Теплопроводность глиняного кирпича: Теплопроводность кирпича, сравнение кирпича по теплопроводности

Опубликовано
Теплопроводность кирпича, сравнение кирпича по теплопроводности

Рассмотрена теплопроводность кирпича различных видов (силикатного, керамического, облицовочного, огнеупорного). Выполнено сравнение кирпича по теплопроводности, представлены коэффициенты теплопроводности огнеупорного кирпича при различной температуре — от 20 до 1700°С.

Теплопроводность кирпича существенно зависит от его плотности и конфигурации пустот. Кирпичи с меньшей плотностью имеют теплопроводность ниже, чем с высокой. Например, пеношамотный, диатомитовый и изоляционный кирпичи с плотностью 500…600 кг/м3 обладают низким значением коэффициента теплопроводности, который находится в диапазоне 0,1…0,14 Вт/(м·град).

Кирпич в зависимости от состава можно разделить на два основных типа: керамический (или красный) и силикатный (или белый). Значение коэффициента теплопроводности кирпича указанных типов может существенно отличатся.

Керамический кирпич. Производится из высококачественной красной глины, составляющей около 85-95% его состава, а также других компонентов. Такой кирпич изготавливают путем формовки, сушки и обжига, при температуре около 1000 градусов Цельсия. Теплопроводность керамического кирпича различной плотности составляет величину 0,4…0,9 Вт/(м·град).

По сфере применения керамический кирпич подразделяется на рядовой строительный, огнеупорный и лицевой облицовочный. Лицевой декоративный (облицовочный) кирпич имеет ровную поверхность и однородный цвет и применяется для облицовки зданий снаружи. Теплопроводность облицовочного кирпича равна 0,37…0,93 Вт/(м·град).

Силикатный кирпич. Изготавливается из очищенного песка и отличается от керамического составом, цветом и теплопроводностью. Теплопроводность силикатного кирпича немного выше и находится в интервале от 0,4 до 1,3 Вт/(м·град).

Сравнение кирпича по теплопроводности при 15…25°С
Кирпич Плотность, кг/м3 Теплопроводность, Вт/(м·град)
Пеношамотный 600 0,1
Диатомитовый 550 0,12
Изоляционный 500 0,14
Кремнеземный 0,15
Трепельный 700…1300 0,27
Облицовочный 1200…1800 0,37…0,93
Силикатный щелевой 0,4
Керамический красный пористый 1500 0,44
Керамический пустотелый 0,44…0,47
Силикатный 1000…2200 0,5…1,3
Шлаковый 1100…1400 0,6
Керамический красный плотный 1400…2600 0,67…0,8
Силикатный с тех. пустотами 0,7
Клинкерный полнотелый 1800…2200 0,8…1,6
Шамотный 1850 0,85
Динасовый 1900…2200 0,9…0,94
Хромитовый 3000…4200 1,21…1,29
Хромомагнезитовый 2750…2850 1,95
Термостойкий хромомагнезитовый 2700…3800 4,1
Магнезитовый 2600…3200 4,7…5,1
Карборундовый 1000…1300 11…18

Теплопроводность кирпича также зависит от его структуры и формы:

  • Пустотелый кирпич — выполнен с пустотами, сквозными или глухими и имеет меньшую теплопроводность в сравнении с полнотелым изделием. Теплопроводность пустотелого кирпича составляет от 0,4 до 0,7 Вт/(м·град).
  • Полнотелый — используется, как правило, при основном строительстве несущих стен и конструкций и имеет большую плотность. Полнотелый силикатный и керамический кирпич в 1,5-2 раза лучше проводит тепло, чем пустотелый.

Печной или огнеупорный кирпич. Изготавливается для эксплуатации в агрессивной среде, применяется для кладки печей, каминов или теплоизоляции помещений, которые находятся под воздействием высоких температур. Огнеупорный кирпич обладает хорошей жаростойкостью и может применяться при температуре до 1700°С.

Теплопроводность огнеупорного кирпича при высоких температурах увеличивается и может достигать значения 6,5…7,5 Вт/(м·град). Более низкой теплопроводностью в сравнении с другими огнеупорами отличается пеношамотный и диатомитовый кирпич. Теплопроводность такого кирпича при максимальной температуре применения (850…1300°С) составляет всего 0,25…0,3 Вт/(м·град). Следует отметить, что теплопроводность шамотного кирпича, который традиционно применяется для кладки печей, — выше и равна 1,44 Вт/(м·град) при 1000°С. 

Теплопроводность огнеупорного кирпича в зависимости от температуры
Кирпич Плотность, кг/м3 Теплопроводность, Вт/(м·град) при температуре, °С
20 100 300 500 800 1000 1700
Диатомитовый 550 0,12 0,14 0,18 0,23 0,3
Динасовый 1900 0,91 0,97 1,11 1,25 1,46 1,6 2,1
Магнезитовый 2700 5,1 5,15 5,45 5,75 6,2 6,5 7,55
Хромитовый 3000 1,21 1,24 1,31 1,38 1,48 1,55 1,8
Пеношамотный 600 0,1 0,11 0,14 0,17 0,22 0,25
Шамотный 1850 0,85 0,9 1,02 1,14 1,32 1,44

Источники:

  1. Физические величины. Справочник. А. П. Бабичев, Н. А. Бабушкина и др.; под ред. И. С. Григорьева — М.: Энергоатомиздат, 1991 — 1232 с.
  2. В. Блази. Справочник проектировщика. Строительная физика. М.: Техносфера, 2004.
  3. Таблицы физических величин. Справочник. Под ред. акад. И. К. Кикоина. М.: Атомиздат, 1976. — 1008 с. строительной физики, 1969 — 142 с.
  4. Михеев М. А., Михеева И. М. Основы теплопередачи. М.: Энергия, 1977 — 344 с.
  5. Казанцев Е. И. Промышленные печи. Справочное руководство для расчетов и проектирования.
  6. Х. Уонг. Основные формулы и данные по теплообмену для инженеров. Справочник. М.: Атомиздат. 1979 — 212 с.
  7. Чиркин В. С. Теплофизические свойства материалов ядерной техники. Справочник.

Содержание

Теплопроводность кирпича - основные критерии

Физические характеристики строительного материала определяют сферу его применения. Теплопроводность кирпича является важным параметром, который принимается в расчет при сооружении фундамента, перекрытий, внешних стен.

Коэффициент теплопроводности кирпичей

В экономике страны строительная отрасль выделяется как наиболее энергоемкая:

  • 10% энергии потребляют гражданские объекты;
  • 35-45% расходуют сооружения промышленного назначения;
  • 50-55% энергопотребления относится к жилым зданиям.

При проектировании зданий важное значение для строительных конструкций имеют теплоизоляция и тепловая защита. От этого во многом зависят человеческие условия труда и жизни, энергоэффективность строящихся объектов.

Возведение сооружений различного назначения нуждается в правильной оценке влажностного, воздушного и теплового режимов.

Это позволяют разработать специальные методики определения теплофизических параметров стройматериалов и готовых конструкций. Эти методики будут разными для отличающихся материалов изделий.

Теплотехнические показатели по техническим и нормативным документам характеризуются коэффициентом теплопроводности (λ). Для кирпича параметр является показателем того, как изделие передает тепло.

Чем выше значение, тем меньше теплоизолирующая способность. При выборе утеплителя для дома значение λ должно быть как можно меньше.


Коэффициент теплопроводности кирпичей

Коэффициент определяют экспериментальным путем. Это физический показатель, который зависит от давления воздуха, температуры, влажности среды и вещества изделия, плотности и структуры последнего.

Существует формула для определения теплопроводности. В соответствии с ней коэффициент λ прямо пропорционален толщине слоя (в метрах) и обратно пропорционален сопротивлению теплопередаче слоя.

Величина, которую получают при расчетах, используются в проектировании, чтобы сопоставить значение проводимости тепла разных материалов.

Для ограждающих конструкций сопротивление теплопередаче (R0) определяется для зданий и сооружений в соответствии с ГОСТ 26254-84. Для термически однородной зоны оно зависит от:

  1. Сопротивлений передачи тепла наружной и внутренней поверхностей.
  2. Температуры воздуха снаружи и внутри помещения, взятой как среднее значение измерений за расчетный период.
  3. От средней фактической плотности потока тепла за период измерений.

Теплопроводность кладки

По ГОСТ 26254 определяют λ для кирпичных и блочных кладок. Для этого действуют следующим образом:

  1. За время наблюдений определяют показания (средние арифметические) для всех термопар и типломеров.
  2. Для поверхностей кладок, которые находятся внутри и снаружи зданий и сооружений, вычисляется средневзвешенная температура по результатам испытаний. Принимается в расчет площадь растворных швов горизонтального и вертикального участков, а также площадь тычкового и ложкового участков.
  3. Определяют для кладки термическое сопротивление.
  4. Коэффициент теплопроводности кладки вычисляется по значению термического сопротивления.

Теплопроводность

Расчет

Теплопроводность кладки прямо пропорциональна ее толщине и обратно пропорциональна термическому сопротивлению.

После проведения испытаний и установления точных значений сопротивления теплопередачи нетрудно рассчитать величину теплопроводности стены, состоящий из несколько слоев.

