1 2 3 решение: Такой страницы нет на нашем сайте.

Опубликовано

Содержание

Показательные уравнения — как решать? Примеры, свойства и определение

Поможем понять и полюбить математику

Начать учиться

138.7K

Тех, кто умеет решать квадратные уравнения, не испугает, если одну из переменных нужно будет возвести в степень. Если же искомый x находится не в основании степени, а в ее показателе — значит, нам встретились показательные уравнения. Узнаем о них подробнее и рассмотрим примеры с решениями за 10 класс — они пригодятся на ЕГЭ.

Определение показательного уравнения

Показательными называются уравнения, в которых переменная находится в показателе степени. Простейшее уравнение такого вида: aх = b, где a > 0, a ≠ 1 и ax = ay.

Для решения даже простейших показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс тему «Свойства степенной функции» — советуем повторить ее перед тем, как читать дальнейший материал.

Показательной функцией называют такую: y = ax, где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a < 1 (но больше 0) — непрерывно убывает. Это хорошо видно на рисунке ниже.

Важно знать

Показательная функция не может быть отрицательным числом, т. е. выражение у = ax при а ≤ 0 корней не имеет.

Свойства степеней

Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут решать сложные показательные уравнения.

am · an

am+n

am:an

am-n

(a · b)n

an · bn

(a : b)n

an : bn

(an)m

an · m

a−n

Как видите, ничего нового здесь нет, все это проходят в 6–7 классе.

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Методы решения показательных уравнений

Самые короткие и простые показательные уравнения решаются легко при помощи свойств степеней. Например:

4х = 64.

Требуется найти, в какую степень нужно возвести 4, чтобы получить 64.

4 · 4 · 4 = 64

43 = 64

4x = 43

Х = 3

Но как решать показательные уравнения вот такого вида: ? Нужно немного повозиться с преобразованием этого выражения. Например, сделать так, чтобы либо основания, либо степенные показатели стали одинаковы. Для этого мы можем разложить 128 и 4. Вы ведь заметили, что у них есть общий множитель? Правильно, это 2.

Теперь в нашем уравнении появились одинаковые основания, а значит, мы можем приравнять и степени.

В данном случае мы используем один из алгоритмов решения показательных уравнений — привели обе части равенства к одинаковым основаниям. Дальше рассмотрим и другие методы.

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).

Приведение к одинаковому основанию

Весомую часть уравнений вида ах = b (при а и b 0) можно решить, превратив b в определенную степень числа a. Именно это мы сделали в примере выше, получив одинаковые основания. Главная трудность в том, чтобы найти у этих чисел общее основание.

Если у нас есть одинаковые основания, но разные показатели степени, то при умножении чисел степени складываются, а при делении — вычитаются.

Пример 1

Рассмотрим еще одно показательное уравнение с корнем.

Мы знаем, что 64 и 8 являются степенями 2. Попробуем использовать это, и тогда 642 = 212

, а 8 = 23.

Ответ: .

Пример 2

В этом примере показательного уравнения нужно будет отдельно преобразовать каждую составляющую.

(0,5)х2 · 4х+1 = 64-1

Найдем общее основание показательных функций:

0,5 = 1/2 = 2−1

4 = 22

64 = 26

В результате у нас получается:

(2−1)х2 · (22)х+1 = (26)−1

2−х2 · 22х+2 = 2−6

2−х2+2х+2 = 2−6

−х2 + 2х + 2 = −6

х2− 2х − 8 = 0

Ответ: x = −2; 4.

Приведение к одинаковой степени

Не все показательные уравнения с разными основаниями можно решить предыдущим способом. Иногда проще преобразовать не основания, а показатели степени. Правда, пользоваться этим методом есть смысл только в том случае, когда мы имеем дело с умножением или делением.

При умножении чисел с разными основаниями, но одинаковыми степенными показателями можно перемножить только основания (степень останется прежней): axbx = (ab)x.

