверить, прощупав смесь куском арматуры или уплотнив ее ударом молотка по бокам кубиков-ящиков. Отлитую бетонную смесь нужно хранить в течение 28 суток при температуре 20 градусов и влажности 90%.

Затвердевшую смесь по истечению срока необходимо отнести в независимую лабораторию. Специалисты вынесут окончательные вердикт – принадлежит ли данная марка бетона к указанным на маркировке данным. Кстати, 28 дней – срок необязательный. Известно, что основную часть расчетной прочности (70%) бетонная смесь набирает за первые 7 суток.

! Обратите внимание

  • не стоит разбавлять смесь водой в автобетоносмесителе;
  • брать пробу необходимо с самого лотка бетоносмесителя;
  • нужно как можно тщательнее уплотнить бетон штыкованием;
  • хранить кубики с образцами бетонной смеси следует только в соответствующих условиях: оптимальные варианты – прохладный подвал или любое помещение в тени.

Таблица соотношения класса, прочности и марки бетона

Марка бетона

по прочности

на сжатие

Соотношение прочности бетона, соответствующих марок и классов бетона по прочности на сжатие

Класс бетона

по прочности на сжатие

Условная марка бетона*, соответствующая классу бетона по прочности на сжатие

Бетон всех видов, кроме ячеистого

Отличие от марки бетона, %

Ячеистый бетон

Отличие от марки бетона %

М15

В1

14,47

-3,5

М25

В1,5

21,7

-13,2

М25

В2

28,94

15,7

М35

В2,5

32,74

-6,5

36,17

3,3

М50

В3,5

45,84

-8,1

50,64

1,3

М75

В5

65,48

-12,7

72,34

-3,5

М100

В7,5

98,23

-1,8

108,51

8,5

М150

В10

130,97

-12,7

144,68

-3,55

М150

В12,5

163,71

9,1

180,85

М200

В15

196,45

-1,8

217,02

М250

В20

261,93

4,8

М300

В22,5

294,68

-1,8

М300

В25

327,42

9,1

М350

В25

327,42

-6,45

М350

В27,5

360,18

2,9

М400

В30

392,9

-1,8

М450

В35

458,39

1,9

М500

В40

523,87

4,8

М600

В45

589,35

1,8

М700

В50

654,84

-6,45

М700

В55

720,32

2,9

М800

В60

785,81

-1,8

Твердение бетона

В результате процесса взаимодействия воды и цемента общая прочность бетонной смеси возрастает. Такой процесс называют гидратацией цемента. Если в непрочном молодом бетоне вода высыхает или вымерзает, гидратация останавливается. Замерзание, безусловно, очень негативно влияет на эксплуатационные характеристики смеси, ухудшает базовые свойства и снижает показатель прочности. Кстати, молодым бетон называют в течение первых двух-трех недель твердения.

Итак, что делать с потерей влаги? Для положенного твердения и нормальной гидратации необходимо поддерживать оптимальную влагу. Только тогда бетонная смесь будет иметь соответствующие эксплуатационные свойства и характеристики (включая показатель прочности) и прослужит исправно в течение несколько десятков лет.

! Обратите внимание

  • при высоких температурах (в жаркое время года) следует накрыть только что уложенный бетон мокрой мешковиной или пленкой ПВХ;
  • молодые бетонные конструкции (1-5 дневные) нужно периодически поливать водой.

В холодное время хода наблюдается процесс замораживания бетонной смеси. Замерзает здесь не сам бетон, а находящаяся в смеси вода. В данном случае весь процесс взаимодействия воды и цемента – гидратации – затормаживается и останавливается. Об этом можно прочитать в материалах про зимнее бетонирование.

Любопытно, что если всю построенную конструкцию не размоет к весне, процесс гидратации также может расстроиться, когда снег растает. Безусловно, показатели морозостойкости и общей прочности такой бетонной смеси буду существенно ниже показателей при достаточной норме твердения. Разработаны специальные технологии и методики, позволяющие предотвратить негативные последствия. Такие разработки называют методиками раннего замораживания бетонной смеси. С помощью современных технологий и добавления специальных противоморозных добавок бетон твердеет, замерзая, при низких температурных условиях (от -15 до -30 градусов по Цельсию). А весной запускается процесс гидратации воды и цемента.

Какую роль здесь играют противоморозные добавки? Заполнители служат некими стабилизаторами и регуляторами всего процесса гидратации. Например, при температуре заливания бетона в -25 градусов по Цельсию вводятся добавки с расчетом на -10 градусов. Тогда завершается процесс твердения, и бетон замерзает. С помощью добавок бетонная смесь не реагирует на колебания температуры в диапазоне от -5 до +5 градусов, стойко перенося цикличные изменения погодных условий. Бетон не будет замерзать или оттаивать. Однако существует одно ограничение – монолитные конструкции в этот период эксплуатировать нельзя.

Критическая прочность бетона

Этим термином называют допустимый порог показателей прочности. Такой порог – своеобразная грань и для каждой марки он индивидуален. Так, высокие марки обладают более низким процентом критической прочности (в среднем, треть от проектного показателя прочности), а низкие – высоким процентом. Критичные показатели набираются за первые сутки жизни бетонной смеси.

Как бороться с замораживанием бетона?

Способов существует несколько. Перечислим основные, часто используемые и проверенные меры:

  • добавление противоморозных смесей в бетон. Их еще называют ПМД – противоморозные добавки. Такие вещества не позволяют воде замерзнуть, а также увеличивают скорость твердения. Когда-то такие препараты заменялись солями. Однако подобные составы разъедали оболочку арматуры со временем, поэтому их сменили на более щадящие ПМД;
  • электропрогрев бетона. Разработаны специальные электроподогреваемые опалубки, электроды и трансформаторы. Приборы отлично подходят для заливки бетонной смеси в зимнее время года. Однако данный вариант, скорее всего, экономически невыгоден и недоступен частным предприятиям-застройщикам. Оплата услуг монтажа и доставки, аренда, а также оплата электроэнергии (системам необходимо огромное количество кВт в час) формируют конечную стоимость проекта;
  • укрытие конструкции. Авральная мера – укрытие построенной конструкции пленкой. Метод оптимален при температуре в один-два градуса. Однако положительные результаты при данном способе не гарантированы. Весь период гидратации цемента идет параллельно с выделением тепла. Выделяемое тепло можно и нужно сберегать и сохранять. Возможно поставить дизельную или газовую пушки: они будут способствовать задуванию теплого воздуха под специальное укрытие. Важно помнить, что первые дни жизни бетонной смеси – самые ответственные.

Кстати, на предприятиях ЖБК и ЖБИ рассмотренной проблемы не существуют. Все железобетонные материалы (плиты перекрытия, сваи, дорожные плиты и бетонные фундаментные блоки ФБС) проходят специальную обработку. Изделия в течение нескольких часов пропариваются в камерах. После процедуры любая марка бетона может быстро набрать нужную прочность.

Какую прочность набирает бетон за 3 суток. Как бетон набирает прочность и как ускорить твердение

По присвоенной марке бетона можно понять, на какую наибольшую нагрузку в кгс/см 2 рассчитано то или иное изделие. Конечно, все железобетонные изделия выпускают с производства уже с отпускной прочностью, которая в летний период должна быть не менее 70% от марочной, а зимой — не менее 90%. Поэтому строительные организации могут сразу применять изделие в эксплуатацию.

Но потребителям, которые покупают готовую бетонную смесь для заливки фундамента или хотят самостоятельно ее изготовить, будет интересно узнать, за сколько дней набирает прочность бетон и как этого добиться быстро?

28 дней для марочного контроля

Для марочного контроля технологи применяют период в 28 дней. Первую неделю, при теплой погоде, бетон интенсивно набирает свою прочность, около 70 процентов от фактической. Это происходит за счет взаимодействия цементных зерен и воды, в результате чего образуются гидросиликаты калия. Процесс может затянуться не на один год. Например, у некоторых железобетонных изделий, к которым предъявлялась марка бетона М 200 , через несколько лет прочность достигала бетона марки 400 .

Когда снять опалубку?

Если вы самостоятельно заливаете фундамент, то рекомендуется снимать опалубку фундамента через трое суток, но нагружать бетонную конструкцию лучше через неделю. При зимних условиях рост прочности значительно уменьшается. Если конструкцию не накрыть, то бетон может замерзнуть и вообще не набрать прочность. Для летнего периода также требуется особый уход, то есть постоянное увлажнение и укрытие от прямых солнечных лучей, чтобы не вызвать пересыхание бетонной поверхности.


Тепловлажная обработка ускоряет набор прочности бетона

Через сколько дней наберет прочность бетон, если он подвергается тепловлажностной обработке? Через несколько часов. Если в пропарочной камере температура 80-90 градусов, то конструкция набирает прочность до 60-70 процентов от марочной уже через 12-14 часов. Но в таких условиях бетон быстро теряет воду, и при этом начинает усыхать. Поэтому самый лучший бетон считается тот, что набирал прочность в естественных условиях.

Для скорейшего набора прочности можно использовать специальные добавки для бетона , которые применяют в процессе приготовления смеси. Дозирование производится от количества цемента. С использованием добавок бетон может набрать марочную прочность за две недели. Опять же, если твердение происходит в теплое время года. Для зимы применимы противоморозные добавки , которые поддерживают в бетоне положительную температуру на период схватывания.

При самостоятельной заливке ленточного фундамента можно приблизительно сориентироваться, за сколько дней бетон наберет прочность — за месяц. Поэтому постарайтесь выдержать этот интервал, чтобы в дальнейшем при нагрузке конструкции предотвратить неприятные последствия.

Во время строительства дома приходится пройти этап сооружения железобетонных конструкций. Узнаем все физико-химические процессы, происходящие в бетоне и можно ли на них повлиять.

После завершения монолитных работ наступает достаточно продолжительный этап выдержки и набора железобетонными конструкциями прочности. Мы расскажем, в каком уходе нуждается бетон во время твердения, как его ускорить и какие физико-химические явления сопровождают этот процесс.

Процесс твердения бетона


Химия процесса твердения

Сооружение бетонных конструкций, полностью отвечающих расчётным характеристикам — настоящее искусство, которое невозможно постичь без понимания сложной и непрерывной последовательности преобразований, происходящих в структуре материала. Прообразы строительных вяжущих, отдаленно напоминающих современный цемент, появились ещё во 3–2 тысячелетии до н.э.

Однако состав и соотношение компонентов таких смесей подбирались исключительно экспериментальным путём вплоть до конца XVIII века, когда был запатентован так называемый «романцемент». Это стало первой вехой в научном подходе к развитию строительного бетона.

Химическая природа твердения современного цемента весьма сложна, она включает длинную цепочку перетекающих друг в друга процессов, в ходе которых формируются сначала простейшие химические, а затем всё более прочные физические связи, приводящие к образованию монолитного камнеподобного материала.

Подробно рассматривать эти процессы для человека, неискушённого в химии как науке, нет никакого смысла, гораздо полезнее оценка внешних признаков таких явлений и их практического смысла.

В современном строительстве используется преимущественно портландская цементная смесь, состоящая из обожжённой глины, гипса и известняка, а с точки зрения химии — из оксидов кальция, кремния, алюминия и железа. Первичное сырье проходит термическую обработку и тонкое измельчение, после чего компоненты смешиваются в точно определённой пропорции.

Главная цель обработки в процессе производства — разрушить природные химические и физические связи веществ, которые впоследствии восстанавливаются в присутствии воды. Цемент, в отличие от необработанной глины и извести, твердеет вследствие не высыхания, а гидратации, поэтому его намокание после окончательного отверждения не приводит к размягчению и повышению вязкости.


В отличие от атмосферных вяжущих, быстро отвердевающих на воздухе, цемент твердеет практически весь срок эксплуатации бетонных конструкций. Связано это с тем, что в толще застывшего изделия остаются вещества, не успевшие вступить в реакцию с водой.

В действительности при производстве бетонной смеси воду в нее добавляют в количестве, заведомо недостаточном для реагирования всех частиц минерального вяжущего. Связано это с тем, что повышенное содержание воды в бетоне приводит к его расслоению, значительной усадке при твердении и появлении внутренних напряжений.

Тем не менее, остатки минеральных веществ продолжают реагировать, ведь в толще своей бетон имеет ненулевую влажность. Из-за этого его твердение происходит не мгновенно, а в течение продолжительного времени. Из всего срока твердения можно выделить наиболее интенсивный период, который для бетона на портландцементе составляет 28–30 дней.

Если в течение этого времени бетонное изделие находится в соответствующих условиях, оно принимает 100% расчётной прочности. При этом всего за 6–8 дней твердения прочность бетона достигает 60–70% от марочной, а треть расчётной прочности изделие приобретает уже на 2–3 сутки.

Сезонная специфика

Твердение смесей на цементном вяжущем сопровождается двумя процессами — незначительным увеличением объёма и выделением тепла. Из-за этого протекание реакций отверждения может существенно отличаться в зависимости от внешних условий.

Сначала нужно разобраться с увеличением объёма. Этот процесс имеет определённую практическую пользу: способствует более лёгкому отделению опалубки и предварительно растягивает арматуру, увеличивая качество сцепления и позволяя стали воспринимать растягивающую нагрузку практически сразу после её возникновения, минуя стадию упругой деформации.

Негативные последствия от расширения возникают в ситуациях, когда бетон стеснён формой, например при заливке бетонных стяжек, шпонок в сборно-монолитных конструкциях и производстве изделий в жёсткой несъёмной опалубке. В подобных случаях обязательно требуется устройство сжимаемой оболочки, компенсирующей линейное расширение.

Выделение тепла может иметь как положительный, так и отрицательный эффект. Для начала нужно понимать, что нагрев твердеющей бетонной массы наиболее ярко выражен в первые 50 часов после приготовления смеси. Интенсивность нагрева возрастает соразмерно габаритам изделия, ведь из толщи бетона сложнее отводить тепло. Также нужно учесть, что бетон с высоким содержанием цемента будет нагреваться сильнее низкомарочного.

При низких температурах воздуха способность бетона нагреваться в процессе твердения позволяет относительно легко поддерживать нормальный температурный режим. При том, что в обычных условиях минимальная температурная отметка для проведения бетонных работ составляет +5 °С, заливать изделия в несъёмную опалубку из пенополистирола можно даже при морозе до -3 °С: собственное выделение тепла позволит поддерживать необходимую температуру.

Даже обычные бетонные конструкции можно защищать утепляющими материалами для поддержания нужного температурного режима или обустраивать тепляки, в которых просто сохраняется плюсовая температура. Важно отметить, что после набора бетоном 50–60% прочности мороз не оказывает разрушительного воздействия по той причине, что большинство воды уже успело вступить в реакцию. Однако скорость твердения при этом падает практически до нуля, что нужно учитывать при определении сроков выдержки.

В жаркую погоду естественный нагрев бетонной смеси оказывает негативное влияние. Вода с поверхности испаряется слишком быстро, к тому же нагрев провоцирует линейное расширение, сопровождающееся раскрытием трещин, что в процессе твердения бетона недопустимо.

Поэтому массивные изделия, находящиеся под открытым солнцем, нужно постоянно увлажнять и охлаждать проточной водой хотя бы в первые 7–10 суток после заливки. Остаток срока выдержки бетон может оставаться под укрытием из полиэтиленовой плёнки.

Ускорение схватывания и набора прочности

В зависимости от марки, бетону достаточно 20–30 часов чтобы окончательно принять форму, после чего его можно обильно поливать водой, чтобы сделать процесс набора прочности более интенсивным.

Высокая температура также способствует ускоренному твердению, но только при условии, что нагрев будет однородным по всей толщине отливаемого изделия. Так, на заводах ЖБИ твердение ускоряют, обдавая изделие паром при температуре 70–80 °С, но нужно помнить, что нагрев свыше 90 °С для твердеющего бетона губителен.

Обеспечить максимальную скорость набора прочности можно правильным водоцементным отношением приготовленной смеси, установленным ГОСТ 30515 2013. Также ускорить процесс можно внесением различных добавок: хлорида кальция, сульфата и хлорида натрия, углекислого натрия (соды).

Но нужно помнить, что применение ускорителей схватывания ограничено их предельным содержанием, а также типом бетонной конструкции, маркой бетона и арматуры, типом используемого цемента. Больше ясности в этот вопрос может внести ГОСТ 30459–96.

В заключение следует отметить, что в гражданском строительстве необходимость ускорить твердение бетона возникает крайне редко. Бетон приобретает большую часть марочной прочности достаточно быстро, поэтому в случае заливки перекрытий или армированных поясов продолжать строительные операции можно уже спустя 7–10 дней после выполнения монолитных работ.

Если же речь идёт о фундаменте, то ускорять твердение не имеет практически никакого смысла: основание здания должно пройти усадку в течение года чтобы опорный слой грунта успел стабилизироваться и возможный перекос мог быть устранён корректирующим слоем или в процессе возведения коробки. опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

В этой статье мы расскажем о том, сколько времени бетон набирает прочность и о том, какие способы контроля этого параметра доступны сегодня.

Тема статьи неслучайна, так как большая часть строительных объектов из года в год возводится с применением бетона. Популярность этого материала не снижается, а напротив увеличивается, несмотря на повсеместное внедрение альтернативных технологий в строительстве объектов различного назначения.

Именно поэтому так актуален вопрос, через какое время бетон набирает прочность и как это влияет на сроки проведения строительных работ?

Средние темпы набора прочности

Перед тем как ответить на вопрос, когда бетон набирает 70 прочности, разберёмся с тем, что означает число 70. По сути, это процентное обозначение марочных параметров. При достижении этого параметра, конструкции и сооружения условно соответствуют требованиям ГОСТа.

Не секрет, что в соответствии с присвоенной маркой бетона определяется не только цена, но и максимальная нагрузка из расчета кгс/см², которая может быть оказана на ЖБИ без ущерба для целостности изделия. Именно поэтому, все промышленные ЖБИ производятся с отпускной прочностью 70% от марочной нормы в летний период и 90% — в зимний период.

Так как все промышленно произведённые ЖБИ по умолчанию соответствуют требованиям ГОСТа, строительные организации могут применять его по назначению сразу же после получения заказанного изделия.

В отличие от строительных организаций, которые заказывают ЖБИ с завода, частные пользователи раствора при заливке опалубки должны иметь четкое представление о том, за какое время бетон набирает прочность.

На фото — работа с бетоном в холодное время года

В среднем, марочный контроль технологи проводят через 28 дней по окончании заливки раствора в опалубку. Можно предположить, что это и есть усреднённый временной показатель, необходимый для набора оптимальных параметров твердости.

При теплой погоде в течение первой недели после укладки происходит интенсивный набор прочности материалом вплоть до условных 70% от марочной нормы. В ходе этого процесса происходит взаимодействие цементных зерен и жидкой среды вплоть до образования гидросиликатов калия.

Важно: Процесс твердения может продолжаться и после набора условных 70% от марочной нормы.
К примеру, некоторые ЖБИ с первоначальной маркой бетона М 200, по прошествии нескольких лет, приобретают прочность, соответствующую материалам с маркой М 400.

Время снимать опалубку

Теперь, когда мы определились с тем, сколько дней набирает прочность бетон, определимся с тем, когда можно приступить к демонтажу опалубки.

  • Если своими руками, но с учетом технологических требований и рекомендаций, то приступать к демонтажу опалубки можно уже через трое суток .
    За это время будут достигнуты оптимальные параметры твердости, при которых возможна резка железобетона алмазными кругами. Но, несмотря на это, нагружать конструкцию можно не раньше, чем через неделю.
  • Если заливка конструкций и сооружений осуществляется в зимнее время, рост прочности существенно замедляется . Поэтому опалубка может быть снята не ранее, чем через неделю. Нагружать конструкции такого типа и проводить алмазное бурение отверстий в бетоне можно не раньше, чем через 2 недели.

Важно: Заливка опалубки в зимнее время должна осуществляться с применением специальных укрывных материалов, так как не укрытый раствор промёрзнет и вообще не наберет требуемую прочность.

Надо понимать, что эта инструкция важна, так как, если произвести демонтаж раньше времени, велика вероятность появления трещин в толще готовой конструкции. Но надо учитывать то, что передерживать опалубку также нежелательно, поскольку она препятствует свободному доступу воздуха, вследствие чего бетон просыхает неравномерно.

Темпы схватывания и способы контроля данных параметров

На фото — фундамент после своевременного демонтажа опалубки

Возвращаясь к тому, за сколько бетон набирает прочность, рассмотрим темпы поэтапного твердения:

  • За первые трое суток после укладки при нормальных температурных условиях материал набирает около 30% от марочной прочности.
  • По прошествии 7-14 суток после укладки при нормальных температурных условиях материал набирает свыше 60% от марочной нормы.
  • За 28 суток по окончании укладки бетон способен набрать 100% от марочной нормы.
  • В течение 90 суток после укладки материал способен набрать до 120% от марочной нормы.
  • Дальнейшее твердение и упрочнение конструкций при доступе влаги также происходит, но интенсивность процесса на порядок ниже.

Сильнее всего темпы твердения цементосодержащих растворов тормозит снижение температуры. В результате похолодания, частицы цемента менее активно взаимодействуют с водой. В итоге химические реакции протекают крайне медленно.

Снижение температуры до минусовых значений вообще останавливают процесс твердения. При последующем повышении температуры окружающей среды материал будет твердеть, но на марочный набор прочности в этом случае рассчитывать не приходится.

На фото — результат пересыхания раствора в процессе схватывания

В то же время, повышение температуры в толще материала позволяет резко ускорить темпы твердения. Но, повышая температуру, следует проследить за тем, чтобы раствор в опалубке не высох раньше положенного времени.

Так, например, при нагреве бетона водяным паром до температуры 80°С, для набора 70% от марочной прочности потребуется не менее 16 часов. Таким образом, выполняется промышленная пропарка при изготовлении свай и ряда других железобетонных изделий.

Важно: Нельзя нагревать бетон больше 90 °С, так как при температуре закипания воды химическая реакция, при которой твердение цементосодержащего раствора становится невозможным.