Для этого нужно определить λ для каждого слоя отдельно и суммировать полученные значения.

Уменьшение коэффициента теплоотдачи стены

Существует несколько способов, которые позволяют снизить тепловые потери.

Технологии укладки

Воздушные зазоры делаются в кирпичной кладке для уменьшения накопления влаги в стенах и снижения коэффициента теплоотдачи.

Прослойку воздуха в стенах правильно обеспечивают следующим образом:


  1. Раствором не заполняют воздушные зазоры толщиной до 10 мм между изделиями начиная с 1 ряда. 1 метр — распространенный шаг между зазорами.
  2. По типу фасада с вентиляцией зазор воздуха толщиной 25-30 мм оставляют по всей высоте кладки между теплоизолятором и кирпичом. При работе зимой отопительной системы температура в доме будет оставаться постоянной. Свойства стены сохранять тепло обеспечат постоянные воздушные потоки, которые будут проходить по предусмотренным воздушным каналам.

Постоянная циркуляция по каналам воздуха внутри кладки возможна, если она на последнем ряду не закрывается перекрытием из любых стройматериалов или стяжкой из раствора.

Для частного строительства важно, чтобы, не понеся больших расходов, добиться от кирпичной стены существенного снижения коэффициента λ.

Технологии

Утепление здания

Дополнительная теплоизоляция строительных объектов способствует повышению их энергоэффективности. Утеплитель может располагаться изнутри и снаружи зданий.

Материал теплоизолятора крепится к стенам дюбелями и клеем, скобами и шурупами с использованием обрешетки и без. Полимерные штукатурные и пеновые смеси могут наноситься с применением армирующей сетки.

Для наружного утепления производятся сборные изделия: термоблоки, вентилируемые фасады, закрепляющиеся к стенам с помощью специальных конструкций.

Недостатки теплоизоляции штукатуркой снаружи:

  1. При частой смене температуры воздуха на границе сред, образуемых элементами утеплителя и стеной, создается зона повышенной влажности. Это важно учитывать для недостаточно толстых слоев штукатурки, сделанной по металлической, стеклотканевой или полимерной сетке.
  2. На 3-4 году эксплуатации отделка фасада начинает разрушаться. Раствор выдерживает в среднем около 50 циклов смены тепло-холод.
  3. На здоровье проживающих в доме может плохо влиять поражение конструкций грибком и плесенью.

Разные системы теплоизоляции способны нарушить паропроницаемость конструкции. Это часто вызывает образование между слоями фасада, штукатуркой и утеплителями конденсата. Он снижает срок службы изоляции и отделки, приводит к разложению пенополистиролов с выделением ядовитых веществ.

Что обозначает показатель

Холодная область материала постоянно получает тепло из более теплых частей. Их этот процесс движения тепла осуществляется через электромагнитные взаимодействие на уровне квазичастиц, электронов и атомов.

Физический смысл показателя теплопроводности — какое за единичный интервал времени через единицу площади сечения проходит количество теплоты.

В зависимости от коэффициента теплопроводности ГОСТ 530-2012 разделяет эффективность складки на следующее виды:

  • малоэффективная (обыкновенная) — от 0,46 и выше;
  • условно-эффективная — 0,36-0,46;
  • эффективная — 0,24-0,36;
  • повышенная — 0,2-0,24;
  • высокая — меньше 0,2.

Исходя из состава для кладочных смесей величину теплопроводности в инженерных расчетах выбирает от 0,47 и выше.

Нужный температурный режим лучше поддерживается при использовании стройматериалов с высокой теплоемкостью. Этот параметр характеризует, сколько нужно количества тепла, чтобы за единицу времени нагреть объект до заданной температуры. Единицами измерения показателя являются Дж/0С, Дж/К.

Что обозначает

Свойства различных типов

Разные строительные материалы отличаются способностью проводить тепло, которая зависит от следующих параметров:


  1. Влажность. 0,6 — значение λ для воды. Влажный насыщенный воздух или капли жидкости замещают сухой воздух в порох утеплителя и стеновых конструкциях при их намокании. Это приводит к росту показателей теплопроводности.
  2. Плотность. Тепловая энергия лучше передается, если частицы в теле расположены более тесно и в большем количестве. Опытным путем или на основе справочных данных определяется зависимость плотности и теплопроводности материала.
  3. Пористость. Однородность структуры изделий нарушается из-за наличия в ее составе пор. Заполненный воздухом объем, занятый порами, передает часть энергии теплового потока. Для сухого воздуха принимает значение λ отсечной точки 0,02. Теплопроводность стройматериалов будет меньше, если воздушными порами будет занят больший объем.
  4. Структура пор. Тепловой поток снижает скорость при наличии в изделиях небольших пор замкнутого характера. Тепловая конвекция будет участвовать в передаче тепла, когда имеются относительно большие сообщающиеся между собой поры.

Красный керамический

Мелкозернистая глина является при производстве керамического кирпича основным компонентом. В готовую продукцию также входят вода, песок и улучшающие начальное качество сырья присадки.

Изделия меньше растрескиваются, когда в их состав входит более эластичный раствор, качество которого модифицируют с помощью пластификаторов.

Для керамического кирпича хорошая морозостойкость является основным достоинством. Он способен выдерживать 250-300 циклов замораживания и оттаивания.

Красный кирпич из керамики российского производства имеет толщину 6,5 см и 25 см в длину. Для двойного толщина составляет 13,8 см, 8,8 см — для полуторного.

У пустотелых и полнотелых изделий будет разная величина объемного веса. Построенная из кирпича конструкции будут характеризоваться теплопроводностью тем ниже, чем более пористый материал был использован при строительстве. Для полнотелого кирпича показатель пустотности не может составлять более 30%.

Чтобы внутри изделия образовались пустоты, используется «шихта» — торф, крошки угля, опилки, солома мелко порубленная. Ее добавляют в массу глины. Пустоты образуются, когда добавки выгорают при спекании глины в печах с 1000°С температурой.

По показателю плотности кирпич делится на 7 категорий — от 2,4 до 0,7. Каждый класс изделия обладает собственной теплопроводностью.

0,6-0,7 — коэффициент теплопроводности для изделий с цельной структурой. Для пустотелых — 0,5-0,25 Вт/м*0С.

Несущие стены не делают из пустотелых материалов, поэтому чаще всего они нуждаются в дополнительном утеплении.

Красный


Клинкерный

Этот тип кирпича получают из смеси силикатов и минералов, воды, тугоплавкой измельченной глины, которую обрабатывают после формовки при высокой температуре (до 13000). Для этого используют тоннельные печи.

При соблюдении технологии производства получается продукт без мелкодисперсионных пор с высокой прочностью, натуральных оттенков. Параметры готовых изделий определяются ГОСТ 530-2012.

Клинкерный кирпич чаще всего получается с точной геометрией. Для повышения теплоизоляционных качеств и облегчения веса конечной конструкции он выполняется пустотелым.

Характеристики материала:

  1. Морозостойкость более 100 циклов.
  2. Минимальная марка прочности М250.
  3. 1500 кг/см3 — наименьший показатель плотности.
  4. Высокая огнестойкость, устойчивость к биологическим угрозам, воздействию ультрафиолета.
  5. 6% — максимальное водопоглощение.
  6. Коэффициент теплопроводности — 1,15Вт/м*0С.

Характеристика шамотного

Этот вид кирпича делают из специальной глины — желтого шамота. Получаемые изделия являются жаростойким материалом, который в сложных условиях высоких температур даже под высоким давлением способен сопротивляться деформациям. Длительный контакт с открытым огнем спокойно им переносится.

Оксид алюминия является главным веществом, которое входит в огнеупорную смесь. Он обеспечивает кирпичу устойчивость к агрессивным средам и высокую прочность при механических воздействиях.

Материал делят на 8 групп по показателям пустотности. Максимальное значение — 85%, минимальное — 3%. Чем меньше удельный вес изделия, тем ниже прочностные характеристики.

Изготовленный в соответствии с государственными стандартами стройматериал обладают следующими показателями:


  • 7% — водопоглощение;
  • высокая устойчивость к кислотам и щелочам;
  • 3,7 кг — средний вес;
  • 1350°С — рабочая температура, 1750° — максимальная;
  • 15-23 Н/мм2 — значение прочности на сжатие;
  • 0,84-1,28 Вт/м*0С — коэффициент теплопроводности.

Силикатный

Материал получают под давлением 12 атм. и температуре 200°С автоклавным методом. В его состав входят, кроме модифицирующих добавок, извести, кварцевый песок в соотношении 1 к 9.

Стойкие к щелочи пигменты, которые добавляют в сырье на этапе прессования, помогают сделать цветные варианты изделий.

ГОСТ379-95, 379-2015 определяют требования к силикатному кирпичу. 15-31% составляет показатель пустотности. Вес изделий — от 3,2 до 5,8 кг.

Характеристики плотности:

  • 1450 кг/м3 — для пустотелого кирпича марки М150;
  • 1700-2100 кг/м3 — для полнотелого М150-200.

Теплопроводность пустотелых силикатных изделий составляет 0,56-0,81 Вт/м*0С, и 0,65-0,88 — для полнотелых.