Пример

52х−4 = 492−х

Общих множителей у левой и правой части уравнения нет и привести их к одинаковому основанию достаточно трудно. Поэтому стоит поработать с показателями степеней:

52х−4 = 492−х

52х−4 = 74−2х

52х−4 = (1/7)2х−4

352х−4 = 1

2х − 4 = 0

х = 2

Пример 2

2х−2 = 52−х

Нам нужно привести обе части уравнения к одинаковым степенным показателям, и для этого вначале попробуем преобразовать правую часть, используя свойство степенных функций.

2х−2 = 1/5х−2

Теперь умножим обе части на 52−х и придем к уравнению:

2х−2 × 52−х = 1

10х−2 = 1

10х−2 = 100

х − 2 = 0

х = 2

Замена переменной

Суть этого способа решения показательных уравнений проста: мы заменяем «трудную» переменную на более простую и решаем уравнение, а после производим обратную замену. Главное — определить, какую именно переменную стоит заменить.

Пример

4x— 2x+1— 8 = 0

Очевидно, что в этом уравнении показательные функции легко привести к общему основанию: 4х = 2, а 2х+1 = 2 × 2х.

2 — 2 × 2х — 8 = 0

Что-то напоминает. 🤔 Если бы из этого выражения можно было волшебным образом убрать 2х, получилось бы обычное квадратное уравнение. Поэтому мы обозначим 2х новой переменной — допустим, y.

Если 2х = y, y > 0, то получается: у2— 2у — 8 = 0.

У такого уравнения есть два корня: у1 = 4, у2 = -2.

Проведем обратную замену: 2х = 4 (подходит по ограничениям).

х = 2.

Ответ: х = 2.

Пример 2

25х — 6 × 5х + 5 = 0

Если присмотреться к этому выражению, становится понятно, что у него много общего с квадратным уравнением. Введем новую переменную: 5х = у, y > 0.

у2 — 6у + 5 = 0

Корни такого уравнения: 1 и 5.

Выполним обратную замену:

5х = 1, значит х = 0.

5х = 5, значит х = 1.

Ответ: x = 0; 1.

Вынесение общего множителя

В предыдущих примерах мы преобразовывали разные виды показательных уравнений путем разложения многочленов на множители, потому что хотели найти способ решения — получить одинаковые основания или выделить переменную, которую можно заменить.

Общий множитель — это некий многочлен, содержащий переменную, который в скрытом виде присутствует во всех показательных функциях уравнения. Его можно вынести за скобки, чтобы упростить уравнение.

Проблема только в том, чтобы научиться верно определять такое выражение, а этот навык появляется лишь с опытом.

Пример 1

3х+1 + 3х — 3х-2 = 35

Вынесем 33-x за скобки и получим:

3х-2(33 + 32 — 1) = 35

3х-2 × 35 = 35

3

х-2 = 1

Поскольку 1 равно любое число в нулевой степени, мы можем записать:

3х-2 = 30

х — 2 = 0

х = 2

Ответ: х = 2.

Пример 2

5 × 3-3х+1 + 3-3х+2 = 24

Для начала мы попробуем в левой части уравнения получить одинаковую степень: 3-3х+2 = 3-3х+1+1 = 3 · 3-3х+1.

Теперь у нас есть общий множитель 3-3х+1, который можно вынести за скобки, чтобы получить более простое уравнение:

3-3х+1(5+3) = 24

8 · 3-3х+1 = 24

3-3х+1 = 31

-3х + 1 = 1

х = 0

Ответ: х = 0.