Еще один момент, на который следует обратить особое внимание — твердение цементосодержащего раствора является экзотермическим процессом, при протекании, которого бетон выделяет тепло. В итоге, увеличивая температуру для более интенсивного набора прочности, вы рискуете пересушить бетон, так как к температуре разогрева добавится тепло высвобожденное в ходе экзотермического процесса.

Вывод

Теперь вы знаете о том, сколько набирает прочность бетон и какие факторы определяют интенсивность протекания этого процесса. В результате, вы сможете проследить за тем, чтобы осуществлялось в рамках технологических рекомендаций.

Больше полезной и познавательной информации вы сможете обнаружить, посмотрев видео в этой статье.

Вопрос: сколько нужно ждать, пока произойдет затвердения бетона? Как и за какое время бетон набирает прочность? Действительно ли нужно ждать 28 суток после того, как залит бетон? Когда можно нагружать бетонные конструкции?

Каждому застройщику или строителю выгоднее построить конструкцию, здание или сооружение за кратчайшие сроки. Но бытует целый ряд мнений о том, что необходимо после выполнения работ по бетонированию конструкций ждать пока конструкция «затвердеет» , чтоб потом приступить к следующему этапу строительства.

Нужно ли после заливки бетона ожидать 28 суток?

Для правильного вывода необходимо проанализировать нормативные документы и определить режим, этапы и сроки строительства.

При выполнении бетонных работ сталкиваются с двумя актуальными вопросами:

  1. Через какое время можно снимать опалубку?
  2. Через какое время можно нагружать железобетонный элемент или конструкцию?

Рассмотрим последовательно эти вопросы.

Для сборных железобетонных изделий очень важно определить отпускную прочность .

Отпускная прочность – это набранная прочность бетона, устанавливаемая нормативами, при которой железобетонное изделие возможно поставлять с завода на строительную площадку.

Величина отпускной прочности устанавливается согласно ГОСТов или других нормативных документов в зависимости от:

  • вида и размера конструкции;
  • состава бетона;
  • условий твердения;
  • температуры окружающей среды и климатических условий региона;
  • сроком и величины загрузки;
  • условия транспортировки.

Ниже, в таблице 1 приводятся в зависимости от вида и класса бетона, усредненные значения отпускной прочности в процентах от проектной.

Таблица 1

Итак, отпускная прочность сборных железобетонных изделий в зависимости от целого ряда факторов составляет 50÷100% от проектной. Вывод №1: при достижении отпускной прочности можно уже производить монтаж и затем нагружать железобетонные конструкции, с расчетом на то, что полное нагружение (100%) наступит не позже 28 суток от момента изготовления изделий. Более конкретный порядок и сроки нагружения сборных конструкций оговаривается в ППР (проект производства работ).

Также в строительстве существует такое понятие, как распалубочная прочность .

Распалубочная прочность – это минимальная набранная прочность бетона, при которой возможно извлечь опалубку, не повреждая бетон. Для сборных железобетонных изделий опалубочная прочность должна быть достаточная для безопасной транспортировки. Условия и скорость набора прочности для каждого изделия или конструкции определяются предприятием-изготовителем.

В условиях стройплощадки, при изготовлении монолитных конструкций распалубку, как правило выполняют непосредственно перед началом загружения конструкции.

СНиП 3.03.01-87 устанавливает следующие условия распалубки железобетонных конструкций (смотри таблицу 2 ).

Таблица 2

Параметр Распалубочная прочность (% от нормативной, на 28 сут)
Прочность бетона (в момент распалубки конструкций), не ниже:
— теплоизоляционного0,5 МПа
— конструкционно-теплоизоляционного1,5 МПа
— армированного3,5 МПа, но не менее 50 % проектной прочности
— предварительно напряженного14,0 МПа, но не менее 70 % проектной прочности
Распалубка железобетонных конструкций с последующей обработкой бетона (п. 2.34)70 % от проектной прочности

Российский нормативный документ ТР 80-98 «Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса» приводит следующие разрешения по распалубки и нагрузки конструкций, таблица 3.

Необходимая прочность бетона для распалубки и нагрузки конструкции:

Таблица 3

Строительные конструкции
свыше 70% 70% и менее
прочность бетона, % от проектной
Боковые щиты опалубки на фундаменте и колоннах, стенах, ригелей и балок допускается при нормальных условиях тверденияСнимать через 6 — 72 ч
Несущие щиты опалубки100См. ниже
Длина пролета несущих железобетонных плит до 3 м10070
Длина пролета несущих железобетонных плит (кроме плит) до 6 м10070
Колонны, несущие конструкции (балки, ригели, плиты) пролетом 6 м и более10080
Конструкции с напрягаемой арматурой10080

Примечания:

  1. Следует твердо помнить, что полностью на 100 % загружать конструкцию можно только, когда бетон наберет свою полную проектную прочность.
  2. Снимать боковые щиты ненесущей части опалубки можно при условии, когда разность температур между бетоном и наружным воздухом соответствует следующему условию:
  • Dt = 20 °С для конструкций с М п = 2 – 5;
  • Dt = 30 °С для конструкций с М п больше 5, где М п — модуль поверхности конструкции (отношение суммы площадей охлаждаемых поверхностей конструкций в м 2 к ее объему в м 3), м -1 .

Дальнейшие мероприятия по выполнению опалубочных работ и движение работников по железобетонным конструкциям допускается, когда прочность бетона составляет 1,5 МПа и более. (СНиП 3.03.01-87 , п. 2.17). Также, в этом нормативном документе есть указание (п.2.110), что при использовании промежуточных опор (подпорок) для перекрытия пролетов, при частичной или последовательной снятии опалубки, допустимая распалубочная прочность может быть понижена, а это означает большую оборачиваемость опалубки и уменьшения сроков строительства. Более конкретные мероприятия по раннем снятие опалубки должно определятся исходя из конкретных условий строительства и освещаться в ППР.

Некоторые литературные источники указывают следующие значения для распалубки железобетонных конструкций, табл. 4 :

Таблица 4

Вывод №2: исходя из всего выше приведенного и анализируя все таблицы по распалубочной прочности бетона и его нагружении, распалубочная прочность находится в пределах 50…80% от проектной. Тогда:

  1. распалубку конструкции допускается проводить, когда фактическая прочность бетона достигнет 70% от проектной, и в этом случае можно постепенно загружать дальше;
  2. распалубку конструкции допускается проводить, при фактической прочности 50% от проектной, только необходимо установить дополнительные опоры для страховки и исключения прогибов. В этом случае также можно постепенно нагружать конструкцию (ставить опалубку, кладку, и т.д.).
Через сколько времени бетон может набрать распалубочную прочность, при которой можно еще и нагружать конструкцию?

Как уже выше вспоминалось, при разных условиях (температура, влажность, атмосферные осадки и т.д.) разный бетон набирают прочность по разному. На рис. 2 приведен график скорости набора прочности в зависимости от температуры ТВО (тепло влажностной обработки).

Из графика видно, что в лабораторных условиях при постоянной температуре 60°С среднюю распалубочную прочность бетон (70%) приобретает через 32 часа (1,3 сут), а при температуре 30°С – приобретает примерно за 4 сут.

Так как на строительных объектах, в течении суток температура окружающего воздуха колеблется, то берут во внимание среднесуточную температуру, которая летом составляет 18…28°С, а осенью достигает и 5…10°С. При таких температурах бетон будет набирать прочность намного медленнее.

Рис. 1. График скорости набора прочности бетона в зависимости от температуры ТВО (тепло влажностной обработки)

На предприятиях по изготовлению бетона и конструкций из него, должны быть графики набора прочности бетона определенного состава. Для примерного определения прочности конкретного бетона, можно воспользоваться графиками набора прочности в зависимости от вида цемента, температуры и класса бетона (рис. 2 ) из нормативных документов .

Ниже приведен рост прочности бетона в зависимости от температуры окружающего воздуха или ТВО, (в % от R 28):

Графики набора прочности (табл. 5-9)

Набор прочности бетона класса С15 – С25 на портландцементе марки М400 (% от R 28):

Таблица 5

Возраст бетона, сут.Температура бетона, °С
-305102030405060
1/21451217283850
1359122335455563
261219254055657580
3818273750657785
512283850657890
715354858758798
142050627287100
2825657785100

Набор прочности бетона класса С30 на портландцементе марки М500 (% от R 28):

Таблица 6

Возраст бетона, сут.Температура бетона, °С
-305102030405060
1812182840556570
21622325063758590
3102232456074859298
516324558748596
7194055668292100
142557708092100
2830709090100

Набор прочности бетона класса С15 – С25 на шлакопортландцементе марки М400 (% от R 28):

Таблица 7

Возраст бетона, сут.Температура бетона, °С
-305102030405060
1/224720253242
136101630405065
23812183040607590
3513182540557090
58202735556585
710253443657092
14123550608096100
2815156580100

Набор прочности бетона класса С40 на портландцементе марки М600 (% от R 28):

Таблица 8

Возраст бетона, сутТемпература бетона, °С
0510203040
181321324559
2172536526575
3233546627483
7425768839098
1458738294100
28718392100

Набор прочности бетона с применением противоморозных добавок:

Таблица 9

Противоморозная добавка Вид вяжущего Температура твердения бетона, °С Прочность бетона, % от R 28 при твердении на морозе через число суток
7 14 28 90
1) Нитрит натрия (в водном растворе), Na N O 2 портландцемент-5254060100
-1015253570
-155102050
2) Нитрит натрия кристаллический, Na N O 2 портландцемент-5254060100
-1015253570
-155102050
3) Нитродапшлакопортландцемент-515254590
-1010152560
-1551540

Вывод №3: из графиков и таблиц видно, что бетон на основе портландцемента при среднесуточной температуре 10 и выше набирает 50% прочности от проектной за 5…7 суток, а бетон на шлакопортландцементе набирает при тех же самых условиях – за 14 и более суток. Зимой при отрицательных температурах с применением даже противоморозных добавок (табл.9) бетон набирает проектную прочность за 90 суток и больше. Для ускорения времени набора требуемой прочности при зимнем бетонировании необходимо использовать электропрогрев.

Для быстрого набора прочности, согласно СНиП 3.03.01-87 «Несущие и ограждающие конструкции. 2. Бетонные работы» (п. 2.15) за бетоном нужен соответствующий уход. Уход за бетоном начинается сразу после укладки его в опалубку и продолжают до момента распалубки. Бетон следует хранить от прямого попадания солнечных лучей и атмосферных осадков, ветра, а также создать тепловлажностные условия для его твердения (накрыть пленкой). Рекомендуется бетон изготовленный на портландцементе в течении 7 суток поливать водой, а на основе малоактивных и шлакопортландцементах поливать не менее 14 суток. При температуре воздуха 15°С рекомендуется поливать бетон через 3 часа в течении первых 3 суток. При средней температуре воздуха от +5 до 0°С полив и смачивания бетона не осуществляется. Полная нагрузка (расчетная) железобетонных конструкций допускается только после того, как бетон будет иметь проектную прочность.

Отдельно хотелось заострить внимание на фундаменте, так как есть некоторые особенности его работы:

  1. Наилучшее время для строительства фундамента является лето (хороший температурный режим).
  2. Нежелательно, подвергать фундамент длительному простою, т.к. замокание котлована, морозное пучение, попеременное замораживание и оттаивание грунтов основания приводит к его разрушению.
  3. Выше перечисленные факторы приводят к неравномерной усадке фундамента.
  4. Если все-таки есть необходимость оставить фундамент зимовать, необходимо его «законсервировать» — закрыть и защитить от атмосферных осадков, исключить замокания и затопление грунта вблизи фундамента (примерно 0,4…0,5 м).
  5. Так как бетон при благоприятных условиях набирает 50…80% от проектной прочности за 7…14 дней, тогда допускается нагружать фундамент через 7…14 суток, с учетом, что полное нагружение (100%) наступит только после 28 суток с момента заливки фундамента.
  6. При использовании ускорителей твердения при нормальной температуре возможно уже нагружать фундамент и через 5 дней.
  7. Фундамент следует нагружать равномерно, чтобы избежать неравномерной осадки основания.

Для более точной подстраховки для контроля прочности фундаментов или других железобетонных конструкций изготавливают серию стандартных образцов-кубов 150х150х150 или 100х100х100 мм, которые потом испытывают на сжатие.

Литература:

  1. Как построить дом. Как бетон набирает крепость? Время затвердевания бетона, график набора крепости. Режим доступа:
  2. ТР 80-98 Технические рекомендации по технологии бетонирования безобогревным способом монолитных конструкций с применением термоса и ускоренного термоса. МОСКВА – 1998.
  3. ВСН 20-68 Указания на бетонирование в зимнее время дорожных оснований под асфальтобетонные покрытия в г. Москве.

Конев Александр Анатольевич

Залитый в опалубку бетон может долго не схватываться и не набирать проектную прочность. Давайте определимся, почему так происходит, как этого избежать и, главное, что делать, если бетон не твердеет.

Характеристики бетона

Бетон – это смесь крупного заполнителя с вяжущим, имеющим способность переходить из жидкой к твердой фазе. В настоящее время существуют разные виды бетонов – асфальтобетоны, полимербетоны и так далее. Однако наибольшее распространение получил бетон, в котором в качестве вяжущего используется портландцемент. Портландцемент – это размолотая в определенной пропорции и обожженная смесь извести и глины, способная при затворении ее водой образовывать твёрдый и прочный искусственный цементный камень.

Портландцемент

Оказалось, что в природе часто встречаются большие залежи минерала, который называется — мергель, состоящий из глины и извести в соотношении, необходимом для изготовления цемента. При производстве цемента в заводских условиях этот минерал обжигают в специальных печах и размельчают до состояния пыли.

Для разных целей выпускаются различные марки цемента. Марка – это характеристика цементного камня после затвердения выдерживать определенную нагрузку при сжатии. При схватывании цемента, смешанного с водой, возникает химическая реакция и превращение жидкого состава в твердый. От количества воды зависит окончательная прочность материала и сроки схватывания (время течения химической реакции).

Марки и классы бетона

Существенным недостатком цементного камня является его усадка, то есть разница в объеме при переходе от жидкой к твердой фазе может составлять до 10%. Неравномерность усадки ведет к появлению, так называемых, усадочных трещин и внутренних напряжений, снижающих прочность. Добавление крупных заполнителей, таких как песок и щебень, позволяет получить бетон, в котором эти недостатки существенно снижены и не оказывают большого влияния на прочность возводимых из него конструкций. Крупный заполнитель также позволяет экономить цемент, стоимость изготовления которого значительно выше добычи песка и щебня.

Прочностные характеристики бетона характеризуются классами (изображение выше), также отражающими прочность бетона на сжатие. По старинке их иногда также именуют марками.

Важно ! Не следует путать класс бетона и марку бетона – это не одно и то же.

Опытным путем были разработаны пропорции воды и цемента, позволяющие получать , даже из цемента одной и той же марки.

Проектную прочность бетон набирает в течение первых 28 суток, затем реакция сильно замедляется, продолжаясь все время существования бетонной конструкции, то есть с течением времени бетон становится все более прочным, и при правильной эксплуатации срок его службы может составлять от 100 и более лет.

Еще один недостаток бетона – его низкая прочность на растяжение или изгиб, которая меньше прочности на сжатие в 15-20 раз. Поэтому французом Монье был придуман способ помещать в растягиваемую зону бетонной конструкции металлический (стальной) каркас, воспринимающий растягиваемые напряжения. Так появился железобетон – самый главный материал, использующийся в строительстве до настоящего времени.

Как избежать проблем с бетоном

Причины плохого схватывания бетона банальны и их рекомендуется старательно избегать, так как сделать это гораздо легче, чем мучиться с последствиями пренебрежения ими. Необходимо ответственно подойти к работам и соблюдать очень простые правила, особенно, если это касается собственного дома или строения.

  1. Перед бетонными работами заказчику необходимо ознакомиться с их основными этапами и технологией, а также свойствами и методикой выбора ингредиентов, то есть – цемента, песка, щебня. Это поможет контролировать процесс выполнения работ и вовремя его приостановить, если что-то пойдет не так, как задумано.
  1. Приглашать для работ нужно только квалифицированных опытных исполнителей, уже имеющих опыт работы с бетоном.
  1. Приобретать материалы следует только у проверенных поставщиков, и проверять наличие сертификатов качества. Лучше иметь с поставщиками заключенные договора с тем, чтобы в случае более позднего обнаружения того, что материалы были некачественные и не соответствовали ГОСТам или техническим условиям, можно было бы потребовать возмещения ущерба или причиненных убытков.

Пример сертификата на соответствие требованиями ГОСТа

  1. При приобретении цемента – самого дорогого и важного материала, нужно проявлять особую тщательность. Следует избегать покупки рассыпного цемента неизвестного происхождения у незнакомых поставщиков, лучше если он будет расфасован в мешки.

Обязательно нужно проверять надписи на мешках и их соответствие сертификатам качества, которые не должны быть ксерокопиями, а иметь настоящие «мокрые» печати.

Хорошо разыскать поблизости от места строительства действующую лабораторию по испытанию строительных материалов. Такие лаборатории обычно имеются при серьезных строительных организациях, заводах железобетонных изделий или строительных ВУЗах. Если передать такой лаборатории небольшое количество цемента из приобретаемой партии (до 0.5 кг), через 2-3 дня специалисты могут точно ответить, есть ли смысл покупать этот цемент и какова его настоящая прочность (марка), также они могут дать рекомендации по пропорциям щебня и песка для приготовления оптимального состава бетона нужного класса.

К сожалению, к поставкам цемента подключилось большое количество мошенников . Обычно они появляются в местах массового индивидуального строительства и осуществляют уличные продажи прямо с автомобилей. Так, например, заявляя, что чем цемент темнее, тем выше его прочность, они, смешивая самый низкосортный цемент с угольной пылью или сажей, пытались выдавать его за высококачественный и продавать по высокой цене.

Подделка легко определяется при смешивании небольшого количества цемента с водой. Если после этого на поверхности воды появляется пленка из плохо впитываемых воду частиц, такой цемент приобретать не рекомендуется.

Самый простой способ определения качества цемента: сжать его в кулаке. Чем меньше материала останется в кулаке, тем лучше. Если почти весь цемент «вытек» через пальцы, значит это отличный продукт. Если же весь цемент остался в руке и превратился в комок, то стоит воздержаться от работы с ним.

Также следует держаться подальше от непроверенных продавцов, заявляющих, что их цемент содержит добавки, увеличивающие прочность и сроки схватывания, скорее всего никаких добавок там нет, а если и есть, то скорее, наоборот, ухудшающие его свойства. Безусловно, различные добавки к бетону существуют, но их использование при приготовлении бетонной смеси должно быть осознанным (точно знать для чего они нужны и когда их следует применять) и строго контролируемым.

Использовать цемент, находившийся зимой в неотапливаемом помещении, категорически не рекомендуется . Активность такого цемента может быть снижена более, чем на 90% и использование его для каких-либо строительных работ бессмысленно. Иногда бывают попытки продать такой цемент. Обычно, мешки с таким мерзлым цементом более тверды и плотны на ощупь, а сам цемент содержит комки, легко разминаемые руками.

Почему не застывает бетон

Несмотря на то, что бетонные работы не представляют большой сложности, а все основные технологические процессы давно уже разработаны и применены на огромном количестве строительных объектов, исчисляющихся по всему миру сотнями тысяч, в процессе бетонирования могут возникать различные непредвиденные ситуации, самая распространенная из которых – отсутствие или замедление схватывания и набора прочности.

Среди причин того, что бетон не твердеет, можно выделить следующие:

  • Использование в растворе слишком большого количества воды;
  • Кладка бетона при температуре ниже +5°С без его прогрева;
  • Смесь замёрзла при сильных морозах;
  • Слишком долгий замес смеси автомобильным миксером;
  • Недоброкачественный цемент или бетон;
  • Несоблюдение или прочие ошибки при замешивании бетона;
  • Использование различных непроверенных или некачественных добавок для бетонной смеси;
  • Плохой уход за бетоном.

Какая бы причина не была, зачастую исправить её довольно непросто. Иногда приходится даже ломать бетон и проводить его укладку заново. Подробнее про решение таких проблем стоит почитать ниже.

Если все же случилось, что работы выполнены, а бетон не схватывается (на второй-третий день он должен уже быть достаточно твердым), в первую очередь следует разобраться в причинах происшедшего.

  1. Исполнители при изготовлении для удобства укладки использовали количество воды на много больше требуемого, тем самым нарушив водоцементное соотношение. Такой бетон так или иначе схватится, но прочность его будет низкой, а также он будет иметь сильную усадку и покрыт сетью трещин.

Для ненагружаемых конструкций это может и не иметь большого значения (дефекты и искривления поверхности могут быть впоследствии скрыты цементно-песчаной штукатуркой). При бетонировании ответственных несущих конструкций, например, фундаментов, такой бетон подлежит разборке, причем трудоемкость разборки будет тем меньше, чем быстрее эта разборка начнется. При использовании арматуры, она может быть очищена и вполне допустимо ее вторичное использование.

В идеале процент воды в бетонной смеси должен составлять около 25-30% для хорошей прочности. Однако такой раствор довольно густой и может не подойти под определённые цели.

  1. Нарушено правило, что бетонные работы не выполняются при минимальной суточной температуре меньше 5 градусов по Цельсию. Срок схватывания такого бетона сильно замедлится, однако при отсутствии отрицательных температур он в течение более длительного, чем 28 суток, периода времени наберет проектную прочность.
  1. Бетонирование в условиях отрицательных температур. Такое бетонирование может осуществляться только в условиях крайней необходимости с использованием специальных добавок, содержащих соли кальция или магния, а также с использованием специальных закрытых тепляков-тентов и воздушных тепловых пушек. Бетонирование без специальных мероприятий в зимнее время недопустимо.

В зимнее время лучше отказаться от бетонирования, либо прибегать к специальному оборудованию и добавкам в бетонный раствор.