Какая теплопроводность изделий

Для анализа теплопроводности изделий из кирпича принимается во внимание закон Фурье. Разница температур оказывает влияние на показатели, которые определяет тепловой поток.

Применяемые для отделки фасадов силикатные кирпичи имеют тепловые параметры ниже керамических. Поэтому изделия из силикатных материалов более теплые при одинаковых размерах конструкций.

Изделия из красного пустотелого керамического кирпича имеют коэффициент теплопроводности 0,56.

На показатели готовых зданий сооружений и влияет качество кладки. Важно, чтобы применяемые кладочные растворы были нежирными. Плотность слоя должна быть не больше 1800кг/м3 и минимальной толщины.

Теплотехнические расчеты и требуемая несущая способность определяют то, какая толщина несущей стены будет в здании. Чтобы удовлетворять современным требованиям при реконструкции домов, построенных в советское время, толщину их стен нужно сделать около 1 м. Это не может быть рентабельным, поэтому используют различные системы утепления.

Если утепляющая часть стены и сочетается с каменной, конструкция получается слоистой, то такую укладку называют эффективной. Ее часто применяют в малоэтажном строительстве, для увеличения полезной площади помещений и снижения затрат на материалы.

//www.youtube.com/watch?v=NjQhpwCjYQI

Что влияет на показатели

Теплопроводность стройматериала — способность сквозь свою толщину передавать тепло и стационарные внутренние процессы, происходящие внутри него при этом. Тесный контакт является обязательным условием для передачи теплоты от 1 объекта к другому, поэтому в чистом виде теплопроводность имеют только твердые тела.

На показатель λ оказывает влияние:

  • влажность;
  • температура;
  • пористость;
  • формы и структура пор;
  • фазовый состав влаги;
  • плотность.

Сильно снижает теплопроводность наличие замкнутых и мелких пор. Снижают эффективную теплоизоляцию конвективные потоки воздуха, которые возникают в сообщающихся между собой крупных порах. Ориентация, размер и форма пор важны для теплопередачи.

Входящие в состав материала вещества своей химической природой определяют способность удерживать тепловую энергию. Величина λ тем меньше, чем слабее связаны между собой образующие кристаллическую решетку вещества атомные группы или тяжелые атомы.

 


Теплопроводность кирпича: что влияет на показатели

Качество дома оценивается по многим факторам, одним из которых является способность удерживать тепло. Теплопроводность кирпича влияет на этот показатель. Поэтому перед началом строительства или утепления здания учитывается это свойство стройматериала. Популярным и доступным средством для возведения стен является керамический кирпич. Так как большинство его видов обладают слабой теплоизоляцией, то этот недостаток компенсируется с помощью термоизоляционных конструкций.

Что обозначает показатель?

Каждый стройматериал выделяется своей теплопроводностью. Этим показателем характеризуется способность удерживать тепло в доме. У бетона, дерева и кирпича эта характеристика имеет разные значения. Чем ниже значение показателя, тем лучше у него сопротивление теплопередаче. Но следует учитывать, что уровень теплоизоляции увеличивается при уменьшении плотности стройматериала. Это делает блоки более легкими, поэтому при возведении двухэтажного дома лучше выбрать пустотелый материал для уменьшения давления на фундамент дома. Толщина кирпичной кладки меняется в зависимости от теплопроводности стройматериала. Для экономии строительства используется двойной блок. Для оценки теплоизоляционных свойств утеплителя используют коэффициент теплотехнической однородности.

Вернуться к оглавлению

Свойства различных типов блоков

Красный керамический

Пористость увеличивает теплосопротивление стройматериалов, поэтому у полнотелого кирпича теплопроводность выше.

В составе такого материала присутствует глина.

Этот вид стройматериалов является популярным и доступным. Состоит из глины и других добавок. Этими строительными материалами возводится несущая конструкция, облицовываются или утепляются стены старого дома, а также сооружаются заборы и укладывается фундамент. Изделие отличается высокой прочностью и долговечностью. Теплопроводность керамического кирпича зависит от разновидности. Лучшим вариантом для утепления дома является использование пустотелого кирпича. Чем больше степень пустотелости, тем меньше изделие способно проводить тепло. Кирпичная стена может укладываться в один или два ряда. Кроме этого, стройматериал обладает такими свойствами, как:

  • прочность;
  • морозостойкость;
  • огнеупорность;
  • звукоизоляция.
Вернуться к оглавлению
Клинкерный

Эта разновидность красного керамического стройматериала чаще всего применяется для облицовочных работ, укладки тротуаров. Это обусловлено его высокой теплопроводностью. Она достигает 1,16 Вт/м°С. Уменьшения этого показателя удается достичь у пустотелых образцов. При строительстве дома из таких блоков необходимо использовать дополнительные методы утепления. Большая плотность изделия придает ему дополнительной влаго- и морозостойкости. Облицовочный кирпич широко используется для декоративной отделки домов снаружи и внутри.

Вернуться к оглавлению
Характеристика шамотного
Из шамотного материала получаются хорошие камины.

Так как этот вид стройматериала характеризуется высокой способностью проводить тепло, его чаще применяют при возведении каминов, печей. Этим обусловлено его название «печной кирпич». В таком случае теплопроводность шамотного кирпича играет решающую роль в выборе материалов для стройки. Подобные свойства помогают экономить энергию для обогрева помещения. Кроме этого, шамотный кирпич обладает такими свойствами, как:

  • огнеупорность;
  • устойчивость к перепадам температуры;
  • высокая теплопроводность;
  • легкий вес;
  • устойчивость к воздействию щелочей и ряда кислот;
  • прочность;
  • эстетичность.
Вернуться к оглавлению

Силикатный

Этот вид стройматериала ценится прочностью, экологичностью и звуконепроницаемостью. Но теплопроводность кирпича этого типа не завышена, поэтому помещения из него требуют дополнительного утепления. Силикатные блоки делают из смеси песка и извести с добавлением связующих компонентов, которые прессуются и впоследствии подвергаются обжигу. Самым распространенным является изделия марки М100. Различают рядовой и лицевой силикатный кирпич. Каждый из них имеет свою сферу применения. Кроме этого, материал способен впитывать влагу, что не позволяет использовать его в местах с повышенной влажностью и при строительстве фундамента.

Вернуться к оглавлению

Какая теплопроводность изделий?

У клинкерного материала этот показатель наивысший.

От состава, способа изготовления и пустотелости зависят характеристики стройматериалов. Коэффициент теплопроводности кирпича характеризует его способность проводить тепло. Клинкерные изделия отличаются высоким уровнем, а керамические материалы — самым низким в сравнении с другими видами. Характеристика разновидностей изделия указана в таблице.

Характеристика теплопроводности стройматериала
ВидПоказатель, Вт/м°С
КерамическийПолнотелый0,5—0,8
Щелевой0,34—0,43
Поризованный0,22
Клинкерный0,8—1,16
Шамотный0,6
СиликатныйПолнотелый0,7—0,8
Пустотелый0,4—0,66
Вернуться к оглавлению

Что влияет на показатели?

Теплопроводность кладки из кирпича зависит не только от качества изделия, но и от смеси, с помощью которой укладывается конструкция.

Для максимально эффективной теплоизоляции изделие должно содержать много пустот.

Но все же решающую роль в выборе стройматериала играет его характеристика. Теплопроводность красного кирпича отличается в зависимости от таких факторов, как:

  • Пустотелость. Чем больше пустот в изделии, тем выше его теплоизоляционные качества.
  • Плотность. Высокое значение этого показателя прибавляет стройматериалу прочности, но уменьшает способность удерживать тепло.
  • Структура и форма пористости. Большое количество мелких и замкнутых пор снижает теплопроводность материала.
  • Состав. Стройматериалы, образованные из тяжелых атомов и атомных групп, снижают теплопроводность.

При выборе стройматериалов руководствуются не только одним свойством удерживать тепло. Учитывается, в каких климатических условиях будет использоваться кирпич и функциональное назначение планируемой конструкции. Для строительства дома лучше подойдет применение двойного пустотелого керамического блока, а для облицовки — лицевого клинкерного кирпича. Преимущество силикатных блоков состоит в невысокой цене, но влаговпитываемость не позволяет его использование в местах с повышенной влажностью. К выбору стройматериалов рекомендуется относиться ответственно, так как от этого зависит качество постройки.

 

Таблица теплопроводности кирпича, его плотность, морозостойкость и теплоемкость

Сфера применения материала определяется его эксплуатационными характеристиками. Комплекс рассматриваемых свойств должны соответствовать требованиям, предъявляемых строительному кирпичу при сооружении внешних стен, перекрытий, фундамента. Возведение конструкций подразумевает выбор изделий различного назначения:

  • Силикатный – рядовой, лицевой, пустотелый, полнотелый.
  • Керамический – жаростойкий и все разновидности предыдущего вида.
  • Клинкерный – для облицовки фасадов.

Оглавление:

  1. Коэффициент теплопроводности
  2. Что такое теплоемкость?
  3. Значение морозостойкости

Теплотехнические характеристики

Показатели определяют энергопотребление дома, затраты на обогрев помещений. Проектирование сооружений, расчеты ограждающих конструкций учитывают эти параметры.