Шпаргалки для родителей по математике

Все формулы по математике под рукой

Яна Кононенко

К предыдущей статье

Показательные неравенства

К следующей статье

Параллельность прямых

Получите план обучения, который поможет понять и полюбить математику

На вводном уроке с методистом

  1. Выявим пробелы в знаниях и дадим советы по обучению

  2. Расскажем, как проходят занятия

  3. Подберём курс

Mathway | Популярные задачи

1Множительx^2-4
2Множитель4x^2+20x+16
3Графикy=-x^2
4Вычислить2+2
5Множительx^2-25
6Множительx^2+5x+6
7Множительx^2-9
8Множительx^3-8
9Вычислитьквадратный корень из 12
10Вычислитьквадратный корень из 20
11Вычислитьквадратный корень из 50
12Множительx^2-16
13Вычислитьквадратный корень из 75
14Множительx^2-1
15Множительx^3+8
16Вычислить-2^2
17Вычислитьквадратный корень из (-3)^4
18Вычислитьквадратный корень из 45
19Вычислитьквадратный корень из 32
20Вычислитьквадратный корень из 18
21Множительx^4-16
22Вычислитьквадратный корень из 48
23Вычислитьквадратный корень из 72
24Вычислитьквадратный корень из (-2)^4
25Множительx^3-27
26Вычислить-3^2
27Множительx^4-1
28Множительx^2+x-6
29Множительx^3+27
30Множительx^2-5x+6
31Вычислитьквадратный корень из 24
32Множительx^2-36
33Множительx^2-4x+4
34Вычислить-4^2
35Множительx^2-x-6
36Множительx^4-81
37Множительx^3-64
38Вычислить4^3
39Множительx^3-1
40Графикy=x^2
41Вычислить2^3
42Вычислить(-12+ квадратный корень из -18)/60
43Множительx^2-6x+9
44Множительx^2-64
45Графикy=2x
46Множительx^3+64
47Вычислить(-8+ квадратный корень из -12)/40
48Множительx^2-8x+16
49Вычислить3^4
50Вычислить-5^2
51Множительx^2-49
52Вычислить(-20+ квадратный корень из -75)/40
53Множительx^2+6x+9
54Множитель4x^2-25
55Вычислитьквадратный корень из 28
56Множительx^2-81
57Вычислить2^5
58Вычислить-8^2
59Вычислить2^4
60Множитель4x^2-9
61Вычислить(-20+ квадратный корень из -50)/60
62Вычислить(-8+ квадратный корень из -20)/24
63Множительx^2+4x+4
64Множительx^2-10x+25
65Вычислитьквадратный корень из -16
66Множительx^2-2x+1
67Вычислить-7^2
68Графикf(x)=2^x
69Вычислить2^-2
70Вычислитьквадратный корень из 27
71Вычислитьквадратный корень из 80
72Множительx^3+125
73Вычислить-9^2
74Множитель2x^2-5x-3
75Вычислитьквадратный корень из 40
76Множительx^2+2x+1
77Множительx^2+8x+16
78Графикy=3x
79Множительx^2+10x+25
80Вычислить3^3
81Вычислить5^-2
82Графикf(x)=x^2
83Вычислитьквадратный корень из 54
84Вычислить(-12+ квадратный корень из -45)/24
85Множительx^2+x-2
86Вычислить(-3)^3
87Множительx^2-12x+36
88Множительx^2+4
89Вычислитьквадратный корень из (-8)^2
90Множительx^2+7x+12
91Вычислитьквадратный корень из -25
92Множительx^2-x-20
93Вычислить5^3
94Множительx^2+8x+15
95Множительx^2+7x+10
96Множитель2x^2+5x-3
97Вычислить квадратный кореньквадратный корень из 116
98Множительx^2-x-12
99Множительx^2-x-2
100Вычислить2^2

Калькулятор дробей


Этот калькулятор дробей выполняет базовые и расширенные операции с дробями, выражения с дробями в сочетании с целыми, десятичными и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Калькулятор помогает найти значение из операций с несколькими дробями. Решайте задачи с двумя, тремя и более дробями и числами в одном выражении.

Правила выражения с дробями:

Дроби — используйте косую черту для деления числителя на знаменатель, т.е. для пятисотых введите 5/100 . Если вы используете смешанные числа, оставьте пробел между целой и дробной частями.

Смешанные числа (смешанные числа или дроби) сохраняют один пробел между целым числом и дробью
и используют косую черту для ввода дробей, например, 1 2/3 . Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта одновременно является знаком дробной строки и деления, используйте двоеточие (:) в качестве оператора деления дробей, т. е. 1/2 : 1/3 .
Decimals (десятичные числа) вводятся с десятичной точкой . и они автоматически преобразуются в дроби — т. е. 1,45 .