  1. Может возникнуть ситуация, когда сразу же после бетонирования, ударил мороз и смесь замерзла. В этом случае любые бетонные работы следует немедленно прекратить, а забетонированную конструкцию, не разбирая опалубки, оставить до наступления теплого времени года.

При оттаивании бетон будет продолжать схватываться, однако его окончательная прочность будет на 10-15% ниже проектной, что следует учесть при возведении вышележащих конструкций, для которых данная конструкция будет служить опорой. Хорошо, если до наступления мороза конструкция была забетонирована полностью, в ином случае при добетонировании следует устроить соединительные закладные детали – штыри, скобы, так как при длительном перерыве в бетонировании отдельные фрагменты изделия не смогут быть связаны между собой надлежащим образом. Возможно такая конструкция потребует дополнительного усиления.

  1. Иногда бывает так, что при доставке бетона автомобильным миксером, оператор по каким-то причинам длительное время не отключает функцию перемешивания смеси (время которой должно быть строго ограничено), что крайне негативно сказывается на начинающейся химической реакции между цементом и водой, в результате чего реакция прекращается, залитая в опалубку смесь не схватывается, а после испарения воды состав легко разбирается руками. Такой бетон подлежит разборке, а работы – переделке. При этом ответственность и возмещение убытков целиком накладывается на поставщика бетона.

  1. Использование недоброкачественного или поддельного цемента. О том, как максимально попытаться избежать такой ситуации уже было написано выше. Бороться с такой проблемой, если материалы уже уложены, практически невозможно, поэтому есть два выхода — ждать и надеяться, что бетон всё-таки затвердеет (только для ненагружаемых конструкций), но при этом помнишь, что долго такой бетон не продержится в любом случае. Либо всё сломать и уложить качественный раствор (если бетонная конструкция − опорная, то это единственный вариант).
  1. Неправильно запроектированная бетонная смесь при самостоятельном изготовлении, несоблюдение пропорций используемых материалов. Такой бетон через длительное время может начать схватываться, однако его прочность будет недостаточна для требуемого дальнейшего использования. Конструкция должна быть подвергнута разборке или усилению, которое может значительно увеличить ее стоимость.

  1. Песок и щебень могут иметь включения минералов, которые при воздействии воды выделяют химические вещества, неблагоприятно влияющие на реакцию схватывания цемента. Эти заполнители для бетона также должны приобретаться у проверенных поставщиков и не содержать вредных химически активных компонентов.
  1. Использование непроверенных разрекламированных, якобы улучшающих добавок, выпускаемых как в сухом, так и в жидком виде. В лучшем случае такие добавки могут быть нейтральны, а в худшем вредны для бетона и влиять на его схватывание. Любители экспериментов всегда могут попробовать предварительно вручную изготовить небольшое количество бетона с такими добавками и посмотреть, что из этого получится.
  1. Отсутствие или недостаточность мероприятий по уходу за бетоном. Если после окончания бетонирования не компенсировать потерю бетоном влаги вследствие естественного испарения (высыхания), нарушается водоцементное соотношение и реакция в наружном слое становится либо крайне замедленной или полностью останавливается.В этом случае в этих местах бетон либо не набирает нужной прочности, либо пересыхает и рассыпается при самом незначительном механическом воздействии. Именно поэтому после бетонирования, конструкции обычно оборачивают паронепроницаемыми пленками – полиэтиленовой или полипропиленовой, покрывают ветошью и в течение 10-14 дней несколько раз в день регулярно поливают водой.

В большинстве случаев проблем со схватыванием бетона удается избежать. Но если не повезло, и Вы столкнулись с такой ситуацией, не предпринимайте ничего сгоряча, но и не затягивайте решение этого вопроса на долгий срок.

Если бетон подлежит разборке – сразу же, не откладывая на потом, приступайте к этим работам. Если бетон в течение длительного периода не набирает нужную проектную прочность – посоветуйтесь со специалистами о возможности дальнейшего использования такой конструкции и о дополнительном усилении ее несущей способности.

Не сожалейте о потерянных средствах и решительно избавьтесь от недоброкачественных строительных материалов без всяких попыток их использования в дальнейшем строительстве. Детально проанализируйте свои действия и действия исполнителей для того, чтобы в будущем не повторять таких ошибок.

Бетон не застывает: причины, что делать, как избежать проблем

Главная » Дачный дом » Какую прочность набирает бетон за 3 суток. Как бетон набирает прочность и как ускорить твердение

Свойства бетонов, влияющие на их эксплуатационные характеристики

Среди основных свойств бетонов, влияющих на длительность срока их эксплуатации без изменения структуры, можно выделить два основных:

  • Прочность бетона на сжатие: проектная (марочная).
  • Стойкость: к замораживанию/оттаиванию, к воздействию высоких температур, к воздействию влаги.

Различие видов бетонов и их свойств позволяет подобрать материал с необходимыми механическими параметрами и стойкостью к физико-химическим воздействиям. Классификация на марки и классы бетона дает представление обо всех необходимых характеристиках, таких прочность, степень морозоустойчивости, водонепроницаемости, жаро- и термостойкости.

Марочная прочность бетона и классы прочности

Прочность бетона – это показатель предела сопротивляемости материала к внешнему механическому воздействию на сжатие (измеряется в кгс/см²). То есть, можно сказать, что этот параметр дает представление о механических свойствах бетона, его устойчивости к нагрузкам. Именно эта характеристика и положена в основу классификации бетона. Бетон марки М15 обладает наименьшей прочностью, а М800, соответственно, наибольшей.

Такая маркировка позволяет максимально точно учесть прочностные свойства бетона, и подобрать его в соответствии с предполагаемыми нагрузками.

Так, для предварительно-напряженных конструкций необходим раствор с маркировкой не ниже М300, а для обычных железобетонных панелей или блоков, не испытывающих большой нагрузки — М200-М250. Марки М100-М150 используются при заливке монолитных фундаментов. Бетонный раствор М15—М50 применяется при изготовлении ограждающих и теплоизоляционных конструкций.

Существует и другая классификация – по классам прочности на сжатие бетона: от В1 до В22. Эти две системы классификации учитывают один параметр – прочность на сжатие. Отличие класса от марки бетона в том, что для марок (М) берется усредненное значение по прочности на сжатие, а для классов (В) – гарантированное. Средняя прочность бетона на сжатие – это средний показатель прочности проверяемых образцов, а гарантированное означает, что бетон имеет прочность не менее заявленной. При разработке проектной документации в спецификации указывается класс (В), хотя, в силу привычки, более распространенной является классификация по маркам. Ниже приведено примерное соотношение класса и марки бетона.

Таблица марок и классов бетона и их соотношения:

Набор прочности и критическая прочность бетона

Критическая прочность – параметр крайне важный при заливке бетонного раствора в условиях низких температур. Дело в том, что проектная прочность бетона появляется только на 28 день вызревания, при условии соблюдения технологии твердения, а соответственно и температурного режима (не ниже + 30°С). При более низкой температуре срок твердения бетона увеличивается, а при отрицательной прекращается.

При температуре ниже 0°С останавливается набор прочности бетона, в силу прекращения гидратации – связывания молекул воды и клинкерных составляющих цемента, образующих цементный камень. Если температура опускается ниже — 3°С начинаются фазовые превращения воды, что приводит к разрушениям структуры невызревшего бетона и потери прочности. Как показали проведенные опыты, образцы, набравшие критическую прочность, то есть вызревшие до определенного состояния, после замерзания и оттаивания не подвергаются разрушению и в дальнейшем продолжают набирать прочность, а образцы, замороженные на раннем сроке твердения, характеризуются потерей прочности до 50%.

Для растворов разных марок необходимо и различное время для вызревания до критической прочности бетона. На этой странице можно посмотреть таблицу, где указано, какую прочность от проектной должен набрать бетон до замораживания. Однако можно сказать, что недопустимо замораживание в первой фазе – фазе схватывания (первые сутки) и в первые 5-7 дней твердения бетона при нормальном температурном режиме. За первую неделю бетон набирает до 60-70% марочной прочности, после чего замораживание бетона только приостановит процесс вызревания и после оттаивания он возобновится.

Таблица критической прочности для различных марок:

Повышение температуры ускоряет процесс созревания бетона, но необходимо помнить о том, что нагрев свыше 90°С недопустим. При температуре твердения бетона 75-85°С в атмосфере насыщенного пара твердение до 60-70% марочной прочности происходит в течение 12 часов. Прогрев до такой температуры без насыщения паром приводит к высыханию, что также останавливает вызревание (гидратацию). Необходимо помнить, что гидратация невозможна без молекул воды и уход за бетоном заключается, в том числе, и в постоянном увлажнении в процессе набора прочности. В графике твердения бетона можно посмотреть взаимосвязь температурного режима и сроков вызревания бетона (дано для бетона марки М400), но нужно учитывать, что если в раствор вводятся специальные добавки (модификаторы — ускорители твердения), то время набора прочности бетона может быть значительно меньше.

График набора прочности бетона:

Стойкость бетона к внешним воздействиям

Коррозия бетона

Коррозия бетона (разрушение цементного камня) происходит вследствие многих факторов:

  • влияния окружающей среды,
  • механических воздействий,
  • проникновения воды,
  • изменения температур (замораживание/оттаивание, нагрев/резкое охлаждение).

Нарушение структуры цементного камня сопровождается понижением его сцепления с армирующими элементами, повышением водопроницаемости и, как результат, снижением прочности. Для повышения коррозийной стойкости бетона рекомендуются такие меры:

  • использование специальных кислотостойких, глиноземистых или пуццолановых цементов;
  • введение в смеси гидрофобизирующих, жаростойких или морозостойких добавок;
  • увеличение плотности бетона. Большое влияние на стойкость бетона, кроме состава смеси и соотношения компонентов, оказывает технология приготовления и доставки, укладки и последующего ухода. Виброперемешивание смеси увеличивают активность цемента и позволяют получить тесто с макрооднородной структурой, а транспортировка в миксерах – избежать его расслоения при доставке на объект. Эффект от виброуплотнения при укладке теста объясняется вытеснением пузырьков воздуха: в неуплотненной смеси он может достигать 45%. Удаление воздуха обеспечивает защиту бетона от коррозии, увеличение прочности, морозо-, жаростойкости, а также снижает водопроницаемость бетона.

Морозостойкость бетона

Воздействие на бетон поочередного замораживания/оттаивания приводит к его растрескиванию. Объясняется это тем, что в замороженном состоянии влага, находящаяся в порах материала, превращается в лед, а значит, увеличивается в объеме (до 10%). Это приводит к повышенному внутреннему напряжению бетона, а в результате и к его растрескиванию и разрушению.

Морозостойкость бетона тем ниже, чем больше доступ к проникновению влаги: объем пор, в которых может накапливаться вода (макропористость) и уровень капиллярной пористости.

Повышение морозостойкости бетона происходит за счет уменьшения показателей макро и микропористости, а также введением гидрофобных воздухововлекающих добавок. С их помощью в бетоне образуются резервные поры, не заполняемые водой в обычных условиях. При замерзании воды, уже попавшей внутрь бетона, часть ее перемещается в эти поры, тем самым снимая внутреннее давление. Использование глиноземистых цементов также увеличивает морозостойкость материала.

Так как при возведении объектов предъявляются различные требования к свойствам бетона по морозоустойчивости, производится бетон с классом устойчивости к циклам замораживания/оттаивания от F25 до F1000. Для гидротехнических сооружений необходима марка бетона по морозостойкости от F200, а для возводимых в зонах с суровым климатом – от F800 (спецификация производится, исходя из среднесуточной температуры для данного региона).

Водонепроницаемость бетона

Разрушение бетона под воздействием жидких сред происходит не только при отрицательных температурах. Влага имеет свойство вымывать легкорастворимые компоненты из любого вещества, а один из компонентов, при затворении бетонного теста, гашеная известь (гидрат окиси кальция) – водорастворимое вещество. Его вымывание приводит к нарушению структуры и разрушению бетонных блоков и фундаментов. Кроме того, находящиеся в воде кислотные компоненты также оказывают неблагоприятное влияние на состояние материала. На сегодняшний день существуют различные способы защиты бетона от разрушения вследствие воздействия влаги.

Избежать негативного влияния воды можно использованием пуццоланового или сульфатостойкого портландцемента, введением в раствор гидрофобных добавок в бетон для водонепроницаемости, а также применением специальных пленкообразующих покрытий, препятствующих проникновению влаги и уплотняющих добавок. По параметру водонепроницаемости бетон подразделяется на классы (марки). Существуют марки бетона по водонепроницаемости (характеризуется односторонним гидростатическим давлением, измеряется в кгс/см²) от W2 до W20.

Устойчивость к воздействию высоких температур

Если возводимые бетонные сооружения или отдельные изделия будут эксплуатироваться при постоянных высоких температурах, то необходимо выбирать жаростойкий бетон соответствующего класса, так как обычный под воздействием жара теряет прочность и дает усадку вследствие потери цеолитной, абсорбционной и кристаллизационной воды. Это приводит к растрескиванию, частичному, а затем и полному разрушению бетона. Жаростойкий бетон обозначается BR и подразделяется в соответствии с предельно допустимой температурой применения на классы от И3 до И18 (или U3-U18).

Для класса И3 предельно допустимая температура составляет +300°С, а для И18 — +1800°С.

Кроме того существует подразделение на марки по термостойкости:

  • для водных теплосмен — Т(1)5, Т(1)10, Т(1)15, Т(1)20, Т(1)30, Т(1)40;
  • для воздушных теплосмен — Т(2)10, Т(2)15, Т(2)20, Т(2)25.

Последний параметр обозначает способность выдерживать смены температур без деформаций и снижения прочности.

Полезное по теме:

Поделитесь статьей с друзьями:

время схватывания и набора прочности


Этапы твердения раствора

Уже довольно давно при строительстве любых объектов стали применять этот материал. Причем его применяют на любых стадиях этого процесса начиная с фундамента и заканчивая плитами перекрытия. Удобен этот материал тем, что способен в жидком состоянии принимать форму опалубки и, по мере его застывания, получается требуемая конструкция.

При этом необходимо знать промежуток времени, за сколько бетон набирает прочность. Обычно полная готовность бетона достигается через 28 суток. Обязательно все работы проводят согласно требованиям строительных норм и правил (СНиП). В этом документе полностью описано как работать с этим материалом в любое время года, чтобы объекты прослужили затем в течение 50—100 лет.

Причем при современном строительстве постоянно появляются новые технологии и конструктивные решения, позволяющие продлить этот срок. Но до сих пор процессу набора прочности уделяют большое внимание и следят за проведением каждого этапа, в которые входят:

  1. Застывание — начинается с первых минут, после залития бетонной смеси, которое производят с помощью автобетоносмесителя. В начальный период прямую зависимость имеет время набора прочности бетона от температуры. Чем температура выше, тем быстрее схватывается раствор. Например, при 20° C этот процесс протекает в течение часа, летом на открытом солнце — от 15 до 30 минут, а при 0° C — до 20 часов.
  2. Твердение — важный этап, при котором материал набирает до 70% расчетного значения прочности. Длительность этого процесса зависит от марки материала и протекает от 7 до 14 дней.

Во время заливки раствора одновременно берутся и контрольные пробы, которые затем проверяют специалисты и сравнивают с нормативами, через определенное время, по таблице твердения бетона.

Факторы, влияющие на прочность

Практически все работы с раствором проводятся на открытом воздухе как летом, так и зимой. Погодные условия и температура воздуха оказывает непосредственное влияние на время застывания бетона. Таким образом, на набор прочности влияют следующие факторы:

  • температура;
  • влажность;
  • класс материала;
  • время.

Чем ниже температура на улице, тем медленнее и дольше будет происходить процесс затвердения. Зимой, в естественных условиях, эта процедура полностью останавливается, так как вода не испаряется, а замерзает. При повышении температуры застывание раствора опять продолжится. Чтобы это лучше понять, стоит обратиться к графику твердения бетона В25 или В30.

График представляет собой кривые линии, показывающие, как долго и при какой температуре достигается определенная прочность бетона. Если летом твердение бетона протекает естественным образом, то зимой необходимо принимать меры для его застывания. Для этого в бетонную смесь добавляют специальные противоморозные вещества, которые способствуют сохранению свойств приготовленного раствора.

При этом они не дают воде быстро замерзать и позволяют качественно провести заливку бетонной смеси. При более низких температурах сразу после заливки раствора обеспечивают его прогрев. Обычно для этого используют электрический ток или тепловые обогреватели. В первом случае с помощью проводов по контурам производят подключение непосредственно арматуры в опалубке или через электроды, погруженные в раствор.

Причем контуры не должны касаться друг друга, иначе будет короткое замыкание. Все подключение ведется через специальный масляный трансформатор для прогрева бетона. Во втором случае место бетонирования накрывают шатром и подключают несколько воздушных обогревателей. Большую роль играет повышенная влажность воздуха. Если ее показатели достигают 70—90%, то прочность раствора значительно увеличивается.

Время набора прочности бетона в зависимости от температуры — раскладываем по пунктам

Когда необходимо изготовить определенную конструкцию, то порой бывает невозможно этого сделать без заливки бетона. Этот материал очень активно используется в области строительства. Главной его характеристикой является прочность на сжатие. Причем устанавливать определенную нагрузку на конкретный элемент запрещено, пока бетон полностью не наберет необходимую прочность. При осуществлении данного процесса имеется ряд факторов, которые так или иначе оказывают свое влияние: состав смеси, внешние условия.

Как это происходит

Процесс схватывания может происходить сразу после того, как была выполнена заливка бетона. Длительность напрямую зависит от температурного режима окружающего воздуха. При ее значении 20 градусов, для схватывания может понадобиться примерно час. Так как этот процесс не носит мгновенный характер, то бетоны, чтобы набрать прочностные характеристики может понадобиться пару месяцев.

Каков состав бетона м 400 на 1 м-3 можно узнать из таблицы в статье.

Очень часто бетон начинает твердеть уже по прошествии двух часов с того момента, как были соединены цемент и вода. А вот для окончательного схватывания нужно подождать 3 часа. Увеличить время твердения помогают специальные добавки в бетон.

Схватывание бетона подразумевает под собой подвижность раствора на весь период, благодаря чему удается воздействовать на смесь. При этом механизм тиксотропии, который указывает на снижение вязкости бетона, твердение и высыхание не происходят. Это условие необходимо учитывать в ходе доставки раствора на бетоносмесители. В этом случае раствор должен перемешиваться в миксере, в результате чего удается сохранить все его важные качества.

Как использовать бетон марки м200, указано в статье.

На видео показывают проверку бетона на прочность сжатия.

Какова пропорция бетона м200 на 1 куб указано здесь.

Благодаря вращению миксера удается предотвратить высыхание бетона, а также набора твердости. Но в этом случае может произойти другая неприятная ситуации – это сваривание материала, в результате чего все его положительные характеристики снижаются. Происходит такое явление чаще всего в летнее время.

Временные рамки

Этот график несет в себе информацию, которая показывает кривую роста прочности на протяжении 28 дней. Именно этого времени будет достаточно, чтобы бетон сумел просохнуть при естественных условиях.

Время, которого будет достаточно, чтобы раствор набрал вес необходимые эксплуатационные качества, носит название период выдерживания бетона. График набора прочностных характеристики показывает время, которые необходимо раствору, чтобы добиться максимальной отметки по прочности.

Каковы технические характеристики по ГОСТу бетона м 200 можно узнать из данной статье.

На видео – набор прочности бетона в зависимости от температуры:

Какова прочность бетона в15 указано здесь.

При нормальных условиях созревание бетона осуществляется в течение 28 дней. Первые 5 дней – это интенсивное твердение материала. Когда позади неделя, то бетон уже набрал 70% всей прочности для выбранной марки. Но приступать к дальнейшим строительным мероприятиям можно после того, как прочность достигал 100%, а это не ранее 28 дней.

Этот период для определенного случая свой. Чтобы точно определить период застывания раствора необходимо выполнять контрольные испытания образцов материала. При проведении работ летом в монолитном домостроении в целях оптимизации процесса для обретения раствору всех физических свойств требуется выполнение следующих условий:

  • Выдерживание в опалубке раствора.
  • Дозревание состава после того, как опалубка была удалена.

Условия

Когда необходимо, чтобы раствор приобретал необходимые показатели прочности, требуется придерживаться конкретных условий. Например, самой оптимальной температурой для его твердения считается 20 градусов. Но это далеко не все параметры.

Какова характеристика бетона класса в 25 указано в статье.

Температура

Чем ниже температурные показатели на улице, тем медленнее происходит набор прочности бетона. Если температурный режим предполагает отрицательные показатели, то процесс приостанавливается по той причине, что застывает жидкость, которая обеспечивает гидратацию цемента. Когда температура воздуха начинает повышаться, то процесс набора прочности снова в действии.

Если в составе раствора имеются различные модификаторы, то длительность твердения может во много раз уменьшиться, а температура, которая необходима для установки процесса, снизиться. Изготовители предлагают разнообразные быстротвердеющие составы, благодаря которым удается набирать прочностные характеристики уже по прошествии 14 дней.

Какова таблица набора прочности бетона, можно узнать из данной статьи.

При повышении температуры воздуха процесс созревания раствора начинает ускоряться. Если на улице 40 градусов, то установленная маркой прочность будет достигнута через 7 дней. По этой причине процесс заливки бетона на приусадебном участке в целях сокращения сроков строительства необходимо выполнять в летнее время года.

Если работы осуществляются зимой, то здесь понадобиться ряд дополнительных мероприятий, например, таких как подогрев бетона. Осуществить такие действия очень непросто, ведь для этого нужно обладать подходящим оборудованием и знаниями в этой области. Кроме этого, нужно понимать, что нагрев материала нельзя проводить выше температуры 90 градусов.

Как сделать бетон для отмостки пропорции, указано в статье.

Для того чтобы определить, какое влияние оказывает температурный режим на процесс твердение, необходимо снова обратиться к графику набора прочности. Присутствующие на нем линии с учетом данных, которые собраны с бетона М400 при различных значениях температуры. Согласно этому графику удается понять процент прочности, который будет достигнут по прошествии конкретного количества дней. Для каждой кривой характерна своя температура. Первая линия – это 5 градусов, а вторая – 50 градусов.