Коэффициент теплопроводности

Материалы обладают свойством проводить тепло от нагретой поверхности в более холодную область. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Основной показатель величины – коэффициент теплопроводности (λ, Вт/), определяемый как количество теплоты, проходящее через единицу площади сечения за единичный интервал времени. Малое значение положительно влияет на сохранение теплового режима.

Согласно ГОСТ 530-2012 эффективность кладки в сухом состоянии характеризуется коэффициентом теплопроводности:

  • ≤ 0.20 – высокая;
  • 0.2 < λ ≤ 0.24 – повышенная;
  • 0.24 — 0.36 – эффективная;
  • 0.36 — 0.46 – условно-эффективная;
  • ˃ 0.46 – обыкновенная (малоэффективная).

Чем больше плотность, тем выше теплопроводность – не совсем верное утверждение. Структура содержит закрытые поры и полости (пустотелый), наполненные воздухом с коэффициентом ≈ 0,026. Благодаря этому, изделия со щелевыми отверстиями лучше поддерживают тепловой режим внутри сооружений. В инженерных расчетах необходимо учитывать величину теплопроводности кладочной смеси, значение показателя выбирают от 0.47 и выше, в зависимости от состава.

Вид λ, Вт/м°C
Красный полнотелый 0,56 ~ 0,81
-//- пустотелый 0,35 ~ 0,87
Силикатный кирпич полнотелый 0,7 ~ 0,87
-//- пустотелый 0,52 ~ 0,81

Теплопроводность красного изделия ниже, чем у силикатного.

Физические процессы нагрева и удержания тепла можно охарактеризовать величинами:

  • Коэффициент теплоотдачи – теплообмен на границе поверхности твердого тела и воздушной среды. Это мощность теплового потока, приходящаяся на плоскость 1 м², обратно пропорциональная разнице температур тела и теплоносителя (воздух). Чем выше теплопроводность, тем больше теплоотдача.
  • Полное тепловое сопротивление – способность противостоять передаче тепла. Значение обратно пропорционально коэффициенту теплопередачи. Исходя из расчетной формулы R = L/λ, легко рассчитать оптимальную толщину кладки. λ – постоянный параметр, R – тепловое сопротивление указано в таблице 4 СП 131.13330.2012 для климатических зон России.

Теплоемкость

Необходимое количество тепла, подведенного к телу для увеличения температуры на 1 Кельвин – определение понятия «полная теплоемкость». Единица измерения: Дж/К или Дж/°C. Чем больше объем и масса тела (толщина стен и перекрытий), тем выше теплоемкость материала, лучше поддерживается благоприятный температурный режим. Наиболее точно это свойство подтверждают характеристики:

  • Удельная теплоемкость кирпича – количество тепла, необходимое для нагрева единичной массы вещества за единичный интервал времени. Единица измерения: Дж/кг*К или Дж/кг*°C. Используется для инженерных расчетов.
  • Объемная теплоемкость – количество тепла, потребляемое телом единичного объема для нагрева за единицу времени. Измеряется в Дж/м³*К или Дж/кг*°C.
Вид изделия Удельная теплоемкость, Дж/кг*°С
Красный полнотелый 880
пустотелый 840
Силикатный полнотелый 840
пустотелый 750

Тепловая конвекция непрерывна: радиаторы нагревают воздух, который передает тепло стенам. При понижении температуры в помещениях происходит обратный процесс. Увеличение удельной теплоемкости, снижение коэффициента теплопроводности стен обеспечивают сокращение затрат на обогрев дома. Толщина кладки может быть оптимизирована рядом действий:

  • Применение теплоизоляции.
  • Нанесение штукатурки.
  • Использование пустотного кирпича или камня (исключено для фундамента здания).
  • Кладочный раствор с оптимальными теплотехническими параметрами.

Таблица с характеристиками различных видов кладок. Использованы данные СП 50.13330.2012:

Плотность, кг/м³ Удельная теплоемкость, кДж/кг*°С Коэффициент теплопроводности, Вт/м*°C

Обыкновенный глиняный кирпич на различном кладочном растворе

Цементно-песчаный 1800 0.88 0.56
Цементно-перлитовый 1600 0.88 0.47

Силикатный

Цементно-песчаный 1800 0.88 0.7

Пустотный красный различной плотности (кг/м³) на ЦПС

1400 1600 0.88 0.47
1300 1400 0.88 0.41
1000 1200 0.88 0.35

Морозостойкость кирпичной кладки

Устойчивость к воздействию отрицательных температур – показатель, влияющий на прочность и долговечность конструкции. Кладка в процессе эксплуатации насыщается влагой. В зимний период вода, проникая в поры, превращается в лед, увеличивается в объеме и разрывает полость, в которой находится – происходит разрушение. Морозоустойчивость, как правило, низкая, водопоглощение не должно превышать 20 %.

Определение количества циклов замораживания и оттаивания без потери прочности каждого вида изделия позволяет выявить морозоустойчивость (F). Значение получают опытным путем. В лаборатории проводят многократную заморозку в холодильных камерах и естественное оттаивание образцов.

Коэффициент морозостойкости – отношение прочности на сжатие опытного и исходного элемента. Изменение показателя более 5 %, наличие трещин, отколов сигнализируют об окончании испытаний. Марки изделий содержат характеристики по морозостойкости: F15 (20, 25, 35, 50, 75, 100, 150). Цифровой параметр указывает на количество циклов: чем выше число, тем надежнее возводимая система.

Приобретение кирпича высокой марки морозостойкости опустошит бюджет, заложенный на строительство. Меры по улучшению свойств конструкций, продлению срока эксплуатации в зонах холодного климата без увеличения расходов:

  • Применение паро- и гидроизоляции.
  • Обработка кладки гидрофобными составами.
  • Контроль, своевременное исправление дефектов.
  • Надежная гидроизоляция фундамента.

От выбора материала для кладки, его удельной теплоемкости, теплопроводности, морозостойкости зависит срок и комфорт эксплуатации дома. Сложные расчеты, составление сметы расходов лучше доверить опытным специалистам, имеющим опыт в строительстве и проектировании.

керамического (красного), пустотелого, силикатного, поризованного

Еще не так давно в строительстве использовались только два вида кирпича – обычный из красной глины и белый силикатный. Сочетание двух цветов в дизайне дома считалось верхом крутости. Немногие задумывались о теплопроводности, а о «мостиках холода» даже не слышали.

СодержаниеРаскрыть

Характеристика теплопроводности – почему это важно

Развитие технологий производства строительных материалов и стремление к новому качеству жизни изменило не только критерии роскоши, но и что более важно, подход к обустройству комфортабельности жилья. Рынок строительных материалов позволяет подобрать подходящий вид кирпича буквально для каждой стенки дома.

Все предметы, вещества, материалы обладают свойством теплопроводности. Это проявляется в способности поглощать и отдавать тепло. Характеристика теплоотдачи коррелирует с теплоемкостью – возможностью материала накапливать определенное количество тепловой энергии.

Теплопроводность строительных материалов

Этот параметр определяет толщину наружных стен сооружения, необходимую в холодных климатических зонах для обеспечения комфортной температуры внутри жилого здания.

Обратите внимание! Теплопроводность красного кирпича ниже, чем силикатного.

Лучшие показатели демонстрируют пенополистирол, минеральная вата и другие виды изоляции, собственно, для этого и созданные. Следом идет дерево, затем газобетон, бетон и, наконец, кирпич. Впрочем, для современных материалов эта градация несколько устарела, так как некоторые виды поризованной керамики удерживают тепло гораздо лучше бетона.

Но кирпичные блоки тоже неоднородны. Разные виды обладают различным набором характеристик, учитывая которые легко подобрать материал под любые строительные нужды.

Кирпич – универсальный строительный материал

Несмотря на то, что постоянно создаются новые материалы, кирпич еще долго не утратит своей актуальности. Удобство использования и широкий набор разнообразных характеристик обеспечивают его высокую конкурентоспособность.

Кроме природных веществ, из которых производят керамические (глина) и силикатные (песок+известь) блоки, они отличаются структурой, добавками и способами изготовления.

Виды, свойства и применение

По назначению кирпич подразделяется на строительный, специальный и облицовочный. Строительный применяется для кладки стен, облицовочный – для дизайна фасадов и интерьера, а специальный идет на фундаменты, дорожное покрытие, кладку печей и каминов.

Более узкая специализация обусловлена различной структурой изделий.

Полнотелый кирпич

Представляет собой сплошной брусок со случайными пустотами, составляющими менее 13 %.

Полнотелыми бывают кирпичи:

Силикатный, керамический – используются для возведения самонесущих стен, перегородок, колонн, столбов и так далее. Конструкции из полнотелого кирпича надежны, морозоустойчивы, способны нести дополнительные нагрузки. Перегородки обеспечивают хорошую звукоизоляцию при небольшой толщине, сохраняют большое количество тепла.

К тому же материал довольно декоративен и популярен у многих современных дизайнеров. Но высокий коэффициент теплопроводности и водопоглощения вынуждает сооружать наружные стены большой толщины или делать их трехслойными, сочетая с изоляционными материалами и другими видами кирпича.