Математические символы


46 5 ×
Символ Название символа Символ Значение Пример
+ плюс 0046 1/2 + 1/3
знак минус вычитание 1 1/2 — 2/3
* звездочка умножение 2/3 * 3/4 ​​

9

знак умножения умножение 2 /3 × 5/6
: знак деления деление 1/2 : 3
4 деления 4 деления 6 деление 1/3 / 5 1/2
• сложение дробей и смешанных чисел: 8/5 + 6 2/7
• деление целых чисел и дробей: 5 ÷ 1/2
• сложные дроби: 5/8 : 2 2/3
• десятичная дробь: 0,625
• Преобразование дроби в десятичную: 1/4
• Преобразование дроби в процент: 1/8 %
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt(1/16)
• уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
• выражение со скобками: 1/3 * (1/2 — 3 3/8)
• составная дробь: 3/4 от 5/7
• кратные дроби: 2/3 от 3/5
• разделить, чтобы найти частное: 3/5 ÷ 2/3

Калькулятор следует известным правилам для порядка операций . Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS — Скобки, Экспоненты, Умножение, Деление, Сложение, Вычитание.
BEDMAS — Скобки, Экспоненты, Деление, Умножение, Сложение, Вычитание
BODMAS — Скобки, Порядок, Деление, Умножение, Сложение, Вычитание.
GEMDAS — Символы группировки — скобки (){}, возведения в степень, умножение, деление, сложение, вычитание.
MDAS — Умножение и деление имеют тот же приоритет, что и сложение и вычитание. Правило MDAS является частью порядка операций правила PEMDAS.
Будьте осторожны; всегда выполняйте умножение и деление перед сложением и вычитанием . Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны оцениваться слева направо.

  • Дробями
    Муравей за первый час поднимается на 2/5 шеста, а за следующий час – на 1/4 шеста. Какую часть шеста преодолевает муравей за два часа?
  • В столовой
    В классной комнате Джейкоба 18 учеников. Шесть учеников приносят обед в школу. Остальные обедают в столовой. Проще говоря, какая часть студентов обедает в столовой?
  • Дети
    Двое взрослых, двое детей и четверо младенцев находятся в автобусе. Какую часть населения составляют младенцы?
  • Кто-то
    Кто-то съел 1/10 торта, осталось только 9/10. Если вы съедите 2/3 оставшегося торта, сколько всего торта вы съедите?
  • Знаменатель 2
    Знаменатель дроби равен пяти, а числитель равен 7. Запишите дробь.
  • Корзина с фруктами
    Если в корзине семь яблок и пять апельсинов, какая часть апельсинов в корзине с фруктами?
  • Четверть
    Четверть числа 72:
  • Вычислите выражение
    Вычислите значение выражения z/3 — 2 z/9 + 1/6, для z = 2 была использована сумма 325 000,00. Какая часть от общей суммы была использована?
  • Наименьшие члены 2
    Мы можем записать выражение 4/12 в его наименьшем члене как 1/3. Чему равно 3/15 в наименьшем члене?
  • Петрушка
    Бабушка Милки посадила 12 рядов овощей. 1/6 рядов — морковь. Остальное петрушка. Сколько рядов засажено петрушкой?

больше задач по математике 8

  • LCM
  • GCD
  • LCD
  • комбинаторика
  • уравнения
  • статистика
  • … все математические калькуляторы
  • Калькулятор дробей


    Этот калькулятор дробей выполняет основные и расширенные операции с дробями, выражения с дробями в сочетании с целыми, десятичными и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Калькулятор помогает найти значение из операций с несколькими дробями. Решайте задачи с двумя, тремя и более дробями и числами в одном выражении.

    Правила выражений с дробями:

    Дроби — для деления числителя на знаменатель используйте косую черту, т.е. для пятисотых введите 5/100 . Если вы используете смешанные числа, оставьте пробел между целой и дробной частями.