При помощи графика удается понять длительность распалубки монолитной конструкции. Демонтаж опалубки ожжет происходить после того, как показатели прочности увеличились на 50% от заданного маркой значения. Кроме этого, важно обращать внимание на то, что при температуре ниже 10 градусов значение прочности, заданное конкретной маркой, не будет достигнуто даже по прошествии 14 дней. Если присутствуют такие погодные условия, то нужно предпринимать меры по прогреванию заливаемого раствора.

Каков график прогрева бетона в зимнее время, можно узнать из данной статьи.

Время

Чтобы определить нормативно-безопасное время начало строительных мероприятий применяется специальная таблица. Она содержит в себе данные марки бетона и его среднесуточные температурные показатели. На основании этих данных удается отыскать информацию, как происходит набор прочности по прошествии конкретного количества суток.

Таблица 1 – Набор прочности в зависимости от количества дней

Марка бетонаСреднесуточная температура бетона в °CСрок твердения в сутках
123571428
Прочность бетона на сжатие
М200–300, замешанный на портландцементе М 400–500-336812152025
05121828355065
+59192738486277
+1012253750587285
+20234050657590100
+303555658090100

После того, как нормативно-безопасный срок поставлен на уровне примерно 50%, то обозначить безопасный срок начала мероприятий можно 72-80% от значения, установленного маркой бетона.

Состав и характеристики бетона

Так как после заливки бетон способен приобретать прочность по причине своего выделения тепловой энергии, то после замерзания жидкости этот процесс останавливается. По этой причине на момент проведения всех работ в зимнее время необходимо задействовать смеси, в составе у которых имеются противоморозные добавки.


На фото – состав и характеристики бетона

Глиноземистый цемент после его укладки может выделить тепловую энергию в 7 раз большую, чем при использовании обычного портландцемента. По этой причине полученная смесь на его основе начинает набирать прочностные параметры даже, когда на улице отрицательные показатели температуры. На скорость набора прочности немаловажную роль играет марка бетона. Чем она ниже, тем выше максимальная прочность.

Сколько мешков цемента в одном кубе бетона, указано здесь в статье.

Влажность

Если на улице уровень влажность повышен, то это отрицательно влияет на процесс набора прочности. Однако и полное отсутствие влаги делает невозможным процесс гидратации цемента и как результат, твердение полностью останавливается.

Если присутствует максимальная влажность и высокая температура, то скорость набора прочности во много раз повышается. При таком режиме происходит пропаривание материала в автоклавах паром высокого давления.

Влияние таких высоких температурных показателей при минимальной влажности приведет к высыханию. Раствора и снижению скорости твердения. Чтобы можно было избежать такой ситуации, стоит производить увлажнение. В результате таких действий в жаркое время года удастся набрать прочность в минимально возможные сроки.

Специальные добавки

Чтобы бетон смог быстрее набирать прочность, нужно задействовать особые вспомогательные компоненты. Их добавляют при приготовлении раствора. Дозировка зависит от количества цемента. Благодаря таким добавкам бетон способен набрать прочность, соответствующую выбранной марки, всего за 2 недели.

Но достичь таких показателей реально при условии, что процесс твердения осуществляется в летнее время. Для холодной поры необходимо задействовать противоморозные добавки. Благодаря им можно поддерживать в бетоне положительный температурный режим на момент набора прочности.

Электропрогрев

Для ускорения набора прочности бетона в зимнее время задействуют такой метод, как электропрогрев. Еще он носит название контактного обогрева термоопалубкой. При обычных и высоких температурных режимах длительность влияние электропрогрева может достигать 3-8 часов. После этого конструкция уже самостоятельно способна набирать прочностные показатели.

Согласно ГОСТ

Необходимая марка и класс бетона определяется с учетом составленного проекта. Необходимые показатели прочности могут меняться в зависимости от применяемых строительных материалов. Например, при возведении дома на основе легких бетона для основания нет необходимости применять бетон высокой прочности. Когда стены строения будут выполнены из кирпича, то бетон должен иметь высокие прочностные характеристики. Например, для этого используют тяжелый и мелкозернистый бетон по стандарту 26633 ГОСТ.

Для определения прочности применяется ГОСТ 18105-86. В этом случае необходимо подготовить проект или же посмотреть информацию со схожего.

Прочность – это главный показатель качества для бетона ГОСТа любого уровня. Процесс его затвердения начинает происходить уже в первые часы после того, как соединили воду и цемент, а вот его длительность зависит от различных факторов: температуру, влажность, состав бетона. Если вес необходимые условия были соблюдены точно, то процесс набора прочности будет окончен по прошествии 28 дней, а вы сможете приступить к необходимым работам.

Методы ускорения застывания бетона

Очень часто в процессе строительства необходимо ускорить процесс набора прочности бетона. Так, при заливке монолитных конструкций и ограничении сроков строительных работ применяют смеси на основе сернокислых, углекислых и аммонийных солей, хлоридов и нитратов кальция.

Применение этих добавок позволяет сократить длительность застывания бетона в 2 раза. Стоит заметить, что такие работы проводят в летний период и антиморозные добавки здесь не подойдут. В сильно жаркую и сухую погоду проводят увлажнение залитого раствора, так как очень быстро испаряется вода и происходит нарушение графика набора прочности материала.

Для этого верхнюю часть раствора накрывают материалом или посыпают опилками и периодически смачивают их по мере испарения воды. На асфальтобетонных заводах для ускорения застывания раствора применяют способ пропаривания. Процедуру эту проводят на открытом воздухе или в специальных закрытых камерах, где за 6—16 часов изделия из бетона набирают 60—70% прочности.

Набор прочности по графику

Набор прочности бетона в зависимости от температуры определяется графиком, который представляет собой временной интервал. В процессе этого раствор обретает эксплуатационные свойства, после чего можно проводить формирование финишного слоя. График набора прочности – это время, которое необходимо бетону для достижения нужного значения прочности. Если поддерживаются нормальные условия, то состав созреет за 28 дней.

В течение 5 дней можно наблюдать наиболее быстрое твердение. По истечении этого времени материал достигнет 70-процентной прочности. Последующие работы следует продолжать лишь через 28 дней, ведь только тогда материал достигнет 100-процентного уровня прочности.

Твердение и набор прочности бетона происходят по-разному для каждого конкретного случая. Для того чтобы определить сроки, проводятся испытания образцов. В теплое время в монолитном домостроении для обретения составом оптимальных свойств осуществляются некоторые операции. Например, материал выдерживается в опалубке, его оставляют дозревать и после удаления ограждений. Набор прочности бетона в зависимости от температуры будет происходить за разный период времени. Это объясняется еще и тем, что мероприятия могут проводиться в холодное время года. В этом случае для достижения марочной прочности необходимо обеспечить обогревание материала и гидроизоляцию бетона. Это обусловлено тем, что снижение температуры замедляет процесс полимеризации.

Использование добавок для ускорения твердения бетона

Применение бетона в строительстве за счет своих уникальных характеристик имеет безоговорочное преимущество перед другими материалами. Чтобы данный материал стал по-настоящему прочным, необходимо выдержать определенное время без внешней нагрузки на бетонную конструкцию. Бетонный раствор набирает свою прочность за 28 дней с момента заливки. Время является невосполнимым ресурсом, поэтому простои на строительной площадке стоят очень дорого. Если используется многоуровневая заливка бетона, потери времени могут быть колоссальными.

Ускорение прочности бетона может быть выполнено такими способами:

  • увеличение содержания цемента или снижение содержания воды, но такие способы повышают хрупкость бетона и его неоднородность;
  • создание определенных условий твердения. Например, паровой прогрев бетонной конструкции при атмосферном или повышенном давлении;
  • применение добавок-ускорителей. Они позволяют ускорить прочность в естественных «полевых» условиях и сократить время достижения марочной прочности за 7-10 дней.

Какую продукцию стоит выбрать

Ускоритель твердения бетона – комплексная добавка, которая может состоять из пластификаторов (суперпластификаторов), ускорителей набора прочности, ускорителей схватываемости, пено- и газообразователи.

Виды продукции

  • пластификаторы и суперпластификаторы, которые необходимы для повышения текучести и комфортной укладки бетонной смеси;
  • ускорители схватываемости. Они обеспечивают первичное быстрое схватывание бетонного раствора. Например, когда необходимо произвести срочные работы;
  • ускорители набора прочности позволяют в 2 раза сократить время от набора начальной эксплуатационной прочности до номинальной марочной прочности раствора;
  • пено- и газогасители. Они применяются, когда необходимо получить газобетон путем вовлечение воздуха в бетонную структуру. Уменьшается плотность и прочность бетона, увеличивается пористость. Наиболее распространенный вариант – алюминиевая пудра.

Подробную информацию о каждом виде добавок для бетона смотрите на здесь.

Помимо своей основной задачи, ускорители твердения бетона выполняют и несколько второстепенных задач:

  • бетонную смесь можно использовать в качестве утеплителя в виде газобетона;
  • увеличение прочности бетона в первые 2 дня;
  • ускорение набора прочности бетона при отрицательных температурах;
  • увеличение коррозийной стойкости;
  • сокращение затрат на виброинструмент, а в некоторых случаях можно полностью отказаться от виброоборудования;
  • сокращение затрат на тепло-влажностную обработку бетона;
  • увеличивается морозостойкость до 300 циклов с момента конечного затвердевания;
  • увеличение водонепроницаемости за счет однородной структуры;
  • повышаются подвижности бетонной смеси с П1 до П5 без снижения прочности и долговечности при неизменном соотношении воды и бетона;
  • улучшение формовочных свойств за счет применения пластификаторов.

Ускорители не вызывают ложного схватывания, когда затвердение происходит только на периферии бетонной конструкции. Более подробно смотрите на странице https://www.formpark.ru/catalog/uskoriteli-tverdeniya/relamiks/.

Марка бетона для фундамента дома, калькулятор, таблицы

Длительность эксплуатации фундамента определяет время жизни жилья, и находится в зависимости от заданной прочности бетона, который присутствует в составе фундаментной конструкции, а прочность определяет марка бетона для фундамента частного дома. Такие параметры бетона, как морозоустойчивость и водопроницаемость, тоже оказывают достаточно большое влияние на прочность бетонной основы. Но, так как эти показатели входят в эксплуатационные свойства бетона, заложенные в его марке, то при строительстве фундамента основополагающим фактором надежности является именно марочная прочность бетона.

Строительство бетонного фундамента

 

Компоненты бетонного раствора для фундамента

Бетонный раствор замешивают из пропорционально добавляемых сыпучих веществ и воды. Состоит смесь из вяжущего (портландцемент), гравия или щебня (наполнители), очищенного или речного песка. Сухая смесь затворяется водой. При изменении соотношений компонентов меняется и марка бетона для фундамента. На определение марки влияют и условия схватывания раствора, например, уличная температура, которая должна быть равна ≈ +200С. При отклонении температуры в ту или иную сторону марочная прочность уменьшается.

Расчетную прочность бетон набирает за 28 суток, причем до половины своей прочности бетон набирает в первые 5-7 дней. Таким образом, можно, не дожидаясь полного набора прочности, приступать к дальнейшим строительным работам уже через неделю. При правильно подобранном составе бетона прочность увеличивается в течение всего срока эксплуатации бетонной конструкции. Но за основу марочной прочности устанавливается ее значение за первые четыре недели.

График прочности бетона

 

Марка бетона по прочности на сжатиеКритическая прочность бетона (% от марочной прочности)
M 15-M 150≥ 50%
M 200-M 300≥ 40%
M 400-M 400≥ 30%
Для предварительно напряженных конструкций≥ 70%

Расчет бетона калькулятор

Марка бетона

М100М200М250М300

 

Понижение уличной температуры до +150C время схватывания до 50% прочности увеличивается с 5 до 14 суток. Если температура на улице опускается до +50C, раствор прекращает затвердевать. Поэтому для таких температур разработаны марки зимнего бетона, в который добавляют специальные пластификаторы, отвердители и противоморозные добавки. Также при зимнем строительстве бетонную конструкцию подогревают, и для этого существуют разные методы – от шатров до укладки греющего кабеля.

 

Песок для замешивания раствора

 

Бетон приготавливается на основе разных марок портландцемента. В индивидуальном строительстве популярны следующие типы цементов марок M 400-M 500:

  1. Портландцемент. Его особенность заключается в быстром схватывании и затвердевании: время схватывания – от 45 до 180 минут после замешивания раствора. Окончательное схватывание раствора наступает через 6-10 часов;
  2. Шлакопортландцемент. Начало и конец схватывания раствора – 2-6 и 8-12 часов соответственно;
  3. Пуццоланопортландцемент. Начало и конец схватывания раствора 1-5 часов и 5-12 часов;
  4. Цемент с добавками глинозема схватывается через 50-60 минут, окончание затвердевания – через 6-8 часов.

Любой из перечисленных типов цементов подходит под фундамент на основе бетона.

Мелкие и крупные заполнители для бетонного раствора

 

 

Типы заполнителей бетонного раствора

На прочность бетона влияют заполнители и их пропорции в растворе, а также фракции гранул и влажность сыпучего материала. Песок по крупности подразделяется на:

  1. Крупнозернистый с размером фракций 3,5-2,4 мм;
  2. Среднезернистый с размером фракций 2,5-1,9 мм;
  3. Мелкозернистый с размером фракций 2,0-1,5 мм;
  4. Очень мелкий песок с размером фракций 1,6-1,1 мм;
  5. Тонкий песок с размером фракций ≤ 1,2 мм.

Для обустройства подушки и обратной засыпки нужно использовать песок крупной и средней фракций, очищенный и без примесей в виде камней, глины и грязи. Присутствие пыли и ила не должно превышать 5% от общего объема песка.

Макроструктура бетона

 

Рациональные марка бетона для заливки фундамента различных классов (марки цемента по ГОСТ 10178)

Проектный класс бетонаМарки цемента
РекомендуемыеДопускаемые
B 3,5-B 7,5400300
B 12,5-B 15400300; 500
B 20400500; 550
B 22,5500400; 550; 600
B 25500550; 600
B З0550500; 600
B 35550500; 600
B 40600550

 

Чтобы проверить степень загрязненности песка в домашних условиях, нужно взять 200 см3 песка, и высыпать его в емкость объемом 500 мл, после чего залить чистой водой. Через несколько минут воду нужно слить, залить новую порцию, емкость взболтать. Операция по смене воды повторяется до тех пор, пока вода не станет чистой и прозрачной. После этого замеряют оставшийся объем песка: если осталось 185-190 см3, то песок имеет 5% запыленность, а значит, пригоден для приготовления прочного бетона.

Набор прочности во времени

 

Песок для замешивания раствора батона должен быть максимально сухим. Для определения влажности существуют определенные стандарты: если влажность не превышает 1%, то песок считается сухим и его можно применять в растворе. При влажности ≈ 5% песок можно не просушивать, но добавлять в раствор меньше воды. Если влажность песка превышает 10%, песок необходимо просушить.

Объемное соотношение заполнителей в бетоне

 

Гравий и щебень – это результат дробления горных минералов. Дробленые фракции этих горных пород бывают следующими:

  1. Щебень особо мелкого размера с зернами ≈ 3-10 мм;
  2. Щебень мелкофракционный – размер зерен ≈ 10-12 мм;
  3. Щебень средней фракции – размер зерен ≈ 20-40 мм;
  4. Крупнофракционный щебень имеет размер зерен ≈ 40-70 мм.

Чтобы приготовить прочный бетон, рекомендуется добавлять в смесь разные фракции, чтоб зерна разных размеров максимально плотно заполняли воздушные поры в растворе, делая его плотнее, а значит, прочнее. Самая крупная фракция гранул щебня не должна превышать 30% от размера зерен самой мелкой фракции. При этом объем щебня самой мелкой фракции не должен быть больше, чем 30% от всего объема раствора.

Щебень разных фракций

 

Если бетонный раствор приготавливается с добавлением гравия, то параметр ВЦ (соотношение в растворе воды и цемента) нужно увеличить на 0,05, что на практике означает: воды необходимо добавлять на 5% больше, чем в раствор с щебнем. Чтобы приготовить прочный бетон для фундамента забора или дома, в раствор нужно добавлять только питьевую воду. Морская или техническая вода испортят прочностные характеристики бетона.

Бетон подразделяется на марки и классы в соответствии с его характеристиками, и в таблице отражено, бетон какой марки нужен, чтобы получить прочное сооружение:

Класс бетона по прочностиПрочность бетона кг/см2Ближайшая марка бетона
B 565,5M 75
B 7,598,2M 100
B 10131M 150
B 12,5163,7M 150
B 15196,5M 200
B 20261,9M 250
B 22,5294,4M 300
B 25327,4M 350
B 30392,9M 400
B 35458,4M 450

Прочность рассчитывается на испытательных стендах, результаты исследований показывают нагрузку, которую выдержит проверяемый бетон без деформации или разрушения в долговременном периоде.

Соотношение классов и марок

 

Зависимость марок бетона от грунта и стройматериалов

В частном строительстве застройщики редко делают затратные расчеты на прочность, используя практический опыт и применяя три самые распространенные марки бетона:

  1. Бетон марки M 200 оптимально подходит для обустройства фундамента легкого деревянного или пенобетонного дома;
  2. Такие марки бетона для фундамента дома, как M 250 и M 300, хорошо зарекомендовали себя при заливке фундаментов малоэтажных бетонных или кирпичных домов;
  3. Бетон марки M 400 и M 500 используется для фундаментов с подвалов, а также для заливки опалубки под стены в более высотных домах.
Основные параметры бетонного раствора

 

Чтобы точно определиться, какую марку бетона выбирать для обустройства ленточного фундамента, нужно провести исследование участка, и, если грунтовые воды залегают глубже 2 метров, то рекомендуются такие марки:

  1. Деревянный или пенобетонный дом – фундамент из бетона марки M 200;
  2. Одноэтажное здание из кирпича – бетон M 250;
  3. Бетонное двух- или трехэтажное строение – бетон M 300.

Плитный фундамент нужно укладывать бетонными плитами марки M 350. Буронабивные сваи заливаются бетоном M 200 – M 250.

 

Дополнительные характеристики и параметры бетона

  1. Морозоустойчивость обозначается латинской буквой «F» и означает число полных циклов заморозки и разморозки бетона без признаков разрушения и утраты заданной прочности. Показатели морозостойкости бетона при обустройстве основания необходимо использовать при возведении неотапливаемых зданий и построек. Это такие постройки, как гараж, баня, мастерская, сезонный дачный домик, и т.д. Если строится капитальный дом для постоянного проживания в нем, то морозостойкость бетона особой роли не играет, так как по большей части и стены, и фундамент, и перекрытия дома утепляются и гидороизолируются, плюс оборудуется отмостка;
  2. Водопроницаемость. обозначается латинской буквой «W» и означает объем впитываемой бетоном влаги. После символа «W» пишутся цифры в диапазоне 2-10. Большие цифровые значения, например, W 15, применяются в промышленном строительстве, а бетон с водопроницаемостью W2-W4 чаще приходится использовать в строительстве частных объектов. Если водопроницаемость марки бетона равна W6, то бетонный раствор можно применять для плотных грунтов;
  3. Удобоукадываемость бетонного раствора обозначается кириллическим чсимволом «П» и последующими цифрами в диапазоне 1-5. Расшифровка обозначений следующая;
  • Удобоукадываемость П 1 – при испытаниях бетона на прочность осадка конуса происходит на глубину 1-4 см. Такой раствор считается малопластичным или полужестким. В работе почти твердый, не сползает с лезвия лопаты;
  • Удобоукадываемость П 2 – осадка конуса на глубину 5-9 см. Раствор обозначается как среднепластичный;
  • Полулитой раствор с удобоукладываемостью П 3 означает, что осадка конуса происходит на глубину 10-15 см. Раствор легко сползает с лопаты, но остается сформованной массой;
  • Удобоукадываемость П 4 – это осадка конуса на глубину 16-20 см и больше. Раствор литой и почти текучий;

Удобоукладываемость бетонного раствора влияет на скорость и удобство работы с материалом. В заливке фундамента рекомендуется применять марки П 1 и П 2. С учетом приведенных данных, для фундаментов частных домов рекомендуются такие марки бетона:

Тип малоэтажного зданияСлабо пучнистые почвыПучнистые почвы
Каркасно-щитовое зданиеM 200 (П 3 F 100 W 4)M 250 (П 3 F 150 W 4)
Брусовое или бревенчатоеM 250 (П 3 F 150 W 4)M 300 (П 3 F 150 W 6)
Газобетонное, пенобетонное, керамзитобетонное зданиеM 300 (П 3 F 150 W 6)M 350 (П 3 F 200 W 8)
Кирпичный или бетонный домM 350 (П 3 F 200 W 8)M 400 (П 3 F 200 W 8)

При наращивании этажности здания марку бетона тоже нужно повышать, что и приведено в таблице выше.

Прочность бетона за 7 дней Таблица

Прочность бетона через 7 дней часто измеряется, даже если указанная прочность бетона на сжатие измеряется через 28 дней. Часто бывает необходимо измерить прочность бетона на сжатие через 7 и 28 дней, поэтому во время заливки берутся несколько проб бетонных кубов.

Существует ряд методов, которые можно использовать для оценки требуемой прочности бетона на сжатие через 7 дней. Ниже описаны наиболее популярные методы.Электронная таблица CivilWeb Concrete Strength at 7 Days была разработана для выполнения этого анализа с использованием трех методов. Кривая увеличения прочности бетона может быть оценена либо с использованием результатов испытаний двух бетонных кубов, либо на основе указанной прочности на сжатие через 28 дней с использованием двух методов.

Прочность бетона через 7 дней

Прочность бетона на сжатие через 7 дней часто требуется по двум причинам. Во-первых, может потребоваться начать загрузку бетонного элемента примерно через неделю, чтобы выполнить программу строительства.Это обычное явление в многоэтажных зданиях, где необходимо загрузить один этаж, чтобы завершить строительство следующего, или на бетонных дорогах и тротуарах, которые необходимо открыть для движения транспорта как можно скорее, чтобы минимизировать нарушения.