Шамотный – изготавливается из специальной огнеупорной измельченной глины и порошка шамота путем обжига с повышенным температурным режимом. Применяется для выкладки каминов, печей и других сооружений, где требуется огнеупорность. Специфика применения определила большое разнообразие форм изделия:

  • клиновидные и прямые;
  • больших средних и малых размеров;
  • фасонные с профилями различной сложности;
  • специальные, лабораторные и промышленные тигли, трубки и другой инвентарь.

Клинкерный – изготавливается из тугоплавких глин с разнообразными добавками. Обжигается при очень высоких температурах до полного запекания. Различные компоненты и вариативность режима обжига придают кирпичам повышенную прочность, водостойкость и широкую палитру оттенков от зеленоватого, при обжиге с торфом, до бордового с угольными подпалами. Раньше широко применялся для мощения тротуаров, теперь используется в кладке и облицовке фундаментов. Теплопроводность керамического кирпича довольно высока.

Пустотелый кирпич

Материал допускает 45 % пустот от общего объема, а также отличается по форме, структуре и расположению пустот в бруске. Теплопроводность пустотелого кирпича напрямую зависит от количества воздуха в его теле – чем больше воздуха, тем лучше теплоизоляция.

Кирпич с пустотами – брусок с двумя-тремя большими сквозными отверстиями, которые служат скорее облегчению и удешевлению, нежели улучшению теплоизоляции. Применяется наравне с полнотелым аналогом, за исключением фундаментов и других конструкций, требующих повышенной прочности.

Щелевой кирпич – все тело блока пронизано отверстиями различной формы размеров.

Они бывают:

  • прямоугольными;
  • треугольными;
  • ромбовидными;
  • сквозными и закрытыми с одной стороны;
  • вертикальными и горизонтальными.

Довольно хорошая прочность и низкая теплопроводность определяют его востребованность для возведения наружных стен жилых зданий.

Важно! Горизонтальное расположение пустот значительно снижает прочность материала.

Поризованный кирпич – выпускается нескольких размеров. Кроме большого числа отверстий обладает пористой структурой материала, которая образуется при выгорании специальных мелких фракций, добавленных в глину. Обладает лучшим набором качеств для строительства наружных стен. Прочность, низкая теплопроводность и большие габариты сокращают сроки строительства в разы, при этом с соблюдением последних требований СНиП. Теплая керамика характеризуется самыми низкими показателями теплопроводности, но из-за хрупкости пока имеет ограниченное применение.

Облицовочный кирпич – тоже является пустотелым, удачно сочетая художественные и утеплительные свойства.

Таблица показателей теплопроводности строительных материалов

Наименование материала Коэффициент теплопроводности, Вт/(м*К)
Блок керамический 0,17- 0,21
Поризованный кирпич 0,22
Керамический щелевой кирпич 0,34–0,43
Силикатный щелевой кирпич 0,4
Керамический кирпич с пустотами 0,57
Керамический полнотелый кирпич 0,5-0,8
Силикатный кирпич с пустотами 0,66
Силикатный кирпич полнотелый 0,7–0,8
Клинкерный кирпич 0,8–0,9

Почти всегда в строительстве дома для разных конструктивных элементов используются несколько видов кирпича с соответствующими характеристиками.

Несколько рекомендаций по снижению теплопроводности

Если приходится строить стены из кирпича с большой теплопроводностью, то в целях экономии материала и уменьшения потерь тепла рекомендуется возводить трехслойную конструкцию:

  1. Внутренняя стена в 1,5–2 кирпича.
  2. Прокладка из пенопласта, минеральной ваты или другого изоляционного материала.
  3. Внешняя декоративная стена в 0,5 кирпича.

Обратите внимание! Следует оставить зазор между утеплителем и наружной стеной для вентиляции и испарения конденсата. Также необходимы вентиляционные зазоры между кирпичами через каждый метр по горизонтали и 3 метра по вертикали.

Утеплитель необходимо прокладывать и между балками перекрытия над окнами, устанавливая не один монолитный блок, а 2–3 тонких с вертикальной прослойкой изоляции, для перекрытия «мостиков холода».

Совет! Чтобы не испортить тепловые параметры поризованных и щелевых кирпичей, следует накрывать их сеткой, а уже на нее класть раствор и следующий ряд блоков. Такая технология не позволяет раствору проваливаться в отверстия и сводить на нет полезные свойства материала.

Планируя строительство дома, ознакомьтесь с последними технологическими достижениями строительной отрасли, посоветуйтесь с добросовестными профессионалами, очень внимательно отнеситесь к подбору строителей и смело вступайте в этот интересный, захватывающий процесс создания своего неповторимого и теплого, во всех отношениях, жилища.

Полнотелый керамический кирпич | СТРОЙ САМ

     Керамический полнотелый кирпич – это искусственный камень правильной формы, полый внутри, то есть не содержащий пустот. Изготавливается из красной глины путем формовки и обжига.

Используется полнотелый кирпич, благодаря своим свойства, преимущественно для устройства фундаментов, цоколей домов, возведении подвальных помещений, для возведения стен зданий, облицовки здания, кладке печей и каминов, там, где нужна повышенная прочность и огнеупорность.

Из-за того что материал имеет широкое применение, его также называют керамический рядовой полнотелый кирпич.

Прочность полнотелого кирпича

Полнотелый  кирпич соответствует стандартным маркам прочности. Прочность кирпича обозначается соответствующей маркой, например М100, где М- это марка, а 100 – это нагрузка в килограммах которую может выдержать полнотелый кирпич при давлении на 1 см квадратный, то есть при сжатии. Полнотелый керамический кирпич бывает следующих марок плотности М-75, М-100, М-125, М-150, М-175, М-200, М-250, М-300. Марки 75-100 используют для кладки стен двух и трех этажных домов, прочность такого кирпича позволяет выдерживать вес всего здания. Марки от 125 до 200 уже можно смело использовать для сооружения фундаментов и цокольных этажей. Полнотелый кирпич М200 и М300 используется даже для устройства фундаментов многоэтажных домов.

Теплопроводность полнотелого кирпича

Кирпич как и любой стеновой материал обладает свойством проводить температуру от нагретой поверхности внутренней средой дома во внешнюю среду, более холодную. Процесс происходит в результате электромагнитного взаимодействия атомов, электронов и квазичастиц (фононы). Показатель величины теплопроводности – это коэффициент теплопроводности λ, Вт/. Это  количество теплоты, которое проходит через единицу площади сечения изделия за единичный промежуток времени.

Значения коэффициентов теплопроводности: ≤ 0.20 – высокая теплопроводность; 0.2 < λ ≤ 0.24 – повышенная теплопроводность; 0.24 — 0.36 – эффективная теплопроводность; 0.36 — 0.46 – условно-эффективная теплопроводность; ˃ 0.46 – малоэффективная теплопроводность.

У полнотелого керамического кирпича высокая теплопроводность до 0,56-0,81 Вт/м, и он хорошо отдает полученное тепло, в отличие от пустотелого кирпича, который держит тепло благодаря внутренним пустотам. Потому полнотелый кирпич и используется для устройства печей и стараются не использовать для возведения стен здания.

Морозостойкость полнотелого кирпича

Морозостойкость кирпича, в общей стандартизации изделия, обозначается буквой F. Под морозостойкостью полнотелого керамического кирпича понимается его способность в насыщенном  водой состоянии выдерживать без разрушений многократные циклы заморозки и оттаивания. Морозостойкость измеряется количеством циклов замораживания и оттаивания, проводимых в Самыми распространённые марки по морозостойкости это F-15, F-25, F-35, F-50, F-100, где цифра после буквы F обозначает количество циклов заморозки и разморозки. Такие испытания проводятся над искусственным камнем по 8 часов в одном температурном цикле.

Показатель морозостойкости не зависит от полнотелости или пустотелости кирпича, на этот показатель влияет сырье из которого изготовили кирпич и технология производства. Самой распространенной маркой по морозостойкости является не ниже F-35, для климата с умеренной зимой и летом.

Размер и вес полнотелого кирпича

Стандартный размер кирпича 250х120х65 мм, и вес 4,3 килограмма и 1 600 – 1 900 кг/куб.м, такой кирпич его называют одинарным. Такой размер удобен в работе каменщика. Изготавливают кирпич и больших размеров, например полуторный и двойной (двушка), с соответствующими увеличенными размерами в высоте и большим весом. В сравнении с пустотелым искусственным камнем, полнотелый кирпич более тяжелее, а значит, стены  возведенные из него будут оказывать большую нагрузку на фундамент. Это еще одна причина не использовать полнотелый кирпич для кладки коробки дома.

Огнестойкость полнотелого керамического кирпича

Огнестойкость кирпича это его способность ограничивать распространение огня и не менять своих технических свойств под воздействием высоких температур.

Огнестойкость полнотелого кирпича характеризуют такие показатели как

– негорючесть, то есть он не подвержен возгоранию и поддержанию огня;

– сохранение механической прочности при нагреве до высоких температур;

– низкая теплопроводность, то есть при контакте одной стороны с высокой температурой, вторая сторона должна сохранять температуру ниже температуры возгорания материалов с которым контактирует кирпичная стена, например если  это пластик, бумажные и картонные изделия, а так же материалы из дерева. Но как правило, такие материалы могут контактировать с кирпичной стеной только внутри дома и не снаружи и причиной их возгораний очевидно не будет является нагретый кирпич.