    Смешанные числа (смешанные числа или дроби) сохраняют один пробел между целым числом и дробью
    и используют косую черту для ввода дробей, например, 1 2/3 . Пример отрицательной смешанной дроби: -5 1/2 .
    Поскольку косая черта одновременно является знаком дробной части и деления, используйте двоеточие (:) в качестве оператора деления дробей, т. е. 1/2 : 1/3 .
    Decimals (десятичные числа) вводятся с десятичной точкой . и они автоматически преобразуются в дроби — т.е. 1,45 .

    Математические символы


    8 0046
    Символ Название символа Символ Значение Пример
    + знак плюс сложение 1/2 + 1/3
    знак минус вычитание 2 0/939 1
    * звездочка умножение 2/3 * 3/4 ​​
    × знак умножения умножение 2/3 ×9 4
    : знак деления деление 91/2
    • сложение дробей и смешанных чисел: 8/5 + 6 2/7
    • деление целых чисел и дробей: 5 ÷ 1/2
    • сложные дроби: 5/8 : 2 2/3
    • десятичная дробь: 0,625
    • Преобразование дроби в десятичную: 1/4
    • Преобразование дроби в процент: 1/8 %
    • сравнение дробей: 1/4 2/3
    • умножение дроби на целое число: 6 * 3/4 ​​
    • квадратный корень дроби: sqrt(1/16)
    • уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
    • выражение со скобками: 1/3 * (1/2 — 3 3/8)
    • составная дробь: 3/4 от 5/7
    • кратные дроби: 2/3 от 3/5
    • разделить, чтобы найти частное: 3/5 ÷ 2/3

    Калькулятор следует известным правилам для порядка операций . Наиболее распространенные мнемоники для запоминания этого порядка операций:
    PEMDAS — Скобки, Экспоненты, Умножение, Деление, Сложение, Вычитание.
    BEDMAS — Скобки, Экспоненты, Деление, Умножение, Сложение, Вычитание
    BODMAS — Скобки, Порядок, Деление, Умножение, Сложение, Вычитание.
    GEMDAS — Символы группировки — скобки (){}, возведения в степень, умножение, деление, сложение, вычитание.
    MDAS — Умножение и деление имеют тот же приоритет, что и сложение и вычитание. Правило MDAS является частью порядка операций правила PEMDAS.
    Будьте осторожны; всегда выполняйте умножение и деление перед сложением и вычитанием . Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны оцениваться слева направо.

    • Дробями
      Муравей за первый час поднимается на 2/5 шеста, а за следующий час – на 1/4 шеста. Какую часть шеста преодолевает муравей за два часа?
    • В столовой
      В классной комнате Джейкоба 18 учеников. Шесть учеников приносят обед в школу. Остальные обедают в столовой. Проще говоря, какая часть студентов обедает в столовой?
    • Дети
      Двое взрослых, двое детей и четверо младенцев находятся в автобусе. Какую часть населения составляют младенцы?
    • Кто-то
      Кто-то съел 1/10 торта, осталось только 9/10. Если вы съедите 2/3 оставшегося торта, сколько всего торта вы съедите?
    • Знаменатель 2
      Знаменатель дроби равен пяти, а числитель равен 7. Запишите дробь.
    • Корзина с фруктами
      Если в корзине семь яблок и пять апельсинов, какая часть апельсинов в корзине с фруктами?
    • Четверть
      Четверть числа 72:
    • Вычислите выражение
      Вычислите значение выражения z/3 — 2 z/9 + 1/6, для z = 2 была использована сумма 325 000,00. Какая часть от общей суммы была использована?
    • Наименьшие члены 2
      Мы можем записать выражение 4/12 в его наименьшем члене как 1/3. Чему равно 3/15 в наименьшем члене?
    • Петрушка
      Бабушка Милки посадила 12 рядов овощей.

      Leave a Reply

      Ваш адрес email не будет опубликован. Обязательные поля помечены *