Вторая причина в том, что качество бетона можно проверить, не дожидаясь 28 дней. Благоприятный результат испытания бетонного куба на прочность через 7 дней дает хорошее указание на то, что бетон будет соответствовать указанной прочности бетона на сжатие.

Концепция зрелости бетона

Бетон набирает прочность за счет продолжающегося процесса гидратации цемента. Бетон набирает прочность с момента его укладки и начинает увлажняться. Большая часть этого увеличения прочности произойдет в первые несколько дней после укладки, но более медленные химические реакции будут продолжаться в течение многих лет после укладки, особенно если бетон имеет доступ, например, к влаге из воздуха.

Характерные значения прочности на сжатие обычно указываются исходя из прочности на сжатие в течение 28 дней.Во многих случаях 28-дневная прочность достигает оптимального уровня, достаточного для того, чтобы бетон набрал большую часть своей прочности, но до того, как ожидается, что он выдержит значительную нагрузку.

Однако в некоторых случаях 28 дней может оказаться слишком долгим ожиданием, прежде чем станет известно качество бетона. Это происходит, например, когда бетонная дорога должна быть открыта через неделю или около того после заливки, или когда необходимо использовать прочность бетонной балки, чтобы построить следующий уровень в здании. В этих случаях оценка пригодности бетона должна быть произведена на основе испытаний бетонных кубов в гораздо более раннем возрасте.Это часто происходит через 7 или 14 дней, но может быть и через 3 дня. Для того, чтобы эти результаты были значимыми, необходимо разработать взаимосвязь зрелости с использованием конкретного метода зрелости, такого как описанный ниже, чтобы связать результаты испытаний на прочность при сжатии в раннем возрасте и 7 дней с заданной 28-дневной прочностью.

Испытание бетонной зрелости

Испытание на зрелость бетона может быть выполнено с использованием тех же испытаний бетонного куба, которые используются для общих испытаний прочности на сжатие и испытаний на соответствие.Тестирование зрелости обычно включает в себя 3 дня, 7 дней прочности куба и 28 дней. При необходимости проверка зрелости может включать более длительные периоды от 60 до 90 дней. Дополнительная информация об измерении прочности бетона через 7 дней включена в нашу публикацию «Испытание бетонного куба».

Кривые увеличения прочности бетона

Результаты испытаний бетона на зрелость затем преобразуются в кривую увеличения прочности бетона для данной конкретной бетонной смеси. Эта кривая увеличения прочности бетона может затем использоваться для оценки долговременной прочности бетона на сжатие по результатам 7-дневной прочности на сжатие.Прочность бетона на сжатие за 7 дней также можно определить из кривых увеличения прочности бетона, если это считается более подходящим, чем графическое решение.

Скорость увеличения прочности бетона будет зависеть от используемых вяжущих материалов. Обычный портландцемент набирает прочность аналогично приведенному ниже графику, при этом через 7 дней прочность бетона составляет около 60% от 28-дневной прочности. Доступны быстро схватывающиеся цементы, которые могут получить значительную прочность на сжатие за несколько часов.Эти высокопрочные бетоны часто используются для быстрого открытия ремонтных работ бетонных дорог после укладки. И наоборот, низкотемпературные цементы и цементы, смешанные с GGBS или летучей золой, потребуют больше времени, чтобы достичь своей проектной прочности, иногда 6 месяцев или более. Это нужно будет учесть в спецификации.

Темпы прироста прочности различны для каждой смеси, и по этой причине поставщик бетона должен предоставить кривую или формулу прироста прочности бетона или определить в результате долгосрочных испытаний этой конкретной бетонной смеси.Затем это можно использовать для оценки результатов ранних испытаний прочности на соответствие требуемой прочности через 28 дней. Типичная кривая увеличения прочности бетона (построенная в логарифмической шкале) представлена ​​ниже.

Прочность бетона на сжатие через сутки

    Какова прочность бетона через 28 дней? —

    По прошествии 28 дней бетон не набирает значительной прочности. Бетон всегда укрепляется с возрастом, но к 28 дням он набирает большую часть своей прочности.

    Почему мы проверяем прочность бетона на сжатие после 28

    2014-8-13 & 0183; После 14 дней заливки бетон набирает только 9% в следующие 14 дней. Так темп набора силы снижается. У нас нет четкого представления о том, когда бетон набирает прочность через 1 или 2 года, но предполагается, что бетон может набрать свою окончательную прочность через 1 год.

    Проверка прочности бетона на сжатие —

    Требования к прочности бетона на сжатие могут варьироваться от 2500 фунтов на квадратный дюйм 17 МПа для жилого бетона до 4000 фунтов на квадратный дюйм 28 МПа и выше в коммерческих структурах.Для некоторых применений указаны более высокие значения прочности до и выше 10000 фунтов на кв. Дюйм 70 МПа. В большинстве случаев требования к прочности для бетона предъявляются к возрасту 28 дней.

    Почему мы испытываем бетон на прочность на сжатие

    Таким образом, очевидно, что бетон быстро набирает прочность в первые дни после заливки, то есть на 90% всего за 14 дней. Когда его прочность достигла 99% за 28 дней, бетон продолжает набирать прочность после этого периода, но эта скорость прироста прочности на сжатие очень низка по сравнению с 28 днями.

    PDF Предсказание 28-дневной прочности на сжатие для

    На основе первоначальной прочности было проведено множество исследований для прогнозирования и анализа прочности на сжатие бетона или цементного раствора через 28 дней или другие дни 14 15 16 17 18.

    Прочность на сжатие бетона и бетона

    2020-5-15 & 0183; Прочность бетона на сжатие и испытания бетона должны быть известны при проектировании конструкций. Прочность на сжатие сначала проверяется путем расчета смеси, чтобы убедиться, что марка бетона, учитываемая при проектировании конструкции, была достигнута.В зависимости от количества отлитых образцов испытание образца может быть проведено через 7

    Почему мы проверяем прочность бетона на сжатие через 28

    После 14 дней заливки бетон набирает только 9% в следующие 14 дней. Так темп набора силы снижается. У нас нет четкого представления о том, когда бетон набирает прочность через 1 или 2 года, но предполагается, что бетон может набрать свою окончательную прочность через 1 год.

    Все, что вам нужно знать о бетоне

    2020-9-13 & 0183; В то время как традиционный бетон обычно имеет прочность на сжатие от 2500 до 5000 фунтов на квадратный дюйм, UHPC может иметь прочность на сжатие до 10 раз больше, чем у традиционного бетона.Всего через 14 дней отверждения UHPC имеет прочность на сжатие 20000 фунтов на квадратный дюйм. Это число увеличивается до 30000 фунтов на квадратный дюйм при полном отверждении в течение 28 дней.

    Что такое прочность на сжатие бетона M 20 при

    Прочность на сжатие бетона M 20 через 28 дней составляет 20 МПа, целевое среднее значение прочности fck kS.k = фактор риска 95% результатов испытаний пройдены, т.е. 1 за 20 с = стандартное отклонение

    контрольный цемент бетон м 30 прочность на сжатие 7

    В практике бетона прочность бетона характеризуется 28-дневным значением, а некоторые другие свойства также связаны с 28-дневной прочностью.По истечении 28 дней обычно проводятся различные испытания для определения прироста прочности бетона. Это как в разделе: Для увеличения прочности: испытание на прочность при сжатии. Цилиндровый тест; Испытание кубом

    Ответ: Прочность на сжатие в библиотеке Bartleby

    Statistics Q and A Прочность на сжатие в килопаскалях была измерена для бетонных блоков из пяти различных партий бетона через три и шесть дней после заливки. Данные представлены в следующей таблице. Партия 3 1352 4 1341 1376 5 1327 1358 1316 1355 Через 3 дня Через 6 дней 1373 1366 1384 Можете ли вы сделать вывод, что средняя прочность через шесть дней больше, чем среднее значение

    Строительный кодекс Онтарио Прочность на сжатие

    2018-9-6 & 0183 ; Строительный кодекс Онтарио Прочность на сжатие 9.3.1.6. Прочность на сжатие 1 За исключением случаев, предусмотренных в этой части, прочность на сжатие неармированного бетона через 28 дней должна быть не менее 32 МПа для полов гаражей и всех наружных плоских конструкций b 20 МПа для внутренних полов, кроме полов в гаражах и навесах для автомобилей и

    Прочность бетонных кубов на сжатие через 7 дней

    Прочность бетонных кубов на сжатие через 7 дней. В соответствии с разделом 19213 ACI 31819 указанная прочность на сжатие должна основываться на результатах 28-дневных испытаний, если иное не указано в строительной документации. Результаты 3- или 7-дневных испытаний используются для контроля раннего увеличения прочности, особенно при использовании бетона с высокой ранней прочностью. результаты не соответствуют

    Прочность бетонных кубов на сжатие — лабораторные испытания и

    Почему мы проводим испытания через 7, 14 и 28 дней?

    Изменение прочности бетона на сжатие во времени

    Таким образом, прочность на сжатие, полученная бетоном, измеряется на 28-й день, после чего показатель прочности снижается.Прочность на сжатие, полученная в более позднем возрасте, проверяется неразрушающими испытаниями. Подробнее: Почему мы проверяем прочность бетона на сжатие через 28 дней?

    Скорость увеличения прочности бетона Прочность бетона

    Прочность можно определить как способность противостоять изменениям. Одно из самых ценных свойств бетона — его прочность. Прочность — самый важный параметр, который дает представление об общем качестве бетона. Прочность бетона обычно напрямую связана с цементным тестом.Многие факторы влияют на скорость увеличения прочности бетона после смешивания.

    Прочность бетона на сжатие после раннего нагружения

    2018-10-16 & 0183; прочность на сжатие вскоре после заливки. В этом исследовании бетонные кубы толщиной 100 мм были сжаты до нагрузок 70–80 и 90% от их предельной прочности для имитации ранней перегрузки через 13 и 7 дней после заливки, что типично для ранних этапов строительства бетонных конструкций. Эти образцы были повторно загружены через 28 дней после намокания.

    5 Методы оценки бетона на месте

    2020-9-14 & 0183; Оценка прочности бетона на месте.Прочность бетона Прочность на сжатие на сегодняшний день является наиболее важным свойством бетона. Он представляет механические характеристики бетона; 28-дневная прочность на сжатие бетонных цилиндров или кубических образцов была широко принята в качестве минимальной указанной прочности бетона в большинстве расчетных кодов ACI 318-14 CSA A23.3-14.

    прочность бетона через сколько дней

    20 小时 前 & 0183; прочность бетона через сколько дней. Прочность на сжатие, полученная бетоном через 13, 7, 14 и 28 дней по отношению к марке бетона, показана в таблице. Наконец, когда его прочность достигает 99 за 28 дней, бетон продолжает набирать прочность после этого периода, но эта скорость увеличения прочность на сжатие очень меньше

    Прочность на сжатие бетона через 7 дней

    Прочность на сжатие бетона.Испытание бетонного куба на сжатие дает представление обо всех характеристиках бетона С помощью этого единственного теста можно судить о том, было ли бетонирование выполнено правильно или нет. Прочность бетона на сжатие для общего строительства варьируется от 15 МПа 2200 фунтов на квадратный дюйм до 30 МПа 4400 фунтов на квадратный дюйм и выше в коммерческих и промышленная структура ..

    ПРОЧНОСТЬ БЕТОНА НА СЖАТИЕ — ЗАЩИТНЫЙ

    2018-11-12 & 0183; Прочность бетона на сжатие Расчетная прочность = Целевая средняя прочность = Характеристический запас прочности Целевая средняя прочность f ’ck = f ck 1.65 XS или f ck 2.33 Характеристическая прочность XS по сравнению с расчетной прочностью f ‘ck = средняя целевая прочность f ck = нормативная прочность на сжатие через 28 дней S = стандартное отклонение

    Прочность на сжатие бетона M25 через 7 дней и

    Прочность на сжатие бетона M25 через 7 дней дней и 28 дней отверждения Привет, ребята, в этой статье мы знаем о прочности на сжатие бетона M25 после 7 дней, 14 дней и 28 дней отверждения. Как мы знаем, прочность на сжатие измеряется на машине для испытания прочности на сжатие CTM.Прочность на сжатие определяется как отношение нагрузки, прикладываемой машиной CTM к бетонному кубу или цилиндру, к площади поверхности

    Скорость увеличения прочности бетона Прочность бетона

    Свойства

    Прочность на сжатие цемента через 7 дней и 28 дней —

    Определяется прочность цемента на сжатие кубическим испытанием на кубиках цементного раствора, уплотненных с помощью стандартной виброгидравлической машины. Стандартная вибрация для изготовления куба составляет 12000 — 400 колебаний в минуту, и он будет вибрировать в течение 2 минут.Стандартный песок в соответствии с IS: 650 известен как внутренний песок, полученный из Тамил Наду, используемый для приготовления цементного раствора.

    Прочность на сжатие высокопрочного бетона

    Прочность на сжатие обычного бетона через 28 дней может быть представлена ​​уравнением Боломея, где и — масса цемента и воды, а — объем воздуха. — коэффициент, зависящий от характеристик агрегатов. — прочность на сжатие стандартного раствора через 28 дней.

    Прочность бетона на сжатие через несколько дней.

    Прочность бетона на сжатие.14 января 2018 г. и 183; Бетонный куб должен быть полностью вибрирующим и полностью затвердевающим. Тогда мы сможем узнать прочность бетона на сжатие в компрессорной машине. Ниже приведен список прочности на сжатие бетона. Марка бетона Минимальная прочность на сжатие бетона Н / мм2 через 7 дней

    Прогнозирование прочность на сжатие бетона с начала

    2011-12-20 & 0183; 2. БЕТОН И ПРОЧНОСТЬ НА СЖАТИЕ Бетон — это инертная масса, которая растет из цементирующей среды. Бетон состоит из двух основных компонентов: цементного теста и инертной массы.Для образования цементной среды цемент смешивается с водой. Крупные и мелкие агрегаты входят в состав инертной массы. Нормально

    Прочность бетона на сжатие — CivilWeb

    Прочность бетона на сжатие через 7 и 28 дней. Бетон продолжает гидратироваться и набирать прочность в течение многих лет после заливки. Бетон приобретает прочность благодаря химическому составу гидратации цемента. По сути, цемент продолжает гидратировать, пока есть доступная влага, которую он может просто забрать из воздуха в большинстве случаев.

    Процедура испытания прочности на сжатие

    2014-4-3 & 0183; Прочность бетона на сжатие: Из многих испытаний, применяемых к бетону, это наиболее важный, который дает представление обо всех характеристиках бетона. По этому единственному испытанию можно судить о том, было ли бетонирование выполнено правильно или нет. Для испытания кубиков используются два типа образцов: кубики 15 см х 15 см х 15 см или 10 см х 10 см х 10 см в зависимости от размера агрегата.

    Насколько прочен бетон через 7 дней? — Quora

    Прочность бетона через 7 дней составляет всего 60–65% от расчетной прочности в зависимости от внешних условий.Бетон со временем набирает прочность после заливки. Скорость увеличения прочности бетона на сжатие выше в течение первых 28 дней заливки.

    Испытание бетона на сжатие — Подробное руководство

    2020-9-15 & 0183; В противном случае прочность бетона на сжатие определяется как максимальное напряжение раздавливания, которому подвергается бетон. Цель этого испытания Предположим, что плита на нашем объекте предназначена для заливки бетона марки M25, но мы не можем определить ее прочность в полутвердом состоянии.

    Прочность бетона на сжатие после раннего нагружения

    2015-5-25 & 0183; Результаты этого исследования показывают, что 28-дневная прочность кубиков мокрого вулканизированного бетона увеличилась в среднем на 6%, когда образцы были нагружены до 90% от их предельной прочности через 13 или 7 дней после заливки.Образцы бетона при тех же условиях, нагруженных выше точки максимального напряжения в раннем возрасте, показали снижение прочности

    Изменение прочности бетона на сжатие во времени

    Изменение прочности бетона во времени

    Прочность на сжатие бетона и бетонных кубов

    Очень простыми словами на сжатие Прочность рассчитывается путем деления разрушающей нагрузки на площадь приложения нагрузки, как правило, через 28 дней отверждения. Прочность бетона регулируется дозированием крупнозернистых и мелких заполнителей цемента, воды и различных добавок.Отношение воды к цементу является главным фактором для прогноза

    на 3 дня — Прочность бетона на сжатие

    2011-9-1 & 0183; Для бетона с нормальным весом с использованием обычного портландцемента типа I снова обозначение в США, поскольку я не знаю, где вы находитесь, и никаких добавок, которые могли бы изменить свойства затвердевшего бетона, вы можете рассчитывать получить от 40 до 50 процентов от 28 -дневная прочность за 3 дня и примерно от 65 до 70 процентов от 28-дневной прочности

    Какую прочность дает бетон за 7 14 и 21

    Это возраст, в котором испытывается большинство образцов бетона для испытаний на сжатие.1. Эти возрасты кратны 7. Они составляют 1, 2 и 4 недели соответственно. 2. Через 28 дней бетон достигнет максимальной прочности, которой он будет достигать i

    Прочность на сжатие бетонного куба. Испытание

    2018-5-18 & 0183; Бетон, являющийся основным расходным материалом после воды, делает его весьма любознательным по своей природе. Прочность бетона в основном зависит от заполнителей, поскольку цемент и песок способствуют связыванию и удобоукладываемости наряду с текучестью по отношению к бетону.. Это подробная статья о прочности бетона на сжатие.

Прочность 28 суток — INFINITY ДЛЯ ЦЕМЕНТНОГО ОБОРУДОВАНИЯ

Бетонные конструкции спроектированы исходя из 28-дневной прочности цилиндров на раздавливание. 28-дневная прочность цилиндра фактически представляет собой характеристическую прочность бетона. Испытание бетонных цилиндров в возрасте 28 дней является обязательным в соответствии почти со всеми требованиями строительных норм.

Бетон обладает такими преимуществами, как прочность, доступность, долговечность, гибкость и экономичность.В случае проектирования бетонной конструкции важным элементом является прочность бетона на сжатие. Прочность бетона на сжатие в течение 28 дней обычно считается расчетной. Для обеспечения такой прочности необходимо подождать значительное время, т.е. 28 дней. Он становится обязательным, потому что он также представляет собой процесс контроля качества при смешивании, укладке, уплотнении, отверждении бетона и т. Д. Проектирование бетонной смеси — это процесс, который использует рекомендации кодов и сочетается с опытом соответствующего инженера.Из-за некоторой ошибки в конструкции смеси или ее приготовлении на месте результаты испытаний могут не соответствовать расчетной прочности, тогда повторение всего процесса становится обязательным, что может быть дорогостоящим и трудоемким.

какое время отверждения бетона?

сколько времени требуется для высыхания бетона

сколько времени требуется для высыхания бетона?

Время схватывания бетона?

Время высыхания бетона?

каков процент увеличения прочности бетона от 7 до 28 дней?

насколько увеличивается прочность бетона через 28 дней

бетон не перестает твердеть.но по прошествии 28 дней процесс упрочнения будет очень медленным, и им будут пренебрегать менее 1%

таблица времени выдержки бетона

каковы основные испытания бетона на прочность?

  • Испытание на оседание перед отправкой с бетонного завода и по прибытии на место.
  • Испытание на прочность при сжатии.
  • Тест на водопроницаемость.
  • Экспресс-тест на проникновение хлорид-иона.
  • Тест на водопоглощение.
  • Первоначальное испытание на абсорбцию поверхности.

www.iti.northwestern.edu/cement/monograph/Monograph5_1.html

какова минимальная прочность бетона на сжатие через 28 дней?

Марка бетона или характеристическая прочность куба fck характеризуется его кубической прочностью на сжатие. Таким образом, куб для марки M25 должен показывать прочность 25 н / мм2. Но когда мы обсуждаем критерий приемки, стандартное отклонение для M25 составляет 5 согласно IS 456-2000.

Итак, критерий приемки — fck +0.2 или 658 кН. В идеале, чтобы быть в пределах разрешения IS

, какой процент максимальной прочности бетона через 28 дней?

99%

Калькулятор прочности бетона?

, пожалуйста, посетите этот сайт

https://www.calculator.net/concrete-calculator.html

что мне делать, если сборная колонна, которая уже установлена, затем 28 дней кубического теста не удалась?


Любые действия по исправлению?

Если 28-дневные испытания не дадут указанной прочности на сжатие, у вас есть несколько вариантов, которые следует рассмотреть.

Первый вариант — взять образцы керна в соответствии с разделом 1905.6.6 IBC и разделом 5.6.5 ACI 318, который был разработан для исследования результатов испытаний на низкую прочность. После анализа образцов керна и выполнения действий, описанных в ACI 5.6.3.3, если вы находитесь в пределах 500 фунтов на кв. Дюйм, но ниже требуемого f’c, вам необходимо предпринять шаги для увеличения прочности бетона. Если вы упадете ниже предела в 500 фунтов на квадратный дюйм, вы должны удовлетворить пропускную способность конструкции. Шаги четко изложены в ACI 5.6.5.

Имейте в виду, что важно выполнять шаги для ACI. Хотя снятие, замена и ремонт дефектной секции кажется самым безопасным путем, процедуры ACI все же следует выполнять в первую очередь. Затем, если будет установлено, что бетон действительно недостаточен и существует проблема с безопасностью жизни, вы полностью задокументируете свои действия — выявление и устранение проблемы.

Следующий вариант — связаться с ответственным инженером-конструктором для получения дальнейших инструкций. Если дополнительные 56-дневные цилиндры были отлиты, испытаны и достигли требуемой проектной прочности, то ответственный инженер-строитель должен принять или нет 56-дневные испытания как показатель того, что бетон достиг своей проектной прочности.

Другие варианты, которые следует учитывать:
-Взятие дополнительных образцов керна для анализа
-Проведение нагрузочного теста
-Предоставление альтернативных вариантов ремонта и усиления конструкции
-Отклонить деталь и конструкцию полностью »

какие факторы (например, температура или влажность) повлиять на скорость отверждения?