Стены и конструкции, элементы зданий выполненные из кирпича, в частности полнотелого кирпича  являются самыми огнеупорными, потому то из них и складывают печи, камины и дымоходные трубы. Такое свойство обеспечивает безопасность жильцам дома из кирпича.

Во время случайных пожарах внутри кирпичного дома и рядом с ним, можно с уверенностью утверждать что дом не сгорит и не лишит его владельца жилья, стены и целостность дома сохранится.

Водопоглощение полнотелого керамического кирпича

Водопоглощение кирпича — это способность данного изделия впитывать в себя и сохранять влагу. Это соотношение объема впитанной влаги и веса материала. Показатель водопоглощения определяется в процентах к объему материала. Чем выше будет показатель водопоглощения, тем ниже уровень прочности кирпича и соответственно устойчивости к низким температурам, поскольку замерзшая внутри  кирпича влага будет разрушать его изнутри.

Для полнотелого керамического кирпича показатель водопоглощения устанавливается на уровне 8%-14%, низкий уровень водопоглощения, потому его используют для возведения цоколей и облицовки стен домов.

Рассмотрев основные характеристики полнотелого керамического кирпича можно сделать вывод что основными его достоинствами являются высокая прочность, водостойкость, устойчивость к высоким температурам, потому его используют для возведения цоколей и несущих стен, печей и использовать в качестве облицовочного материала. А основными недостатками являются высокая теплопроводность и масса , потому его редко используют как основной кладочный материал для дома.

Теплопроводность кирпича

 

Современный строительный рынок все чаще пополняют новые материалы, восхищающие потребителя качественным исполнением, улучшенными свойствами, обновленными возможностями. Их преимущества над традиционными бесспорны за счет преобладания сразу нескольких характеристик по многим значимым параметрам.


При появлении новых технологий в строительной индустрии не стоит забывать и хорошо проверенные временем стройматериалы. К примеру, кирпичные материалы во все времена относились к востребованным, и никакие факторы не могут повлиять на уровень их популярности. Из них возведено большинство построек, так как они обладают способностью к противостоянию разным климатическим условиям.

 


С давних времен до сегодняшнего дня эта строительная продукция выдерживает весомые нагрузки, проходит долгое испытание временем. Прочность, долговечность, экологические свойства, водостойкость, морозоустойчивость, звуко- и теплоизоляционные характеристики относят его к ряду лучших стройматериалов.

 

Что такое теплопроводность?

 

 

Керамические изделия используют при возведении несущих стен, перегородок между комнатами, облицовочные – дают возможность придать дому и прилегающему к нему забору аккуратный и достойный вид, презентабельность, создают неповторимый стиль, а также увеличивают тепло в доме. При выборе стройматериала для постройки перекрытий, стен и полов именно такие факторы являются самыми важными.

 


На вопрос: «Каким же образом определить величину тепловой характеристики?», отвечают эксперты с богатым и длительным опытом работы. Они авторитетно настаивают на том, что многочисленные виды кирпичной кладки детально исследовались в лабораторных условиях. В соответствии с полученными данными выставлен определенный коэффициент теплопроводности кирпича.

 

Показатели указывают на различные температуры, поскольку тепловая энергия имеет способность постепенного перехода из горячего состояния в холодное. При довольно высокой температуре этот процесс можно увидеть открыто. Высокоинтенсивная передача тепла обусловлена градациями в температуре.

 

Закон Фурье вкратце

 


Величина степени переноса теплоты обозначается специальным коэффициентом (КТ) – λ, а тепловая энергия измеряется в Вт. Последняя уменьшает свой уровень при прохождении расстояния в 1 мм с различием температуры на 1 градус. В итоге меньшая потеря энергии выгоднее, а стройматериал с небольшим КТ относится к более теплому.

 

Теплопроводный параметр большой мерой обусловлен плотностью, при уменьшении ее уровня понижается и тепловой показатель. То есть плотные тяжелые экземпляры обладают повышенным значением Т, а более легкий вес и меньшая прочность указывает на небольшую Т. Для повышения Т влияют на состав материала, его плотность, соблюдение методики изготовления, влаговместимость.

 

Показатели теплопроводности разных видов кирпичей

 

 


Теплопроводность пустотелого кирпича - 0,3-0,4 Вт/м*К, то есть потеря тепла выше практически вдвое. Вследствие этого такие постройки требуют дополнительного утепления.


У кирпича облицовочного величина данной характеристики зависит от вида, ведь он подразделяется на керамический, силикатный, гиперпрессованный и клинкерный. Наиболее высокий уровень Т у клинкерного, а низкий – у керамического. Силикатный намного холоднее керамического, а наиболее популярный в этом плане – гиперпрессованный. Чем плотнее и прочнее стройматериал, тем выше уровень его Т.

 

 

 

Красный кирпич имеет теплопроводность, зависящую от технологии его производства. Благодаря достаточной плотности и пустотности от 40% до 50% Т составляет 0,2 – 0,3 Вт/м*К. При такой величине толщина стен может быть значительно меньшей, чем в постройке с силикатным.

 


Уровень тепловой характеристики у шамотного кирпича является очень важной их всех остальных показателей. Наиболее важно учитывать этот фактор при возведении печей, а также каминов. Свойство быстро отдавать тепло просто незаменимо при желании иметь у себя дома такие виды обогрева.


Как известно, степень передачи тепловой энергии формируют такие различные качественные свойства: вес, объем, влажность, пористость, плотность, влажность, виды добавок. Большое количество пор, содержащих воздух, создает низкий уровень проведения тепла. Для обеспечения тепла в жилище следует выбирать стройматериалы с низким значением КТ, поскольку он непосредственно влияет на выбор технологии утепления стен и отопительной системы.


Итак, каждый вид кирпича имеет свой коэффициент теплопроводности (КТ), измеряющийся в Вт/м°С или в Вт/м*К. Для силикатного, керамического, полнотелого и пустотелого данные указаны выше. Облицовочный (лицевой) керамический имеет достаточно низкий уровень – 0.3 – 0.5, а гиперпрессованный, наоборот, – 1.1. Красный пустотелый -  лишь 0.3 - 0.5,«сверхэффективный» – от 0.25 до 0.26, полнотелый – от 0.6 до 0.7, глиняный - 0.56.


Кирпичные изделия от разных производителей имеет отличия физических характеристик. Поэтому строительные работы должны вестись с учетом значений указанных коэффициентов, обозначенных в документации от завода-изготовителя. Перед началом работ следует изучить всю сопутствующую информацию, выслушать рекомендации опытных строителей-специалистов и только потом подготовлено начать задуманное строительство.

Теплопроводность выбранных материалов и газов

Теплопроводность - это свойство материала, которое описывает способность проводить тепло. Теплопроводность может быть определена как

«количество тепла, передаваемого через единицу толщины материала - в направлении, перпендикулярном поверхности единицы площади - из-за градиента температуры единицы в установившемся режиме»

Теплопроводность Единицами измерения являются [Вт / (м К)] в системе СИ и [БТЕ / (ч футов F)] в системе Imperial.

См. Также теплопроводность вариации с температурой и давлением , для: Воздуха, аммиака, диоксида углерода и воды

Теплопроводность для обычных материалов и изделий:

Хлорированный полиэфир 900od Красный металл Сталь соломенная, сжатая Вольфрам
Теплопроводность
- k -
Вт / (м К)

Материал / Вещество Температура
25 o C
(77 o F)
125 o C
(257 o F)
225 o C
(437 o F)
Acetals 0.23
Ацетон 0,16
Ацетилен (газ) 0,018
Акрил 0,2
Воздух, атмосфера (газ) 0,0262 0,0333 0,0398
Воздух, высота над уровнем моря 10000 м 0,020
Агат 10.9
Спирт 0,17
Глинозем 36 26
Алюминий
Алюминий Латунь 121
Алюминий оксид 30
Аммиак (газ) 0,0249 0,0369 0,0528
Сурьма 18.5
Яблоко (влажность 85,6%) 0,39
Аргон (газ) 0,016
Асбестоцементная плита 0,744
Асбест- цементные листы 0,166
Асбестоцемент 2,07
Асбест сыпучий 0.15
Доска асбестовой мельницы 0,14
Асфальт 0,700
Древесина бальзы 0,048
Битум 0,182 9007
Битумные / войлочные слои 0,5
Говядина постная (влажность 78,9%) 0.43 - 0,48
Бензол 0,16
Бериллий
Висмут 8,1
Битум 0,17 Печь газовая 8878 (газ) 0,02
Вес котла 1,2 - 3,5
Бор 25
Латунь
Бриз-блок 0.10 - 0,20
Кирпич плотный 1,31
Кирпич огнеупорный 0,47
Кирпич изоляционный 0,15
Кирпич обыкновенный обыкновенный (Строительный кирпич ) 0,6 -1,0
Кирпичная кладка плотная 1,6
Бром (газ) 0.004
Бронза
Коричневая железная руда 0,58
Сливочное масло (влажность 15%) 0,20
Кадмий
Силикат кальция 0,05
Углерод 1,7
Углекислый газ (газ) 0.0146
Окись углерода 0,0232
Чугун
Целлюлоза, хлопок, древесная масса и регенерированные 0,23

Ацетат целлюлозы, формованный, лист

0,17 - 0,33
Нитрат целлюлозы, целлулоид 0,12 - 0,21
Цемент, Портленд 0.29
Цемент, раствор 1,73
Керамические материалы
Мел 0,09
Древесный уголь 0,084 9008 0,13
Хлор (газ) 0,0081
Хром никель Сталь 16.3
Хром
Оксид хрома 0,42
Глина сухая до влажности 0,15 - 1,8
Глина насыщенная 0,6 - 2,5
Уголь 0,2
Кобальт
Треска (влажность 83%) 0.54
Кокс 0,184
Бетон легкий 0,1 - 0,3
Бетон средний 0,4 - 0,7
Бетон плотный 1,0 - 1,8
Бетон, камень 1,7
Константин 23.3
Медь
Кориан (керамический наполнитель) 1,06
Пробковая доска 0,043
Пробка с повторной грануляцией 0,044
Пробка 0,07
Хлопок 0,04
Вата 0.029
Углеродистая сталь
Вата теплоизоляционная 0,029
мельхиор 30% 30
Алмаз 1000
Диатомовая земля (Sil-o-cel) 0,06
Диатомит 0,12
Дуралий
Земля сухая 1.5
Эбонит 0,17
Эмери 11,6
Моторное масло 0,15
Этан (газ) 0,018
Эфир 0,14
Этилен (газ) 0,017
Эпоксидная смола 0.35
Этиленгликоль 0,25
Перья 0,034
Войлочная изоляция 0,04
Стекловолокно 0,04 9004 изоляционная плита 0,048
Древесноволокнистая плита 0,2
Огнеупорный кирпич 500 o C 1.4
Фтор (газ) 0,0254
Пеностекло 0,045
Дихлордифторметан R-12 (газ) 0,007
Дан R-12 (жидкий) 0,09
Бензин 0,15
Стекло 1.05
Стекло, Жемчуг, сухое 0,18
Стекло, Жемчуг, насыщенное 0,76
Стекло, окно 0,96
Стекло Изоляция шерсти 0,04
Глицерин 0,28
Золото
Гранит 1.7 - 4.0
Графит 168
Гравий 0.7
Грунт или почва, очень влажная зона 1.4
Грунт или почва, влажная площадь 1,0
Земля или почва, сухая зона 0,5
Земля или почва, очень сухая зона 0.33
Гипсокартон 0,17
Войлок 0,05
ДСП высокой плотности 0,15
Лиственные породы (дуб, клен ..) 0,16
Hastelloy C 12
Гелий (газ) 0,142
Мед (12.Влажность 6%) 0,5
Соляная кислота (газ) 0,013
Водород (газ) 0,168
Сероводород (газ) 0,013
Лед (0 o C, 32 o F) 2,18
Инконель 15
Слиток железа 47 - 58
Изоляционные материалы 0.035 - 0,16
Йод 0,44
Иридий 147
Железо
Оксид железа 0,58 900ok
Kap изоляция 0,034
Керосин 0,15
Криптон (газ) 0.0088
Свинец
Кожа сухая 0,14
Известняк 1,26 - 1,33 900,7
Литий
Магнезия ( 85%) 0,07
Магнезит 4,15
Магний
Магниевый сплав 70 - 145
Мрамор 2.08 - 2,94
Меркурий, жидкость
Метан (газ) 0,030
Метанол 0,21
Слюда 0,71
Молоко 0,53
Изоляционные материалы из минеральной ваты, шерстяные одеяла .. 0,04
Молибден
Монель
Неон ( газ) 0.046
Неопрен 0,05
Никель
Оксид азота (газ) 0,0238
Азот (газ) 0,024
Закись азота (газ) 0,0151
Нейлон 6, нейлон 6/6 0,25
Масло машинное смазочное SAE 50 0.15
Оливковое масло 0,17
Кислород (газ) 0,024
Палладий 70,9
Бумага 0.05 9005
Парафиновый воск 0,25
Торф 0,08
Перлит, атмосферное давление 0.031
Перлит, вакуум 0.00137
Фенольные литые смолы 0,15
Фенолформальдегидные формовочные смеси 0,13 - 0,25 Фосфорбронза 110
Пинчбек 159
Шаг 0.13
Каменный уголь 0,24
Гипс легкий 0,2
Гипс, металлическая рейка 0,47
Гипс, песок 0,71
Гипс, деревянная планка 0,28
Пластилин 0,65 - 0,8
Пенопласт (изоляционные материалы) 0.03
Платина
Плутоний
Фанера 0,13
Поликарбонат 0,19
Полиэфир 9005 Полиэстер
Полиэтилен низкой плотности, ПЭЛ 0,33
Полиэтилен высокой плотности, PEH 0.42 - 0,51
Натуральный каучук полиизопреновый 0,13
Твердый каучук полиизопреновый 0,16
Полиметилметакрилат 0,17 - 0,25
Полипропилен 0,1 - 0,22
Полистирол, пенополистирол 0,03
Полистирол 0.043
Пенополиуретан 0,03
Фарфор 1,5
Калий 1
Картофель, сырая мякоть 0,55
Пропан (газ) 0,015
Политетрафторэтилен (ПТФЭ) 0,25
Поливинилхлорид, ПВХ 0.19
Пирекс 1,005
Кварц минеральный 3
Радон (газ) 0,0033
Красный металл
Рений
Родий
Камень твердый 2 - 7
Камень пористый вулканический (туф) 0.5 - 2,5
Изоляция из каменной ваты 0,045
Канифоль 0,32
Каучук сотовый 0,045
Каучук натуральный 0,13
Рубидий
Лосось (влажность 73%) 0.50
Песок сухой 0,15 - 0,25
Песок влажный 0,25 - 2
Песок насыщенный 2 - 4
Песчаник 1.7
Опилки 0,08
Селен
Овечья шерсть 0.039
Кремнезем аэрогельный 0,02
Силиконовая литая смола 0,15 - 0,32
Карбид кремния 120
Силиконовое масло 0,1
Серебро
Шлаковая вата 0,042
Шифер 2.01
Снег (температура <0 o C) 0,05 - 0,25
Натрий
Хвойные породы (ель, сосна ..) 0,12
Грунт, глина 1,1
Грунт с органическими веществами 0,15 - 2
Грунт насыщенный 0.6 - 4

Припой 50-50

50

Сажа

0,07

Пар насыщенный

0,0184
Пар, низкое давление 0,0188
Стеатит 2
Сталь, углерод
Сталь нержавеющая
0.09
Пенополистирол 0,033
Диоксид серы (газ) 0,0086
Сера, кристалл 0,2
Сахар 0,087 - 0,22
Тантал
Смола 0,19
Теллур 4.9
Торий
Пиломатериалы, ольха 0,17
Пиломатериалы, ясень 0,16
Пиломатериалы, береза ​​ 0,14 9004
Пиломатериалы из лиственницы 0,12
Пиломатериалы из клена 0,16
Пиломатериалы из дуба 0.17
Пиломатериалы 9004 0,14
Пиломатериалы 0,19
Пиломатериалы красного бука 0,14
Пиломатериалы красного сосны 0,15
Пиломатериалы из белой сосны 0,15
Пиломатериалы из грецкого ореха 0,15
Олово
Титан
Уран
Уретановая пена 0.021
Вакуум 0
гранулы вермикулита 0,065
виниловый эфир 900 900
9005
9005 9005 9005 9005 9005 9005 9005 900 0 9009 900 0 9009 900 0 9009 0,606
Вода, пар (пар) 0,0267 0,0359
Мука пшеничная 0.45
Белый металл 35 - 70
Дерево через зерно, белая сосна 0,12
Дерево через зерно, бальза 0,055
Дерево поперек зерна, желтая сосна, древесина 0,147
Дерево, дуб 0,17
Шерсть, войлок 0.07
Древесная вата, сляб 9009 0,1 - 0,15
Ксенон (газ) 0,0051
Цинк

Пример - Проводящая теплопередача через Алюминиевый горшок или горшок из нержавеющей стали

Convective heat transfer

Проводящий теплообмен через стенку резервуара можно рассчитать как

q = (к / с) A dT (1)

или альтернативно

q / A = (к / с) dT

, где

q = теплообмен (Вт, БТЕ / ч)

A = площадь поверхности (м 2 , фут 2 )

q / A = теплопередача на единицу площади (Вт / м 2 , БТЕ / (h ft 2 ))

90 007 k = теплопроводность (Вт / мК, БТЕ / (ч футов ° F) )

dT = t 1 - t 2 = разность температур ( o C, o F)

s = толщина стенки (м, футы)

Калькулятор кондуктивного теплопередачи

k = теплопроводность (Вт / мК, БТЕ / (ч футов F) )

s = толщина стенки (м, футы)

A = площадь поверхности (м 2 , футы 2 )

dT = t 1 - t 2 = разность температур ( o C, o F)

Примечание! - что общая теплопередача через поверхность определяется «общим коэффициентом теплопередачи », который в дополнение к проводящей теплопередаче зависит от

Кондуктивная теплопередача через алюминиевую стенку резервуара толщиной 2 мм - разность температур 80 o C

Теплопроводность для алюминия составляет 215 Вт / (м К) (из таблицы выше).Кондуктивный теплообмен на единицу площади может быть рассчитан как

q / A = [(215 Вт / (м К)) / (2 10 -3 м)] (80 o C)

= 8600000 (Вт / м 2 )

= 8600 (кВт / м 2 )

Проводящая теплопередача через стенку из нержавеющей стали толщиной 2 мм - перепад температур 80 o C

Теплопроводность для нержавеющей стали составляет 17 Вт / (м К) (из таблицы выше).Кондуктивный теплообмен на единицу площади можно рассчитать как

q / A = [(17 Вт / (м К)) / (2 10 -3 м) ] (80 o C)

= 680000 (Вт / м 2 )

= 680 (кВт / м 2 )

.
Теплопроводность газа обожженной глины Кирпич печной

огнеупорной глины кирпичи как старейших и наиболее широко используемых огнеупорных материалов сделан из глины шамота в качестве заполнителя и огнеупорной глины в качестве закрепляющей содержание agent.The Al2O3 глины огнеупорного кирпича составляет от 30 -48% .Как для шамота кирпича Китая, содержание Al2O3 составляет более 40%, содержание Fe2O3 меньше, чем 2-2,5% .The ингредиент из кирпичей содержит 65-85% глины шамота и 35- 15% огнеупорный clay.During производства, сначала смешать глины шамота с огнеупорным порошком глины, затем приготовленным с глиной заполнителем в сухую грязь, высокое литье под давлением, спекание при температуре около 1400 ° с.При высокой температуре огнеупорные глиняные кирпичи проявляют слабую кислотность, а способность к эрозии щелочных шлаков плохая, но с увеличением содержания Al203 термостойкость огнеупорных глиняных кирпичей лучше, чем у силикатного кирпича, магнезиального кирпича и скоро.

Артикул / Тип SK-30 SK-32 SK-34 SK-35
AL2O3% (≥) 30 35 38 45
Fe2O3% (≤) 2.5 2,5 2,0 2,0
Огнеупорность (SK) 30 32 34 35
Огнеупорность под нагрузкой, 0.2MPa, ℃ (≥) 1250 1350 1370 1420
Пористость (%) 22-26 20-24 20-22 20-23
Насыпная плотность (г / см 3 ) 1,9-2,0 1.95-2,1 2.1-2.2 2.15-2.22
Прочность на холодное сжатие, МПа (≥) 20 25 30 40
Размер 230 * 114 * 65 мм 230 * 114 * 65 мм 230 * 114 * 65 мм 230 * 114 * 65 мм

Применение:

Металлургическая промышленность: Доменная печь, доменная печь (печь), печь на пеллетном валу, горячая металлический ковш, стальной ковш, разливочное устройство, нагревательная печь, печь для вымачивания, печь для термообработки, печь для рафинирования, нагревательная печь, печь для смешивания металлов, печь для отжига, купольная печь, дуговая электропечь, индукционная печь, печь AOD, печь VOD и т. д. технологическое оборудование.

Цветная металлургия: Печь плавильная, печь рафинирования, печь реверберационная, печь конвертерная.

Промышленность строительных материалов: Цементная печь, стекловаренная печь, керамическая печь, известковые печи, печная печь, туннельная печь

Энергетика и сжигание: Коксовая печь, общий котел, электростанция, котел, котел с циркулирующим псевдоожиженным слоем, электропечь, печь для сжигания угля, установки для сжигания отходов.

Прочее: Печь для нефтехимической промышленности.

.
Теплопроводность Efractory Огнеупорный Глиняный Кирпич Для Доменной Печи Оптовая

Теплопроводность Efractory огнеупорной глины Кирпич для доменной печи оптом

Описание продукта

КРС Огнеупорный кирпич Описание:
1.Made с кремневой глины клинкера и связующего вещества, с помощью дробления, смешения, формования, сушки и высокой температуры спекания.
2. Содержание Al2O3 составляет 30-48%, содержание SiO2 составляет 50-65% и небольшое количество щелочных металлов, оксидов щелочноземельных металлов TiO2, Fe2O3 и т. Д.
3. Минеральный состав обычно состоит из муллита, кварца и стекла.

огнеупорный кирпич Свойства и преимущества:
1Great Износостойкость

2.Great теплопроводность

3.Great устойчивость к воздействию

4.Great шлака сопротивления

Применение огнеупорного кирпича:
1. Широко используется в строительстве печи и теплового оборудования.

2. Широко используется в металлургии

3.Широко используется в цветной металлургии

4.Widely используется в промышленности строительных материалов

5.Widely используется в экономии энергии и сжигания отходов

Огнеупорный кирпич индекс
Item шамот Кирпич Высокоглиноземистый кирпич
SK-32 SK-34 SK-36 SK-38
AL203% (≥) 35 38 55 70
Fe2O3% (≥) 2.5 2 2 2
Тугоплавкость 32 34 36 38
(SK) 1710 ℃ 1750 ℃ ​​ 1790 ℃ 1850 ℃
Огнеупорность под нагрузкой 0.2Mpa. ℃ (≥) 1 300 1350 1450 1550
Кажущаяся Пористость (%) 22-26 20-24 20- 23 20-22
Насыпная плотность (г / см3) 1.95-2.1 2.1-2.2 2.25-2.4 2.4-2.6
Прочность на холодное сжатие, МПа (≥) 20 25 40 50
Размер Размер 230 * 114 * 65 / 75MM

Информация о компании

О нас

"KRS new material Co., Ltd занимается огнеупорными и изоляционными материалами около 20 лет и пользуется хорошей репутацией среди клиентов по всему миру.
Основными видами продукции компании являются высокотемпературные теплоизоляционные изделия из силиката кальция, изделия из керамического волокна, перлитные изделия и другие теплоизоляционные огнеупорные материалы. Продукция широко используется в строительстве городских тепловых сетей и теплоизоляции различных видов печей и трубопроводов в металлургии, нефтяной, химической, цементной, электронной промышленности, машиностроении, керамике, стекле, природном газе и других отраслях. "

Упаковка и доставка

Часто задаваемые вопросы

Q: Как узнать цену?

A: Обычно мы сообщаем в течение 24 часов после получения вашего запроса (кроме выходных и праздничных дней).Если вам необходимо срочно узнать цену, напишите нам или свяжитесь с нами другими способами, чтобы мы могли предложить вам ценовое предложение.

Q: Могу ли я купить образцы, размещая заказы?

A: Да. Пожалуйста, не стесняйтесь обращаться к нам.

Q: Каково ваше время выполнения заказа?

A: Это зависит от количества заказа и сезона, в который вы размещаете заказ. Обычно мы можем доставить в течение 7-15 дней для небольшого количества и около 30 дней для большого количества.

Q: Каков ваш срок оплаты?

A: T / T, Western Union, L / C и Paypal. Это предметом переговоров.

Q: Какой способ доставки?

A: Он может быть отправлен по морю, по воздуху или экспресс (EMS, UPS, DHL, TNT, FEDEX и т. Д.). Пожалуйста, подтвердите с нами перед размещением заказов.

Вернуться домой

,

Теплопроводность> ENGINEERING.com

ТИПИЧНЫЕ СВОЙСТВА ПРИ 300 К

ОПИСАНИЕ / СОСТАВ

ПЛОТНОСТЬ, p (кг / м3)

ТЕПЛОПРОВОДНОСТЬ, к (Вт / м х К)

СПЕЦИАЛЬНАЯ ТЕПЛО, cp
(Дж / кг х К)

Строительные Доски
Асбестоцементная плита

1,920

0.58

-

гипсокартон или гипсокартон

800

0.17

-

Фанера

545

0,12

1,215

Обшивка обычной плотности

290

0.055

1300

Акустическая плитка

290

0.058

1,340

ДВП, сайдинг

640

0.094

1,170

ДВП, высокая плотность

1,010

0.15

1,380

ДСП, низкая плотность

590

0.078

1300

ДСП, высокая плотность

1000

0.170

1300

Вудс
Лиственные породы (дуб, клен)

720

0.16

1,255

Хвойные породы (пихта, сосна)

510

0.12

1,380

Кирпичные Материалы

Цементный раствор

1,860

0.72

780

Кирпич обыкновенный

1,920

0,72

835

Кирпич лицевой

2 083

1.3

-

Глиняная плитка пустотелая
1 ячейка, 10 см толщиной

-

0.52

-

3 клетки глубиной, 30 см толщиной

-

0.69

-

Бетонный блок, 3 овальных сердечника
Песок / гравий, толщина 20 см

-

1.0

-

шлакоблок, толщиной 20 см

-

0.67

-

Бетонный блок, прямоугольный сердечник

2 ядра, толщиной 20 см, 16 кг

-

1.1

-

То же с заполненными сердечниками

-

0,60

-

Штукатурные материалы
Цементная штукатурка, песчаный заполнитель

1,860

0.72

-

Гипсовая штукатурка, песчаный заполнитель

1,680

0.22

1,085

Гипсовая штукатурка, вермикулитовый заполнитель

720

0.25

-

.

Отправить ответ

avatar
  Подписаться  
Уведомление о