На скорость затвердевания бетона влияет множество факторов, включая, помимо прочего, следующие:

— Температура окружающей среды во время смешивания
— Температура окружающей среды во время заливки
— Температура окружающей среды во время процесса твердения
— Температура воды в смеси
— Отношение воды к вяжущим материалам (Вт / см)
— Пропорции смеси
— Влагосодержание заполнителей
— Любые химические или минеральные добавки, используемые в бетонной смеси, включая продукты, специально разработанные для увеличения или уменьшить скорость отверждения бетона.
— Любые составы, нанесенные на бетон после заливки или зачистки.
— Выбранный метод (ы), используемый для отверждения, который может быть ускорен за счет использования приложенного тепла или пара; влажное отверждение; использование брезента, полиэтиленовой пленки или мешковины для удержания влаги; и т.п.
— Погода на протяжении всего процесса отверждения, включая ветер, солнце, дождь или снег
— Размеры продукта (более толстые секции или массивный бетон отвердят дольше, чем тонкие секции)
— Тип цемента, используемый в бетонной смеси

Прочность на сжатие бетона M25 через 7 и 28 дней

Прочность на сжатие бетона M25 после 7 дней и 28 дней отверждения , привет ребята, в этой статье мы знаем о прочности на сжатие бетона M25 после 7 дней, 14 дней и 28 дней отверждения.

Как известно, прочность на сжатие измеряется на машине для испытания на сжатие (CTM) . Прочность на сжатие определяется как отношение нагрузки, прикладываемой машиной CTM к бетонному кубу или цилиндру, к площади поверхности бетонного куба. Прочность на сжатие представлена ​​как F, равным F = P / A , где F = прочность на сжатие, P = общая нагрузка, прикладываемая машиной CTM, и A = площадь поперечного сечения.

Прочность на сжатие бетона M25 через 7 дней и 28 дней

Обычно прочность бетона измеряется в фунтах на квадратный дюйм (фунт-сила на квадратный дюйм в США) и МПа (мегапаскаль) в Индии и других странах.МПа, иначе говоря, выражается в Н / мм2. И 1 МПа = 145,038 фунтов на квадратный дюйм. В этом разделе мы должны найти прочность на сжатие бетона M25, если он достигает прочности 25 МПа или 3626 фунтов на квадратный дюйм при испытании куба, купите машину CTM, кроме отклоненной, поэтому прочность на сжатие бетона M25 составляет 25 МПа или 3626 фунтов на квадратный дюйм.

Общая прочность бетонной конструкции, такая как сопротивление изгибу и истиранию, напрямую зависит от прочности бетона на сжатие.

Прочность на сжатие бетона марки М25 через 7, 14 и 28 суток

Эта прочность измеряется тестированием CTM стандартных кубиков на 15 см больше и 10 см меньше в Индии и стандартных образцов цилиндров диаметром 15 см и высотой 30 см в США и некоторых других странах.

Прочность бетона М25: — прочность бетона М25 через 7 суток составляет 16,25 Н / мм2, а через 28 суток — 25 Н / мм2.

Прочность бетона на сжатие через 7 и 28 дней составляет 16,25 Н / мм2 и 25 Н / мм2 соответственно.

ТАКЖЕ ПРОЧИТАЙТЕ: ПРОЧНОСТЬ ЦЕМЕНТА НА СЖАТИЕ

Марка бетона M25 обозначается буквой M или C (Европа), обозначающей смесь, и числовой цифрой обозначается прочность на сжатие. Таким образом, прочность на сжатие бетона M25 составляет 25 Н / мм2 (25 МПа) или 3626 фунтов на квадратный дюйм.

Прочность на сжатие бетона М25 через 7 суток

Изготовление не менее 3 бетонных кубов размером 150 мм × 150 мм × 150 мм в форме из цементного песка и соотношения заполнителя 1: 1: 2, для выравнивания поверхности формы использовать утрамбовочный стержень, выдерживают в течение 24 часов после смешивания с водой. бетон, через 24 часа выдерживают в воде для отверждения 7 дней. И вынули непосредственно перед испытанием 7 дней, чтобы определить прочность на сжатие бетона M25 после 7 дней отверждения

Расчет: Теперь испытание бетонного куба на машине CTM, предполагая, что к бетонному кубу приложена нагрузка 366 кН до его обрушения.Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.

ТАКЖЕ ПРОЧИТАЙТЕ: ПРОЧНОСТЬ НА СЖАТИЕ КИРПИЧА

Сжимающая нагрузка = 366 кН, площадь поперечного сечения A = 150 мм × 150 мм = 22500 мм2 или 225 см2, тогда прочность на сжатие F = P / A = 366 кН / 22500 мм2 = 16,25 Н / мм2.

Ответ . 16,25 Н / мм2 (МПа) или 2357 Psi — прочность на сжатие бетона M25 через 7 дней

Прочность на сжатие бетона М25 через 14 суток

Изготовление по крайней мере 3 бетонных кубов размером 150 мм × 150 мм × 150 мм в форме из цементного песка и соотношения заполнителя 1: 1: 2, для выравнивания поверхности формы использовать утрамбовочный стержень, выдерживают в течение 24 часов после смешивания с водой. бетон, через 24 часа выдерживают в воде для твердения 14 дней.И вынули непосредственно перед испытанием за 14 дней, чтобы определить прочность на сжатие бетона M25 после 14 дней отверждения

● Расчет: Теперь испытание бетонного куба на машине CTM, предполагая, что к бетонному кубу приложена нагрузка 506 кН до его обрушения. Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.

Сжимающая нагрузка = 506 кН, площадь поперечного сечения A = 150 мм × 150 мм = 22500 мм2 или 225 см2, тогда прочность на сжатие F = P / A = 506 кН / 22500 мм2 = 22,5 Н / мм2.

Ответ . 22,5 Н / мм2 (МПа) или 3263 Psi — прочность на сжатие бетона M25 через 14 дней

Прочность на сжатие бетона М25 через 28 суток

Изготовление не менее 3 бетонных кубов размером 150 мм × 150 мм × 150 мм в форме из цементного песка и соотношения заполнителя 1: 1: 2, для выравнивания поверхности формы использовать утрамбовочный стержень, выдерживают в течение 24 часов после смешивания с водой. бетон, через 24 часа выдерживают в воде для отверждения 28 дней. И вынули непосредственно перед испытанием 28 дней, чтобы узнать прочность на сжатие бетона M25 через 28 дней.

● Расчет: Теперь испытание бетонного куба на машине CTM, предполагая, что к бетонному кубу приложена нагрузка 563 кН до его разрушения. Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.

Сжимающая нагрузка = 563 кН, площадь поперечного сечения A = 150 мм × 150 мм = 22500 мм2 или 225 см2, тогда прочность на сжатие F = P / A = 563 кН / 22500 мм2 = 25 Н / мм2.

Прочность на сжатие бетона M25 через 28 дней: -25 Н / мм2 (МПа) или 3626 Psi — прочность на сжатие бетона M25 через 28 дней

Прочность бетона M25 с течением времени: Взаимосвязь между прочностью бетона M25 во времени не является линейной, это означает, что увеличение прочности не увеличивается в зависимости от приложенной нагрузки с увеличением времени, она будет увеличиваться нелинейно.

Бетон представляет собой макрокомпонент с песком, цементом и крупнозернистым заполнителем в качестве микрокомпонентов (соотношение смеси) и со временем приобретает 100% прочность в затвердевшем состоянии.

Взгляните на приведенную ниже таблицу. M25 Прочность бетона сверхурочно

Дней после отливки Прирост прочности
День 1 ____ 16% __ 4 МПа
День 3 ____ 40% __ 10 МПа
День 7 ____ 65% __ 16,25 МПа
День 14 ___ 90% __ 22,5 МПа
День 28 ____ 99% __ 25 МПа

Как вы можете видеть, бетон m25 быстро набирает прочность до 7-го и 14-го дней до 90% после отверждения, а затем постепенно увеличивается.Таким образом, мы не можем предсказать прочность, пока бетон не придет в это стабильное состояние.

Как только он достигнет определенной силы через 7 дней, тогда мы знаем (согласно таблице) только 9% силы увеличится. Поэтому на объектах мы обычно тестируем бетон с этим интервалом. Если бетон выйдет из строя через 14 дней, мы откажемся от замеса.

Испытание бетонного куба M25 на сжатие

Испытание бетонного куба Аппарат для процедуры и результата, выполняемый в следующие этапы:

● 1) Код IS: — Испытание бетонного куба выполнено в соответствии с кодом IS 516

● 2) Требуемое оборудование и аппаратура:

a) Подбивочный стержень: — Подбивочный стержень используется для выравнивания поверхности бетонной кубической формы, его диаметр составляет 16 мм, а длина — 60 см.

b) Машина CTM: Машина CTM необходима для приложения нагрузки к бетонной форме куба, она должна прикладывать минимальную нагрузку 14 Н / мм2 / минуту.

c) ТРИ типа формы: для испытания используется форма для бетонных кубов двух размеров, первая — больший размер 150 мм или 15 см, конкретные размеры (l × b × h) — 150 мм × 150 мм × 150 мм с размером заполнителя составляет 38 мм, а размер второй формы для бетонных кубов меньшего размера составляет 100 мм × 100 мм × 100 мм с размером заполнителя 19 мм, используемым в Индии.

В США и других странах также используется цилиндрическая форма для бетона диаметром 150 мм, высотой 300 мм и размером заполнителя 38 мм.

d) Другой аппарат — это лист G.I (для изготовления бетона), вибрирующая игла, лоток и другие инструменты.

● 3) Факторы окружающей среды: — для стандартного расчета прочности бетона на сжатие факторы окружающей среды должны быть оптимальными, минимальное количество испытательных образцов должно быть 3, температура должна быть 27 ± 2 ℃ и влажность 90%

Бетонный куб Методика испытаний

a) Измерьте сухую пропорцию ингредиентов (цемент, песок и крупнозернистый заполнитель) в соотношении 1: 1: 2, как для бетона M25.Ингредиентов должно хватить на отливку тестовых кубиков.

б) сначала смешать цемент и песок до получения однородного цвета, затем добавить в него заполнитель, тщательно перемешать сухие ингредиенты для получения однородного цвета смеси и добавить расчетное количество воды к сухой пропорции (водоцементное соотношение) и хорошо перемешать. для получения однородной текстуры

c) Заполните бетонную форму до формы с помощью вибратора и используемого утрамбовывающего стержня для тщательного уплотнения и выравнивания поверхности бетонной кубической формы. Обработайте верхнюю часть бетона шпателем и хорошо постучите до тех пор, пока цементный раствор не достигнет верха. кубики.

г) Через некоторое время форму следует накрыть красным мешком и поставить в покое на 24 часа при температуре 27 ± 2 ℃. Через 24 часа выньте образец из формы.

e) Держите образец погруженным в пресную воду при температуре 27 ± 2 ℃ для отверждения, образец следует хранить в течение 7, 14 или 28 дней. Каждые 7 дней воду следует обновлять. Образец следует вынуть из воды за 30 минут до испытания, и образец должен быть в сухом состоянии перед проведением испытания.

● 5) Тестирование бетонного куба: Теперь поместите бетонные кубы в испытательную машину (CTM) по центру. Кубики должны быть правильно размещены на плите машины (проверьте отметки кружков на машине). Тщательно совместите образец со сферической пластиной. Нагрузка будет приложена к образцу в осевом направлении.

Теперь медленно приложите нагрузку со скоростью 14 Н / мм2 / мин, пока куб не разрушится.
Максимальная нагрузка, при которой образец разрушается, принимается за сжимающую нагрузку.

● 6) Расчет:

Прочность бетона на сжатие = максимальная сжимающая нагрузка / площадь поперечного сечения, площадь поперечного сечения = 150 мм X 150 мм = 22500 мм2 или 225 см2, предположим, что нагрузка сжатия составляет 563 кН, тогда прочность на сжатие бетона M25 через 28 дней = (563 Н / 22500 мм2 = 25 Н / мм2 (20 МПа) или 3626 фунтов на квадратный дюйм.

◆ Вы можете подписаться на меня на Facebook и подписаться на наш канал Youtube

Вам также следует посетить: —

1) что такое бетон, его виды и свойства

2) Расчет количества бетона для лестницы и его формула

Day Прочность на сжатие — обзор

Прочность на сжатие часто используется в качестве основного критерия для выбора типа раствора, поскольку ее относительно легко измерить и она также может быть связана с другими свойствами, такими как прочность на разрыв и водопоглощение.Согласно EN-998-1 (2010) штукатурные растворы можно разделить на четыре категории со значениями прочности на сжатие от 0,4 до 7,5 МПа. Строительные растворы для кладки, согласно EN-998-2 (2016), могут принадлежать к одной из семи категорий прочности в диапазоне от 1 до 20 МПа.

(a) Уровень замещения переработанного заполнителя

На рис. 6.7 представлена ​​28-дневная прочность на сжатие штукатурных растворов с увеличивающимся содержанием мелкодисперсного RA. В отличие от того, что обычно наблюдается в бетоне, изготовленном из RA (Silva et al., 2014a), результаты показывают, что прочность на сжатие мелкодисперсного раствора RA может быть аналогична или выше, чем у контрольных растворов, по мере увеличения содержания мелкодисперсного раствора RA.

Рисунок 6.7. Прочность на сжатие штукатурных растворов с увеличением содержания мелкозернистого вторсырья ( RA ).

Такой прирост силы можно объяснить сочетанием различных факторов. Более высокая площадь поверхности мелкого RA по сравнению с естественным песком обеспечивает лучший механизм блокировки между RA и цементной матрицей (Neno et al., 2014; Топчу и Билир, 2010; Сильва и др., 2016). Кроме того, присутствие алюмосиликатного материала, такого как RMA на керамической основе (Cheng, 2016), вероятно, будет проявлять некоторую пуццолановость и химически реагировать с цементом, что приводит к образованию новых продуктов гидратации (Correia et al., 2006; Silva et al., 2008, 2009; Vieira et al., 2016). Негидратированные частицы цемента, присутствующие в мелкодисперсном RCA, также могут способствовать повышению прочности строительных растворов (Braga et al., 2012, 2014).

Сравнение значений на Рисунке 6.7 с классами прочности, указанными в EN-998-1 (2010), ясно, что в большинстве случаев растворы, содержащие мелкодисперсный RA, относятся к классам CS III и CS IV. Кроме того, в некоторых случаях прочность на сжатие мелкозернистого раствора RA превышает требуемые значения прочности, что указывает на потенциальные возможности для снижения содержания цемента и производства более экономичных растворов (Munoz-Ruiperez et al., 2016), как обсуждается ниже.

На рис. 6.8 представлена ​​28-дневная прочность кладочных растворов на сжатие с увеличением содержания мелкодисперсного RA.Подобно наблюдению, сделанному при штукатурных растворах, прочность на сжатие кладочных растворов, изготовленных с мелким RA, аналогична или выше, чем у контрольных растворов (Leite et al., 2009; Cuenca-Moyano et al., 2014; Jiménez et al. ., 2013; Evangelista et al., 2017; Ledesma et al., 2016; Gayarre et al., 2017; Martinez et al., 2016a; Wang et al., 2016; Yacine et al., 2016). Однако в некоторых случаях увеличение содержания мелкодисперсного RA, по-видимому, приводит к потере прочности на сжатие в строительных растворах, разработанных с более высокой целевой прочностью (Corinaldesi, 2012; Topçu and Bilir, 2010).По мере улучшения механических характеристик цементной матрицы общие характеристики продукта начинают зависеть от его самых слабых участков, и, таким образом, по мере увеличения уровня замены увеличивается вероятность отказа из-за нескольких относительно более слабых RA.

Рисунок 6.8. Прочность на сжатие кладочных растворов с увеличением содержания мелкодисперсного вторичного заполнителя ( RA ) ( M1, M2.5, M5, M10, M15, M20 — классы прочности на сжатие согласно EN-998-2, 2016).

Это видно на рисунке 6.8 видно, что большинство растворов, содержащих мелкодисперсный RA, относятся к классам прочности на сжатие, предложенным в EN-998-2 (2016), что предполагает их применимость на практике. Следует отметить, что, хотя мелкий RA может использоваться в растворах с прочностью выше 20 МПа, растворы, относящиеся к такому классу прочности (т.е. Md), необычны и имеют смысл только при проектировании структурной кладки в соответствии с Еврокодом 6. (EN-1996-1-1, 2005).

Помимо штукатурных и кладочных растворов, также было предпринято использование RA в производстве строительных растворов без определенного конечного использования (Poon and Kou, 2010; Bektas et al., 2009; Торкиттикуль, Чайпанич, 2010; Fan et al., 2015; Ли, 2009; Мардани-Агабаглу и др., 2015; Higashiyama et al., 2012; Топчу и Билир, 2010; Restuccia et al., 2016; Li et al., 2016b). Полученные данные свидетельствуют о том, что прочность строительных смесей на сжатие снижается с увеличением содержания мелкодисперсного RA (Silva et al., 2016), что было более выражено при использовании неуказанного RA с заводов по переработке CDW (Ferro et al., 2015). Тем не менее, были случаи, когда строительные растворы производились без компенсации воды, что уменьшало эффективное соотношение воды / цемента (Colangelo and Cioffi, 2017; Torkittikul and Chaipanich, 2010), или которые были изготовлены с алюмосиликатным RMA, вызывающим пуццолановые реакции ( Higashiyama et al., 2012), что приводит к более высокой прочности на сжатие, чем у контрольного раствора.

Было высказано предположение, что потерю прочности строительных растворов из-за использования тонкодисперсного RCA можно уменьшить путем обработки материала ускоренной карбонизацией, которая вызывает осаждение кальцита и снижает пористость частиц. Это может привести к улучшению до 10% по сравнению с необработанной мелкой ПКА (Zhang et al., 2015a, b).

(c) Способность к восстановлению цемента

Как некоторые мелкие типы RA, такие как RMA на основе алюмосиликатной керамики (Amorim et al., 2003; Liu et al., 2014), могут проявлять пуццолановость, было показано, что использование этих материалов в качестве замены мелкозернистой NA улучшает развитие прочности строительных растворов, хотя и с несколько более низкой начальной прочностью (Torres-Gomez et al., 2016; Ledesma et al., 2016; Higashiyama et al., 2012; Corinaldesi et al., 2002, 2007; Moriconi et al., 2003). Однако мелкий RA не подходит для использования в качестве замены цемента, так как это может привести к значительной потере прочности на сжатие (Chendes et al., 2016; Oksri-Nelfia et al., 2016).

На рисунке 6.10 показана 28-дневная прочность на сжатие строительных растворов с соотношением заполнитель / цемент 1: 4, 1: 5 и 1: 6, при этом мелкодисперсный NA был частично заменен очень мелкими частицами с максимальным размером 150. мкм, сделанный из RCA (Braga et al., 2012), RMA из измельченного керамического кирпича (Silva et al., 2009) и RMA из измельченной сантехники (Farinha et al., 2015b). Использование этих RA в качестве частичной замены песка снизило потребность раствора в воде, что впоследствии привело к снижению эффективного содержания воды для поддержания постоянной консистенции.В результате прочность раствора на сжатие увеличилась. Этот прирост прочности был больше в случае мелкозернистого RMA, поскольку он вступает в реакцию с продуктами гидратации цемента (Silva et al., 2009; Farinha et al., 2015b). Из рисунка 6.10 очевидно, что включение мелкодисперсного RA может позволить снизить содержание цемента примерно на 33% (т. Е. Соотношение заполнитель / цемент с 1: 4 до 1: 6) без ухудшения прочности раствора на сжатие ( Braga et al., 2012; Silva et al., 2009; Farinha et al., 2015b).

Рисунок 6.10. Прочность на сжатие растворов с различным соотношением заполнителя и цемента. NAM , строительный раствор на натуральном заполнителе; RCA , заполнитель из переработанного бетона; RMA , переработанный каменный заполнитель.

Поведение при повышении прочности на сжатие и прогнозирование цементно-стабилизированного щебня при низкотемпературном отверждении

Для материалов на основе цемента температура отверждения определяет скорость прироста прочности и значение прочности на сжатие. В этой статье используется смесь щебня, стабилизированная 5% цемента.Три сценария отверждения с контролируемой температурой в помещении и один сценарий естественного отверждения на открытом воздухе разработаны и реализованы для изучения сценария развития прочности закона прочности на сжатие, и это стандартное отверждение при температуре (20 ° C), отверждение при постоянной низкой температуре (10 ° C), дневное взаимодействие отверждение при температуре (от 6 ° C до 16 ° C) и одно отверждение при естественной температуре на открытом воздухе (при температуре воздуха от 4 ° C до 20 ° C). Наконец, на основе метода зрелости модель оценки зрелости и силы получается путем использования и анализа данных, собранных в ходе внутренних тестов.Модель доказана с высокой точностью на основании подтвержденных результатов, полученных на основе данных наружных испытаний. Это исследование обеспечивает техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что способствует процессу строительства и контролю качества.

1. Введение

Макадам, стабилизированный цементом, представляет собой низкодозированную смесь, стабилизированную цементным основанием, и его дозировка цемента составляет около 5%; он обычно используется в качестве основного слоя дорожного покрытия в Китае [1].Хорошо известно, зависит ли прочность на сжатие материалов на основе цемента в значительной степени от процесса отверждения, в котором особенно важны как температура, так и время отверждения [2, 3]. Для обычных лабораторных испытаний прочности на сжатие отверждение обычно проводят в условиях постоянной температуры 20 ° C во многих национальных спецификациях [4–6]. Но для проекта строительства дорожного покрытия фактическая температура отверждения на открытом воздухе зависит от погоды. Спецификация требует, чтобы при строительстве выдерживалась температура более 5 ° C [4].Однако в северных сезонных замороженных районах, таких как китайская провинция Хэйлунцзян, несмотря на то, что температура в апреле превышает 5 ° C, температура сильно меняется и очень нестабильна. Из-за большой разницы температур между днем ​​и ночью и того факта, что обычно не достигает 20 ° C во время отверждения, прочность на сжатие иногда не может соответствовать требованиям, что приводит к ослаблению керна. Поскольку сила не может быть подтверждена, нельзя разумно организовать следующий процесс [7].Исходя из этого особого температурного режима, существует острая необходимость в изучении законов увеличения прочности на сжатие при таких различных условиях низкотемпературного отверждения. В связи с этим в данной статье разработаны несколько экспериментов в помещении и на открытом воздухе для проведения такого исследования.

Было предпринято множество исследований для изучения влияния температуры отверждения на материалы на основе цемента, такие как грунт, стабилизированный портландцементом, легкий цементированный грунт, песок, угольная летучая зола и смеси извести [8–10].Что касается температуры отверждения, во многих исследованиях сообщалось о высокой температуре, и большинство результатов показали, что отверждение при высокой температуре может увеличить начальную прочность на сжатие [11, 12]. Прочность на сжатие и предел прочности на растяжение морских грунтов, стабилизированных цементом, которые использовались в качестве материалов для строительства дорог, были изучены при температурах отверждения от 40 ° C до 60 ° C в исследовательской работе Ванга [13]. Escalante-Garcia et al. [14] проверили прочность на сжатие гидратации при пяти температурах в диапазоне от 10 ° C до 60 ° C, и результаты показали, что высокая температура может улучшить начальную прочность на сжатие, но на самом деле может снизить прочность в долгосрочной перспективе.Wang et al. [15] провели испытания цемента на основе сульфоалюмината кальция при различных температурах отверждения (например, от 0 ° C до 80 ° C) с целью изучения влияния эволюции гидратации на прочность на сжатие. Результаты показали, что прочность на сжатие в раннем возрасте увеличивается с повышением температуры, но уменьшается в диапазоне температур от 40 ° C до 80 ° C, а прочность на сжатие в основном зависит от степени гидратации.

О низкотемпературном отверждении в литературе сообщалось о нескольких исследованиях.Прайс [16] показал, что прочность бетонной смеси при низкой температуре развивается значительно медленнее, чем при комнатной температуре. Husem et al. [17] проверили прочность на сжатие обычного и высококачественного бетона при стандартном отверждении (при 23 ± 2 ° C) и другом низкотемпературном отверждении (при 10, 5, 0 и –5 ° C, соответственно). Результаты показали, что прочность при 10 ° C и менее 10 ° C была ниже, чем при стандартном отверждении. Kim et al. [18] исследовали развитие прочности для историй отверждения при температуре 5 ° C, 20 ° C и 40 ° C, которые показали, что прочность бетона при низкой температуре изначально была меньше, чем при стандартной температуре, но была почти такой же со временем.Marzouk et al. [19] провели испытания при пяти температурах в диапазоне от -10 ° C до 20 ° C в течение 3 месяцев и обнаружили, что существует пропорциональная зависимость между прочностью на сжатие и температурой.

Кроме того, с точки зрения прогнозирования прочности, многие литературные источники показали, что теория зрелости подходит и лучше для прогнозирования прочности, чем некоторые другие методы [20, 21]. В 1951 году Саул и др. [22] впервые предложили концепцию «зрелости», которая определялась как произведение времени отверждения и температуры.В знаменитой функции зрелости «Медсестра-Сол» было указано, что при одинаковой зрелости и сила будет примерно такой же. Хорошо известно, что модель зрелости Медсестра-Сол постоянно совершенствовалась и изменялась позже, и для прогнозирования силы были приняты различные математические модели. Например, в модели Читамбира эквивалентный возраст был предложен в качестве индекса, который сочетал в себе возраст и температуру отверждения [23]. Существует линейная зависимость между двойной логарифмической прочностью и логарифмической зрелостью при различных температурах отверждения.Jeong et al. [24] откалибровали соотношение относительной прочности и зрелости по фактору влажности.

Обзор существующей литературы показал, что, хотя было проведено много исследований по другим материалам на основе цемента, меньше исследований было предпринято для 5% стабилизированного цементом щебня. Многие исследования были посвящены влиянию температуры отверждения на прочность. Однако большинство из них были ориентированы на высокие температуры, и, кроме того, почти все отверждение (будь то при высокой или низкой температуре) проводилось при переменной постоянной контролируемой температуре в лабораторной камере.Важно отметить, что при таком отверждении не учитывались чередующиеся изменения температуры в течение реальных дней и ночей (как в строительном проекте), и не проводились испытания в естественных условиях на открытом воздухе. Таким образом, цель данного исследования состоит в том, чтобы сосредоточить внимание на законе увеличения прочности 5% цементно-стабилизированной щебеночной смеси при низкой температуре, которая соответствует фактической температуре строительного проекта. Теория зрелости будет использоваться для прогнозирования прочности на сжатие.Будет выбрана соответствующая функция, и соответствующие параметры будут откалиброваны и получены путем использования и анализа экспериментальных данных. Результаты исследований обеспечат техническую поддержку строительства цементно-стабилизированного щебня в регионах с низкими температурами, что благоприятно сказывается на качестве строительства и управлении процессом.

2. Описательный анализ температур в районе Харбина

Город Харбин, провинция Хэйлунцзян, Китай, расположен на северной широте 44 ° 04′∼ 46 ° 40 ′, в основном равнине, относящейся к континентальному муссонному климату северной умеренной зоны. и температура быстро меняется весной и осенью.Годовое количество осадков достигает 400–600 мм, коэффициент влажности находится в пределах 0,25–1,25, а средний максимум вечной мерзлоты составляет 120–240 см.

Распределение температуры от 15 до 30 апреля с 2012 по 2014 год в Харбине показано на Рисунке 1. Тенденция высокой и низкой температуры в период строительства в основном схожа. Большинство высоких температур распределяются в диапазоне от 15 ° C до 20 ° C, а большинство низких температур находятся в диапазоне от 5 ° C до 10 ° C.Средняя высокая температура составляет 16 ° C, а средняя низкая температура — 6 ° C.


На рисунке 2 показаны данные о суточной температуре с 15 90 500-го до 30 -го апреля 2014 года в городе Харбин. Данные других лет следуют аналогичной схеме. Примерно с 2:00 до 4:00 температуры были самыми низкими, с 5:00 температура начала стабильно повышаться в течение 9 часов с высокой скоростью, в 12:00 — 14:00 температуры достигли максимума, а затем температуры начали непрерывно снижаться. в течение 15 часов по относительно низкой цене.


3. Планы тестирования в помещении и на открытом воздухе

В соответствии с законом изменения температуры были разработаны три варианта тестирования в помещении и один тест на открытом воздухе. Температуры трех испытаний в помещении были определены в соответствии с данными почти за 3 года в Харбине, как показано на Рисунке 3, а испытания на открытом воздухе начались в 17 апреля 2015 года.


Образцы цилиндров 150 мм Размер × 150 мм с 5% -ным содержанием щебня, стабилизированного цементом, были приготовлены в соответствии со схемой приготовления смеси из стабилизированного щебня.Ежедневно проводились испытания прочности на неограниченное сжатие при трех различных температурах отверждения.

Случай 1. (отверждение при стандартной температуре): стандартное отверждение в полном соответствии с требованиями спецификации операции, при которой температура составляла 20 ° C. Испытание на безусловное сжатие проводилось с 3 -го -го дня до 7-го -го дня. Прочность на сжатие 7 th день (т. Е. Стандартная прочность 7 th ) использовалась в качестве эталона для справки.

Случай 2. (отверждение при постоянной низкой температуре): температура отверждения составляла 10 ° C, которая была определена в соответствии со средними высокими и средними низкими температурами, взвешенными по времени в течение почти трех лет. Прочность на сжатие была проверена, и испытания не прекращались до тех пор, пока прочность на сжатие не превысила стандартную прочность 7 th .

Случай 3. (отверждение при дневной температуре взаимодействия): температуры были изменены в испытательной камере для имитации больших колебаний дневной и ночной температур.Как показано на рисунке 3, высокая температура поддерживалась на уровне 16 ° C с 7:00 до 15:00 в течение 8 часов, а низкая температура составляла 6 ° C с 16:00 до 6:00 в течение 14 часов. С 6:00 до 7:00 температура повысилась с 6 ° C до 16 ° C, а с 15:00 до 16:00 температура снизилась с 16 ° C до 6 ° C. Кроме того, прочность на сжатие будет продолжать проверяться после 7 th день до тех пор, пока прочность не превысит стандартную прочность 7 th .

Случай 4. (отверждение при естественной температуре наружного воздуха): согласно данным прогноза погоды, испытание началось 17 апреля 2015 года.Образцы помещали в яму для испытаний. Был смоделирован базовый слой дорожного покрытия и методы отверждения, а прочность на сжатие была испытана с 7 до дня до тех пор, пока прочность не превысила стандартную прочность 7 th . Конкретный рабочий процесс и метод измерения температуры обсуждаются ниже.
Сначала вырыли яму глубиной 15 см и выровняли дно. Затем образцы были аккуратно помещены в яму, и промежуток был заполнен мелким заполнителем и уплотнен.Верх был покрыт белым геотекстилем для сохранения влаги, а вода разбрызгивалась на поверхность каждый день в полдень. Фотографии размещения образцов показаны на рис. 4.
Для измерения температуры использовались три образца. На каждом образце четыре датчика температуры были встроены в верхнюю, среднюю внешнюю, нижнюю и центральную части тела, которые использовались для измерения температуры различных частей каждого образца. На рис. 5 схематически показано расположение датчиков температуры, среди которых центральный датчик был встроен в процесс производства образца, а три внешних датчика были позже закреплены на поверхности.Изображения, показывающие центральные датчики и средние внешние датчики, приведены на рисунке 6. Во время периода отверждения на открытом воздухе для измерения температуры использовался ручной термометр, и частота измерения составляла 1 показание / час.


4. Характеристики материала и методы испытаний
4.1. Характеристики цемента

В эксперименте использовался цемент Harbin TIANE 425 #. Технические показатели цемента приведены в таблице 1. Обратите внимание, что дозировка цемента составляет 5% от массы заполнителя.

901

Индекс Время начального схватывания Время окончательного схватывания Прочность в 3D (МПа)
Прочность на сжатие 143
1 ч 3 мин 2 ч 40 мин 21,3 4,8

4.2. Агрегат №

. Использованные заполнители были четырех размеров: 2 см – 3 см, 1 см – 2 см, 0,5 см – 1 см и 0 см – 0,5 см. Используемый гравий соответствовал требованиям «Технических условий для строительства дорожного покрытия (JTJ034-2000)». Марка композитного заполнителя показана в таблице 2.

9014 9014 905 Испытание на уплотнение

Для подготовки к изготовлению образца максимальная плотность в сухом состоянии и оптимальное содержание воды в смеси были определены путем испытаний на уплотнение. В соответствии с процедурами, описанными в «Методике испытаний стабилизированных материалов для неорганического связующего для дорожного строительства (JTG E51-2009)», оптимальное содержание воды составляло 6.8%, а максимальная плотность в сухом состоянии составляла 2,144 г / см 3 .

4.4. Испытание на неограниченное сжатие

Образцы были изготовлены и хранились в камере отверждения. В соответствии с требованиями температуры отверждения в трех случаях контролировались на уровне 20 ° C и 10 ° C и в диапазоне от 6 ° C до 16 ° C. Образцы были подвергнуты испытаниям на безусловное сжатие в соответствии с разработанным планом испытаний.

5. Результаты и обсуждение
5.1. Результаты испытаний в помещении

На рис. 7 показан закон увеличения прочности на сжатие для трехкомпонентных испытаний в помещении.Что касается стандартной температуры отверждения, равной 20 ° C (Случай 1), прочность увеличивается с увеличением времени отверждения, и скорость прироста изначально высока, но постепенно снижается до 7 -го дня. Прочность составляет 3,5 МПа, что соответствует требованиям стандарта. В условиях постоянной низкой температуры 10 ° C (Случай 2) прочность на сжатие непрерывно увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартных условиях отверждения. Прочность на сжатие — 2.2 МПа при 7 дне, что составляет лишь 62,9% от стандартной прочности 7 -го . Прочность на сжатие не достигает стандартной прочности 7 th до 14 th день. При дневной температуре взаимодействия от 6 ° C до 16 ° C (Случай 3) прочность на сжатие также увеличивается с увеличением времени отверждения, но скорость прироста меньше, чем при стандартном отверждении, а также немного меньше, чем что в условиях постоянного низкотемпературного отверждения.Прочность на сжатие составляет 2,1 МПа при 7 th день, что составляет только 60% от стандартной прочности 7 th при стандартных условиях отверждения. Прочность на сжатие не достигает стандартной прочности 7 th до 14 th день.


5.2. Результаты испытаний на открытом воздухе
5.2.1. Закон переноса температуры образцов в естественной окружающей среде на открытом воздухе

На рисунке 8 показана кривая дневной температуры в каждом положении образцов 20 апреля 2015 г.Видно, что изменение температуры в образцах было аналогично изменению температуры воздуха, а диапазон колебаний в верхней части был больше, чем в средней и нижней частях. Разница между центральной и средней внешней стороной была небольшой, что указывало на небольшой перенос температуры в горизонтальном направлении. Закон переноса температуры образцов в естественной среде на открытом воздухе представлен следующим образом: (1) С 6 часов утра температура начала повышаться, и разница температур между верхней, средней и нижней частями также постепенно увеличивалась.(2) В 11:00 — 14:00 разница температур между верхней и нижней частями достигла максимума 8 ° C, в то время как разница между верхней и средней температурой составляла около 6 ° C, а средняя и нижняя разница температур составляла около 2 ° C. С. Это ясно указывало на то, что температура демонстрировала нелинейную картину в направлении глубины. Другими словами, тепло, полученное поверхностью, было самым значительным; затем тепло заметно уменьшилось, когда оно перешло в середину, и почти не существовало до дна.(3) В 13 часов дня верхние температуры достигли максимума, а в 14 часов средняя и нижняя температуры достигли максимума днем. После этого температура всех частей постепенно снижалась, при этом температура верхней части падала с максимальной скоростью, а средняя и нижняя температуры медленно снижались. (4) С 20 часов вечера до почти 5 часов утра или около того температуры в каждой позиции были в основном то же самое, в котором разница температур между верхней, средней и нижней частями находится в пределах 2 ° C.


Данные «Температура × Время» использовались в качестве индекса для анализа статуса отверждения в каждой позиции образцов. Кумулятивная сумма «Температура × Время» для каждого положения образцов в естественной окружающей среде была рассчитана для 7 -го дня и показана в Таблице 3. «Температура × Время» для 7 -го дня стандартного отверждения составляла рассчитано как 3360 ° C · ч.


Размер экрана (мм) 26,5 19 9,5 4,75 2,36.075

Композитная марка 97,7 77,0 48,0 28,6 21,0 10,5 2,2
901 45

Дни отверждения на месте (г) Верхний Средний Нижний Центральный


1690
8 2360 1987 1641 1946
9 2660 2247 1853 9013 9013 9013 9013 901 2462
11 3265 2779 2280 2719
12 3569 3045 24143

3045 2720 ​​ 3246

Как видно из Таблицы 3, когда отверждение продолжалось до 12 -го дня, значение «Температура × Время» в верхнем положении достигло 3569 ° C · ч, что превысило стандартное отверждение на 7 th день 3360 ° C · час.Однако она составляла всего 2498 ° C · ч в нижнем положении и 2979 ° C · ч в центральном положении. Основываясь на теории зрелости, можно считать, что прочность на сжатие в верхнем положении достигла стандартной прочности 7 th , в то время как в среднем и нижнем положениях не достигла стандартной прочности 7 th . Это также может быть хорошим объяснением того, почему на строительной площадке иногда может произойти сбой керна, когда только верхняя часть является твердой, а нижняя часть довольно рыхлая, как показано на Рисунке 9.


5.2.2. Закон увеличения прочности при отверждении при естественной температуре на открытом воздухе

На рисунке 10 показан закон прироста прочности при отверждении при естественной температуре на открытом воздухе. Прочность на сжатие увеличивается с увеличением количества дней выдержки. Прочность на 7-й день составляла 2,2 МПа, что составляло только 62,9% от стандартного отверждения, и достигала 7 стандартной прочности, когда количество дней достигало 13.


6. Сравнение закона увеличения прочности и установление зрелости-прочности Модель
6.1. Сравнение закона увеличения прочности при четырех условиях отверждения

На рисунке 11 представлены сравнения кривых увеличения прочности на сжатие при различных условиях отверждения. Можно сделать следующие выводы: (1) Во всех четырех случаях прочность на сжатие возрастала с увеличением времени отверждения. Прирост скорости отверждения при низкой температуре был ниже, чем при отверждении при стандартной температуре отверждения. Коэффициенты усиления можно отсортировать в порядке убывания (от высокого к низкому): отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре, в котором разница между двумя последними была незначительной.(2) Кривые увеличения прочности для четырех случаев соответствовали логарифмической кривой с видом функции. После калибровки модели было обнаружено, что средний коэффициент усиления для стандартной температуры составлял a = 1,0152, для постоянной низкой температуры 10 ° C он составлял a = 1,4635, для дневной интерактивной температуры он составлял a. = 1,5106, а для естественной температуры наружного воздуха средний коэффициент усиления составил a = 1,6107. (3) Для достижения той же силы, равной 3.При 5 МПа количество дней, необходимых для каждого из этих четырех случаев, было показано следующим образом: 7 дней для стандартной температуры, 14 дней для постоянной низкой и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха. (4) 7 день стандартная прочность достигла 3,5 МПа, в то время как остальные три составляли 2,2 МПа, 2,1 МПа и 2,2 МПа, соответственно, что составляло только 62% или около того. (5) Среди трех случаев низкотемпературного отверждения Кривые постоянной низкой температуры и естественной температуры наружного воздуха были такими же до 11 день, оба из которых также были очень близки к случаю дневной температуры взаимодействия, хотя дневной интерактивный прирост был самым медленным среди этих трех случаев.Теория зрелости будет использована для объяснения этого результата в следующем разделе.


6.2. Оценка и прогноз модели зрелости-прочности

Смесь цементно-стабилизированного щебня состоит в основном из цемента, рассортированного щебня и воды. По составу аналогичен цементобетону. Единственная разница заключается в дозировке цемента. Теория зрелости широко используется для прогнозирования прочности цементного бетона. Таким образом, с точки зрения состава материала функция прогнозирования может быть установлена ​​на основе теории зрелости для прогнозирования прочности на сжатие 5% цементно-стабилизированной смеси щебня.Поскольку цементный щебень можно рассматривать как цементный бетон с низкой дозой цемента, есть четыре функции, которые можно использовать на основе существующих исследований цементного бетона, включая степенную функцию, логарифмическую функцию, экспоненциальную функцию и гиперболическую функцию [25 ].

Зрелость трех экспериментов в помещении была рассчитана и показана в таблицах 4 и 5. Взаимосвязь между зрелостью и силой в трех случаях показана на рисунке 12. Кажется, что логарифмические функции являются лучшими прогностическими кривыми во всех трех случаях и, следовательно, он использовался в качестве предпочтительной функции для цементно-стабилизированной щебеночной смеси.Кроме того, путем объединения данных по всем трем случаям и разработки единой прогнозной модели параметры a = 1,9358 и b = 12,183 были получены путем аппроксимации данных прочности на сжатие и зрелости, а коэффициент корреляции составил R 2 = 0,9907. Короче говоря, модель прогнозирования зрелости и прочности 5% цементно-стабилизированной щебеночной смеси была.

9014 9013 9014 9014

дней 3 дня 4 дня 5 дней 6 дней 7 дней
2400 2880 3360

дней 7 9014 d13 904 11 d 9014 9 0133 3042

12 d 13 d 14 d

Корпус 2 1680 1920 2160 2400 9013 9013 9014 9014
Корпус 3 1638 1872 2106 2340 2574 2808 3276


Для случаев естественного отверждения на открытом воздухе данные центрального положения использовались для расчета зрелости. Следует отметить, что один час использовался в качестве диапазона температур, затем накапливались в один день и снова накапливались по дням, чтобы получить стоимость погашения.Используя полученную функцию для прогнозирования прочности на сжатие при отверждении на открытом воздухе, результаты показаны в Таблице 6. Обратите внимание, что эти результаты были очень близки к испытанной прочности, а коэффициент корреляции достиг 99,865%, что ясно указывает на высокий точность модели. Согласно модели, прочность на сжатие при низкотемпературном отверждении может быть спрогнозирована с учетом зрелости, что дает справочную информацию для расчета прочности и определения графика строительного проекта для инженерных приложений.

9013 9013 901 Срок погашения (° C · ч).700 9014 9014 9014 9014 9014

дней 7 дней 8 дней 9 дней 10 дней 11 дней 12 дней 1690 1946 2200 2462 2719 2979 3246
Протестированное значение (МПа) 2.2003 2,900 3,100 3,300 3,500
Прогнозируемое значение (МПа) 2,205 2,478 2,715 2,933 2,715 2,933 3,4
7. Заключение

В настоящем исследовании обсуждается закон увеличения прочности на сжатие 5% -ного цементного щебня при низкотемпературном отверждении, с особым акцентом на отверждение при различных температурах, которые аналогичны различным температурам воздуха в реальный мир.

В этой статье были проведены эксперименты при трех вариантах отверждения при температуре в помещении и одном естественном отверждении на открытом воздухе. Экспериментальные результаты показали, что прочность на сжатие увеличивалась с увеличением времени отверждения во всех четырех случаях и что скорость увеличения при низкой температуре была меньше, чем при стандартной температуре. Коэффициенты усиления можно отсортировать в порядке убывания: отверждение при стандартной температуре> отверждение при естественной температуре на открытом воздухе> отверждение при постоянной низкой температуре> отверждение при дневной интерактивной температуре.Стандартная прочность достигла 3,5 МПа за 7 день, в то время как остальные составляли только 62% или около того. Численные результаты также показали, что для достижения той же прочности 3,5 МПа количество дней, необходимых для каждого случая низкой температуры, составляло 14 дней как для постоянной низкой, так и дневной температуры взаимодействия и 13 дней для температуры наружного воздуха.

Согласно температурным данным и информации о прочности, собранной в ходе нескольких испытаний в помещении, была создана оценочная модель для прогнозирования прочности на основе теории зрелости.Доказано, что модель обладает способностью прогнозировать с высокой точностью на основе подтвержденных результатов, полученных на основе данных наружных испытаний.

По мере развития направления исследований в будущем характеристики, связанные с прочностью на сжатие в долгосрочной перспективе, также могут быть исследованы с большим количеством данных, собранных с течением времени.

Доступность данных

Данные, использованные для подтверждения выводов этого исследования, можно получить у соответствующего автора по запросу.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Благодарности

Авторы выражают искреннюю благодарность Национальной программе ключевых исследований и разработок Китая (2017YFF0205600) за финансовую поддержку.

Первые преимущества и проблемы высокопрочного бетона


Шиврам Багаде , Технолог по бетону — BASF Construction Chemicals India Pvt. Ltd, Бангалор Нагеш Путтасвами Менеджер (TASC) UltraTech Cement Ltd., Хайдарабад

Скоростные автомобили, быстрые графики движения, ускоренное строительство стали обычным делом.Во многих отношениях эти технологические достижения были экономическим благом для человечества, но какой ценой? Скоростные автомобили — это острые ощущения на гоночных трассах, но риски также являются частью системы. Концепция «сэкономленное время — сэкономленные деньги» стимулировала ускорение работы в строительной отрасли, поскольку с тех пор инженеры и администраторы применяют целостный подход, заставляя каждую часть строительства вносить свой вклад в систему, ускоряя строительство. Бетон высокой прочности также является одним из них.История высокопрочного бетона насчитывает около 35 лет. В конце 1960-х годов изобретение водоредуцирующих добавок привело к созданию высокопрочных сборных железобетонных изделий, а конструктивные элементы в балке были отлиты на месте с использованием высокопрочного бетона. С тех пор технология достигла зрелости, и обычно используется бетон порядка от M60 до M120. Бетон марки М200 и выше возможен в лабораторных условиях.

С таким уровнем уверенности отрасль сегодня предъявляет очень высокие требования к производителям цемента и добавкам.Возник спрос на высокую прочность за очень короткое время. Были такие требования, как,

  • 40 МПа бетона М60 за 3 суток,
  • 50% силы цели за 24 часа,
  • 12 МПа через 12 часов,
  • 12 МПа за 10 часов.
Причин для этих требований много, но, как инженеры, мы должны думать об аспектах долговечности конструкций, в которых используются эти материалы. Потребители в этих случаях удовлетворяются свои потребности с помощью своих бетонных заводов.Не обращая внимания на долгосрочную долговечность, мы смогли удовлетворить потребности. Бетон этих свойств будет иметь своеобразное реологическое поведение. Некоторые наблюдения, сделанные во время испытаний раннего высокопрочного бетона (EHSC), обсуждаются в этой статье вместе с некоторыми проблемами долговечности. Необходимость понимания реологических параметров в связи с аспектами долговечности требует особого внимания. Технология EHSC все больше используется в инфраструктурных проектах и ​​в промышленности сборных железобетонных изделий в некоторых случаях, она используется без разбора, а в некоторых случаях она применяется без надлежащей технической поддержки.Цемент и добавки отбираются и отклоняются на основе экономических критериев, очень деликатные вопросы, такие как совместимость цементных добавок и микротрещины пластика, не решаются должным образом. Концепция EHSC является благом для отрасли производства сборных железобетонных изделий, но ее необходимо развивать лучше, чтобы она не попала в ловушку, подобную той, что произошло с использованием летучей золы в бетоне, которая даже сегодня не попадает в ловушку. % уверенности в техническом братстве.

Введение

Бетон, основанный на 28-дневной прочности, классифицируется как высокопрочный и так далее.Примерно до 1970-х годов бетон, который мог достигать прочности выше 40 МПа, классифицировался как высокопрочный. Когда бетонные смеси с плотностью около 60 МПа и выше производились серийно, ориентир для высокопрочного бетона был повышен до 55 МПа или более.

История высокопрочного бетона насчитывает около 35 лет с момента разработки добавок суперпластификатора в конце шестидесятых годов, когда в Японии появились высокопрочные сборные изделия с использованием «нафталинсульфоната», а в Германии — с использованием подводного бетона с использованием «сульфоната меланина». ‘были пионерами технологии.

Три-четыре десятилетия назад, несмотря на то, что бетон был универсальным строительным материалом. Большинство высотных зданий по всему миру использовали стальные элементы в качестве структурного каркаса. Знаменитые башни-близнецы на Манхэттене (Всемирный торговый центр) имели стальные конструкции. Причина заключалась в том, что при той прочности бетона, которая была доступна в то время, элементы из бетона были бы громоздкими и некрасивыми.

С появлением высокой прочности, громоздкость бетонных элементов исчезла, и мы также можем изготавливать тонкие секции из бетона.С тех пор высокопрочный бетон прошел долгий путь и стремится достичь прочности стали. Бетон порядка 200 МПа стал реальностью, по крайней мере, в лабораторных условиях, а бетон порядка от M60 до M120 обычно используется на стройплощадках. Свойства высокопрочного бетона сегодня хорошо изучены и поняты инженерами, использование очень высокопрочного бетона больше не вызывает недоумения. Пользователь устранил недостатки высокопрочного бетона.

Как достигается высокая прочность бетона

Более высокая прочность бетона может быть достигнута с помощью одного из следующих методов или комбинации некоторых или многих из следующих:
  • Повышенное содержание цемента
  • Уменьшение водоцементного отношения
  • Лучшая обрабатываемость и, следовательно, лучшее уплотнение
Некоторые из требований Кодекса для высокопрочного бетона
Прочность на сжатие 60 МПа или более
Прочность Проницаемость <5 мм согласно DIN 1048
Технологичность для размещения в районах с высокой загруженностью.

Требование к высокопрочному бетону требует более вяжущего материала в бетонной смеси, которая может составлять от 400 кг на м3. Более высокое содержание вяжущего материала приведет к более высокой термоусадке и усадке при высыхании, и будет стадия, когда любое дальнейшее добавление вяжущего материала не повлияет на прочность. Что касается аспектов долговечности, минимальное и максимальное содержание цемента в бетоне регулируется нормативными положениями, уменьшение водоцементного отношения также имеет свои ограничения, особенно в условиях площадки.Стремление к более высокой прочности приводит к использованию других материалов для достижения желаемых результатов, поэтому вяжущий материал вносит вклад в прочность бетона.
  • Добавление пуццулановой примеси, такой как поццулановая зола (PFA) или гранулированный доменный шлак (GGBS), которая помогает в образовании вторичного геля C-S-H за счет повышения прочности.

    Добавление пуццулановой добавки, такой как летучая зола, используемая в качестве добавки, снизит прирост прочности в течение первых 3-7 дней бетона и покажет прирост после 7 дней и даст более высокую прочность в долгосрочной перспективе.

  • Добавление минеральных примесей, таких как пары кремнезема, метакаолин или зола рисовой шелухи.

    Высокоактивные пуццулановые примеси, такие как микрокремнезем или метакаолин и зола рисовой шелухи (RHS), начнут вносить свой вклад примерно через 3 дня. RHS имеет преимущество перед PFA, потому что RHS более реактивен.

  • Использование химических добавок, таких как суперпластификатор или гиперпластификатор, добавки, регулирующие набор, помогут в достижении более высокой прочности бетона.

    Исследования и опыт показывают, что добавки на основе поли карбоксильных эфиров (PCE), называемые гиперпластификаторами, лучше всего подходят для работы, поскольку они обладают способностью уменьшать количество воды от 18% до 40% по сравнению с контролем или эталоном. конкретный.

  • Комбинация всего вышеперечисленного или некоторых из вышеперечисленных для достижения желаемой прочности.

    Комбинация по крайней мере нескольких из этих методов теперь стала неизменной, поскольку HSC пришел вместе с некоторыми сложностями, такими как более высокая усадка, более высокая теплота гидратации и т. Д., все эти сложности необходимо нейтрализовать или контролировать. Большинство проблем решалось комбинацией PFA или GGBS и смеси PCE.

    Для ускорения гидратации цемента используются методы отверждения паром, однако это не может привести к повышению прочности. Прирост прочности в раннем возрасте может быть достигнут путем замены части мелкозернистого заполнителя летучей золой или доменным шлаком без увеличения водопотребности бетонной смеси.

Свойства ингредиентов, используемых в HSC:

Требуемые свойства цемента

Прочность на сжатие> 60 МПа
C3A Содержание <6
Тонкость помола 300 + 20 кв.М на кг
Общее содержание щелочи Макс. 6% выражено как Na 2 O
C 3 S> 50%
C 2 S> 24%
C 4 AF> 15%
LOI <2%

Свойства летучей золы

PFA требовал повышения прочности, водонепроницаемости и долговечности бетона.Необходимо использовать PFA класса F.

Уменьшает сегрегацию и просачивание в свежем бетоне, ползучесть в затвердевшем бетоне, а также снижает теплоту гидратации.

Требования к химическим веществам

SiO 2 > 60%
SiO 2 + AI 2 O3 + Fe 2 O 3 = 85%
LOI 2% Максимум
Тонкость Макс.10% (сохраняется на 45 микронах)

Агрегаты

Мелкие заполнители: должны попадать в зону II

Химические добавки

Необходимо использовать водоредуцирующую добавку высокого диапазона (HRWRA), обычно добавки PCE разрабатываются для конкретных нужд. Водоредуцирующая добавка высокого диапазона (HRWRA): это известный факт, что для долговечности конструкции проницаемость в бетоне играет важную роль, что является одним из важных факторов, которые регулируют водоцементное соотношение во время производства бетона, более низкое водоцементное соотношение ниже будут капиллярные поры и, следовательно, более низкая проницаемость и повышенная долговечность.Примеси на основе поли карбоксильных эфиров (PCE)

, называемые гиперпластификаторами, изобретенные в 1990-х годах, отлично справились с условиями, преимущества которых используются при производстве высокопрочного и высокоэффективного бетона. Водоудерживающая способность этих добавок составляет 18–40% от контрольного или эталонного бетона. Эти добавки способствуют достижению более высоких оседаний, более 180 мм, при гораздо меньших соотношениях в / ц (менее 0,30). Они обеспечивают лучший контроль над реологией бетона, и это одна из причин, по которой такие добавки всегда используются для производства самоуплотняющегося бетона.Единственным недостатком этих добавок является то, что они не задерживаются дольше 45 минут и всегда используются вместе с замедлителями схватывания, что усложняет смесь. С ситуациями с этими сложностями нужно обращаться очень осторожно, однако строительная химическая промышленность разработала комбинацию химикатов или, скажем так, коктейль химикатов, чтобы удовлетворить спрос.

Спрос в отрасли

Строительная промышленность, обращающаяся к сборным элементам и требованию последующего натяжения, сделала требование высокой прочности бетона неизменным, и инженерам пришлось преодолеть эти недостатки, что в значительной степени нам удалось.Строительство в наши дни стало быстрым, когда экономия на вложениях в опалубку считается, что использование высокопрочного бетона является неизменным и стало обязательным. Сегодня строительство имеет решающее значение, когда речь идет об экономике, очень мелкие аспекты считаются достижением экономии на строительных работах. Скорость строительства и его технология измеряется количеством циклов использования опалубки. Теперь это превратилось в одно из основных требований процесса бетонирования, требования промышленности стали очень сложными.

У нас была возможность наблюдать и работать с некоторыми из этих случаев. Вот некоторые из примеров:

ДЕЛО 1

Инфраструктурный проект


Это конкретное требование заключалось в том, чтобы сборные сегментные балки подвергались последующему натяжению для инфраструктурного проекта ускоренного строительства. Время — основная цель контракта между потребителем и подрядчиками. Сегменты необходимо поднять на место за рекордно короткое время и дополнительно растянуть. Непрерывность работы, поскольку строительная площадка очень перегружена для работы, требует, чтобы инфраструктура для литья как можно скорее развивалась дальше.
Требуемая марка бетона M50
Особые требования указаны
01 Минимальная необходимая прочность за 24 часа 25 МПа.
02 Требуемая технологичность: начальное обрушение
03 Требуемая удобоукладываемость: бетон, который можно перекачивать через 90 минут
04 Для получения высокой ранней прочности без липкости

Эти большие сегментные балки для проекта эстакады
Опытная 1 Испытание 2 Испытание 3
Смешанный класс М-50 М-50 М-50
Цемент OPC 53 марка 5.4 5,4 5,4
W / C, A / C, W / B
CA — I 20 мм 6,228 5,292 5,472
CA — II 12,5 мм 5,748 6.372 5,472
CA — III 6 мм 2,4 2,712 2.76
Песочный щебень 8,448 8,448 9,12
Всего воды (включая абс.) 1,974 1,98 1,99
Песочный щебень 8,448 8,448 9,12
Всего воды (включая абс.) 1,974 1,98 1,99
Примесь М-715 М-715 М-715
Дозировка (в%) @ 0.6 @ 0,6 @ 0,7
Осадка / расход (в мм)
0 мин 210 200 200
30 мин 150 150 165
Плотность во влажном состоянии (кг / куб. М) 2462 2405 2482
Комп.Прочность (Н / Кв. Мм)
01 день 28,04 30,04 31,32
02 дней 40,12 42,44 46,20
07 дней 47,80 48.20 50,00
28 дней
Размер партии / куб.м 0,012 0,012 0,012

КОРПУС 2

Инфраструктурный проект
Требуемая марка бетона M60
Особые требования указаны
01 Минимальная необходимая прочность за 24 часа 40 МПа.
02 Требуется удобоукладываемость как в SCC
03 Количество вяжущего материала Предварительно фиксированная — летучая зола из фиксированного источника
04 Мелкий заполнитель 100% дробильная пыль

Бетон должен был достичь более 50% своей окончательной прочности за 24 часа, поскольку мы уже обсуждали ранее, что весь процесс должен происходить примерно через 14 часов после окончательного схватывания цемента!

Требование проекта заключалось в том, чтобы элементы кровли из листового обшивки были залиты на землю и должны были быть подняты на место и подвергнуты последующему натяжению.Требование ранней высокой прочности бетона было связано с тем, что элементы необходимо заблаговременно закрыть опалубкой и переместить на площадку для выдержки, а количество циклов опалубки было критическим экономическим критерием. Сегменты имели особую форму и складки, поэтому требовалось свойство самоуплотнения. Сохранение удобоукладываемости в сочетании с требованием ранней высокой прочности тянуло систему в противоположных направлениях.

Бетон в этом случае был изготовлен на заводе по производству цемента на месте, и необходимые условия были достигнуты с помощью нескольких альтернативных марок цемента.Бетон был помещен в форму с использованием транзитных миксеров на площадке, которые сохраняли критерий удобоукладываемости от почти 45 минут до 1 часа. Детали дизайна микса не могли быть представлены здесь, так как все испытания проводились потребителем, и мы не могли получить разрешение на публикацию здесь. Примесь там должна была быть специально отрегулирована для конкретных требований, и она должна была подвергнуться дальнейшей тонкой настройке с учетом изменения источников ингредиентов. Израсходовано несколько тысяч кубометров бетона.Будет ли это ориентиром для других проектов?

ДЕЛО 3

Для сегментарного строительства башен
Требуемая марка бетона M60
Особые требования указаны
01 Минимальная прочность, необходимая за 12 часов 12 МПа.
02 Количество цемента Предварительно фиксированная
03 Количество вяжущего материала Предварительно фиксированная — летучая зола из фиксированного источника
04 Минеральные примеси с высокой реакционной способностью, например, кремнезем Не разрешено по экономическим причинам
05 Минимальные требования к прочности были изменены до 12 МПа за 10 часов

Начальный спад: коллапс.

Обвал через 30 мин: Обрушение и истечение мин. 450 мм.

Этот бетон требовался для изготовления сборных сегментов башен, отлитых в удобном с точки зрения логистики месте. Круглые сегменты переменного диаметра от одного конца до другого должны изготавливаться на площадке и подниматься на площадку для отверждения. Стоимость опалубки и ограничение пространства, доступного для зоны разливки, требуют, чтобы сегменты поднимались с литейной площадки на площадку для выдержки, а самым ранним требованием к прочности является выдерживание подъемной нагрузки.Потребитель наносит защитное покрытие на сегменты сборного железобетона для обеспечения долговечности. Сегменты транспортируются на грузовиках до пунктов назначения на расстояние 600-700 км для фактического использования. Экономический критерий для потребителя требовал минимум 2 цикла литья на каждые 30 часов.

Следующий дизайн смеси был разработан для получения желаемых условий. В среднем было проведено от 10 до 15 испытаний с различными выбранными марками цементов, критические результаты для разных марок цемента перечислены в таблицах.

Технологичность
Время в минутах Осадка в мм Расход в мм Примечания
0 Свернуть 575 до 625 Эти параметры сохранялись постоянными для всех марок цемента при определенной дозировке добавок
30 Свернуть 495 до 525
60 110 Нет
90 50 Нет
120 20 Нет

Было замечено, что потеря оседания и потока была быстрой после отметки 45-50 минут; указанные здесь значения являются средними по результатам нескольких проведенных тестов.Через 60 минут бетон показал необычную жесткость и ощущение эластичности / пористости.
Детали дозирования смеси
Смешанный класс М-60 М-60 М-60
Цемент 53 марка OPC Марка X Марка Y Марка Z
Цемент 470 470 470
PFA 130 130 130
Вт / К 0.26 0,26 0,26
20 мм 454 454 454
12,5 мм 454 454 454
Песок натуральный 750 750 750
Бесплатная вода 154 154 154
Всего воды
Примесь G30 (S3) G30 (S3) G30 (S3)
Дозировка (%)
Комп.Ул. (МПа) среднее значение для всех кубов
12 часов 14,15 5,38 * 4,5 *
14 часов 14,33 13,33 * 12,85 *

Результаты марок Y и Z очень важны, чтобы отметить, что прирост силы между 12-м и 14-м часами почти в 3 раза.

Недостатки технологии

Последствия такого быстрого набора силы вызывают тревогу и требуют серьезного внимания.Учитывая тот факт, что время окончательного схватывания большинства марок цемента в Индии составляет около 120 минут, будет получено множество ответов на вопросы относительно долговечности.

Независимо от этих вопросительных знаков, технология смогла удовлетворить требования заказчика, и работа продолжается. Как технологи, нам необходимо обобщить требования к использованию, поскольку может возникнуть еще много требований, и всем, возможно, придется иметь собственные бетонные заводы для производства этого особого бетона.

Высокопрочный бетон имеет большое преимущество в сценарии современного строительства, поскольку многие статистические данные показывают, что он показал себя не только с точки зрения прочности, но и с точки зрения экономии. Исследования показывают, что приблизительное увеличение прочности бетона в 5 раз приведет к увеличению прочности бетона только в 3–3,25 раза. Если проектировщик сможет использовать эти условия, общая стоимость проекта определенно снизится. Следовательно, сегодня во многих проектах регулярно используется высокопрочный бетон порядка M60 или выше.

Благодаря развитию технологий опалубки монтаж и демонтаж опалубочной системы стали проще и проще. Время цикла для опалубки резко сокращается. Одна неделя. Широко применяются концепции одноплитной плиты, в развитых странах этот цикл составляет около 4 дней. Для этого нам нужно, чтобы бетон за это время набрал минимальную прочность.

Это означает, что ранний высокопрочный бетон станет порядком дня .

Производители сборных железобетонных элементов уже внедряют эту технологию с соответствующими техническими ноу-хау или без них. Почему бы и нет, если мы смогли добавить свойство самоуплотнения или самовыравнивания с небольшим изменением стоимости. Потребитель смог изготовить бетонный элемент с несколько более низкой стоимостью. Теперь, если потребитель может увеличить производство элементов с точки зрения большего количества циклов на работу, стоимость проекта будет увеличена.

Тип бетона Стоимость Количество циклов в месяц Увеличение стоимости Увеличение № цикла
Обычный 2900 30
Самокомпактный 3100 36 6.70% 20,00%
SCC / EHSC 3200 45 10,35% 50,00%

При неизменных параметрах это очень выгодное предложение для любого делового предложения. Строительная промышленность в ближайшем будущем обратится к этой технологии, называемой EHSC.

Технологи должны очень критически обсудить эту концепцию / технологию, иначе эта концепция может быть злоупотреблена неизбирательным использованием.Обсуждения сейчас более важны, потому что эта технология используется в инфраструктурном проекте.

Заключение

EHSC здесь, чтобы остаться, но мы должны быть осторожны, чтобы не отказаться от аспектов долговечности материала. Существует несколько продуктов, которые обеспечивают долговечность этих бетонов в качестве покрытий и второстепенных добавок в бетонной смеси. Необходимо приложить особые усилия, чтобы поделиться знаниями о защитных системах вместе с технологией раннего высокопрочного бетона.

Поскольку многие строительные площадки и некоторые из сборных железобетонных изделий обслуживаются нетехническими или неподготовленными людьми, технология должна иметь устойчивый рост, а не возникновение преждевременных проблем.

Номер ссылки

  • Свойства микроструктуры бетона и материалы П. Кумар Мета, Пауло Дж. М. Монтерио
  • Технологичность самоуплотняющегося бетона Кьяра Ф. Феррарис, Линн Брауэр, Джозеф Дачко
  • Справочник по добавкам в бетон V.С. Рамачандран
  • Свойства бетона A.M. Невилл
  • Свойства сверхвысокопрочного цемента Константин Соболев, Светлана Соболева
  • В статье отражены взгляды авторов, основанные на исследованиях и наблюдениях, сделанных ими в ходе работы над конкретными случаями и наблюдениями, сделанными на их основе. Вывод информации, представленной в этой статье, предоставлен читателям, это всего лишь попытка авторов начать обсуждение темы, а не сделать какие-либо выводы.

    Leave a Reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *