3 умножить на 15: Умножить дробь 1/3 на 1/15

Опубликовано

Mathway | Популярные задачи

1Найти объемсфера (5)
2Найти площадьокружность (5)
3Найти площадь поверхностисфера (5)
4Найти площадьокружность (7)
5Найти площадьокружность (2)
6Найти площадьокружность (4)
7Найти площадьокружность (6)
8
Найти объем
сфера (4)
9Найти площадьокружность (3)
10Вычислить(5/4(424333-10220^2))^(1/2)
11Разложить на простые множители741
12Найти объемсфера (3)
13Вычислить3 квадратный корень из 8*3 квадратный корень из 10
14Найти площадьокружность (10)
15Найти площадьокружность (8)
16Найти площадь поверхностисфера (6)
17Разложить на простые множители1162
18Найти площадьокружность (1)
19Найти длину окружностиокружность (5)
20Найти объемсфера (2)
21Найти объемсфера (6)
22Найти площадь поверхностисфера (4)
23Найти объемсфера (7)
24Вычислитьквадратный корень из -121
25Разложить на простые множители513
26Вычислитьквадратный корень из 3/16* квадратный корень из 3/9
27Найти объемпрямоугольный параллелепипед (2)(2)(2)
28Найти длину окружностиокружность (6)
29Найти длину окружностиокружность (3)
30Найти площадь поверхностисфера (2)
31Вычислить
2 1/2÷22000000
32Найти объемпрямоугольный параллелепипед (5)(5)(5)
33Найти объемпрямоугольный параллелепипед (10)(10)(10)
34Найти длину окружностиокружность (4)
35Перевести в процентное соотношение1. 2-4*-1+2
45Разложить на простые множители228
46Вычислить0+0
47
Найти площадь
окружность (9)
48Найти длину окружностиокружность (8)
49Найти длину окружностиокружность (7)
50Найти объемсфера (10)
51Найти площадь поверхностисфера (10)
52Найти площадь поверхностисфера (7)
53Определить, простое число или составное5
54
Перевести в процентное соотношение
3/9
55Найти возможные множители8
56Вычислить(-2)^3*(-2)^9
57Вычислить35÷0. 2
60Преобразовать в упрощенную дробь2 1/4
61Найти площадь поверхностисфера (12)
62Найти объемсфера (1)
63Найти длину окружностиокружность (2)
64Найти объемпрямоугольный параллелепипед (12)(12)(12)
65Сложение2+2=
66Найти площадь поверхностипрямоугольный параллелепипед (3)(3)(3)
67Вычислитькорень пятой степени из 6* корень шестой степени из 7
68Вычислить7/40+17/50
69Разложить на простые множители1617
70Вычислить27-( квадратный корень из 89)/32
71Вычислить9÷4
72Вычислить2+ квадратный корень из 21
73Вычислить-2^2-9^2
74Вычислить1-(1-15/16)
75Преобразовать в упрощенную дробь8
76Оценка656-521
77Вычислить3 1/2
78Вычислить-5^-2
79Вычислить4-(6)/-5
80Вычислить3-3*6+2
81Найти площадь поверхностипрямоугольный параллелепипед (5)(5)(5)
82Найти площадь поверхностисфера (8)
83Найти площадьокружность (14)
84Преобразовать в десятичную форму11/5
85Вычислить3 квадратный корень из 12*3 квадратный корень из 6
86Вычислить(11/-7)^4
87Вычислить(4/3)^-2
88Вычислить1/2*3*9
89Вычислить12/4-17/-4
90Вычислить2/11+17/19
91Вычислить3/5+3/10
92Вычислить4/5*3/8
93Вычислить6/(2(2+1))
94Упроститьквадратный корень из 144
95Преобразовать в упрощенную дробь725%
96Преобразовать в упрощенную дробь6 1/4
97Вычислить7/10-2/5
98Вычислить6÷3
99Вычислить5+4
100Вычислитьквадратный корень из 12- квадратный корень из 192

Умножение на 3 | Таблица умножения

    На этой странице представлены примеры, описывающие умножение на 3 и умножение числа 3, деление, некоторые способы записи и произношения, таблица умножения на 3 без ответов, в конце статьи — картинки для скачивания, с помощью которых можно распечатать часть таблицы.
Умножение на 3:
1 x 3 = 3
2 x 3 = 6
3 x 3 = 9
4 x 3 = 12
5 x 3 = 15
6 x 3 = 18
7 x 3 = 21
8 x 3 = 24
9 x 3 = 27
10 x 3 = 30

Первый вариант произношения:
1 x 3 = 3 (1 умножить на 3, равно 3)
2 x 3 = 6 (2 умножить на 3, равно 6)
3 x 3 = 9 (3 умножить на 3, равно 9)
4 x 3 = 12 (4 умножить на 3, равно 12)
5 x 3 = 15 (5 умножить на 3, равно 15)
6 x 3 = 18 (6 умножить на 3, равно 18)
7 x 3 = 21 (7 умножить на 3, равно 21)
8 x 3 = 24 (8 умножить на 3, равно 24)
9 x 3 = 27 (9 умножить на 3, равно 27)
10 x 3 = 30 (10 умножить на 3, равно 30)

Второй вариант произношения:
1 x 3 = 3 ( по 1 взять 3 раз, получится 3)
2 x 3 = 6 ( по 2 взять 3 раз, получится 6)
3 x 3 = 9 ( по 3 взять 3 раз, получится 9)
4 x 3 = 12 ( по 4 взять 3 раз, получится 12)
5 x 3 = 15 ( по 5 взять 3 раз, получится 15)
6 x 3 = 18 ( по 6 взять 3 раз, получится 18)
7 x 3 = 21 ( по 7 взять 3 раз, получится 21)
8 x 3 = 24 ( по 8 взять 3 раз, получится 24)
9 x 3 = 27 ( по 9 взять 3 раз, получится 27)
10 x 3 = 30 ( по 10 взять 3 раз, получится 30)

От перемены мест множителей значение произведения не меняется, поэтому, зная результаты умножения на 3, можно легко найти результаты умножения числа 3. В качестве знака умножения в разных источниках используют разные символы. Выше был показан пример с (x), в этот раз сделаем запись с помощью приподнятой точки ( ∙ )

Умножение числа 3:

3 ∙ 1 = 3
3 ∙ 2 = 6
3 ∙ 3 = 9
3 ∙ 4 = 12
3 ∙ 5 = 15
3 ∙ 6 = 18
3 ∙ 7 = 21
3 ∙ 8 = 24
3 ∙ 9 = 27
3 ∙ 10 = 30

Варианты произношения:
3 ∙ 1 = 3 (по 3 взять 1 раз, получится 3)
3 ∙ 2 = 6 (по 3 взять 2 раза, получится 6)
3 ∙ 3 = 9 (по 3 взять 3 раза, получится 9)
3 ∙ 4 = 12 (по 3 взять 4 раза, получится 12)
3 ∙ 5 = 15 (по 3 взять 5 раз, получится 15)
3 ∙ 6 = 18 (по 3 взять 6 раз, получится 18)
3 ∙ 7 = 21 (по 3 взять 7 раз, получится 21)
3 ∙ 8 = 24 (по 3 взять 8 раз, получится 24)
3 ∙ 9 = 27 (по 3 взять 9 раз, получится 27)
3 ∙ 10 = 30 (по 3 взять 10 раз, получится 30)

3 ∙ 1 = 3 (3 умножить на 1, равно 3)
3 ∙ 2 = 6 (3 умножить на 2, равно 6)
3 ∙ 3 = 9 (3 умножить на 3, равно 9)
3 ∙ 4 = 12 (3 умножить на 4, равно 12)
3 ∙ 5 = 15 (3 умножить на 5, равно 15)
3 ∙ 6 = 18 (3 умножить на 6, равно 18)
3 ∙ 7 = 21 (3 умножить на 7, равно 21)
3 ∙ 8 = 24 (3 умножить на 8, равно 24)
3 ∙ 9 = 27 (3 умножить на 9, равно 27)
3 ∙ 10 = 30 (3 умножить на 10, равно 30)

Деление на 3:

3 ÷ 3 = 1
6 ÷ 3 = 2
9 ÷ 3 = 3
12 ÷ 3 = 4
15 ÷ 3 = 5
18 ÷ 3 = 6
21 ÷ 3 = 7
24 ÷ 3 = 8
27 ÷ 3 = 9
30 ÷ 3 = 10

3 ÷ 3 = 1 (3 разделить на 3, равно 1)
6 ÷ 3 = 2 (6 разделить на 3, равно 2)
9 ÷ 3 = 3 (9 разделить на 3, равно 3)
12 ÷ 3 = 4 (12 разделить на 3, равно 4)
15 ÷ 3 = 5 (15 разделить на 3, равно 5)
18 ÷ 3 = 6 (18 разделить на 3, равно 6)
21 ÷ 3 = 7 (21 разделить на 3, равно 7)
24 ÷ 3 = 8 (24 разделить на 3, равно 8)
27 ÷ 3 = 9 (27 разделить на 3, равно 9)
30 ÷ 3 = 10 (30 разделить на 3, равно 10)

Картинка: 

Деление. Картинка: 

Таблица умножения и деления на 3 без ответов (по порядку и вразброс):

1 ∙ 3 =3 ∙ 3 =3 ÷ 3 =6 ÷ 3 =
2 ∙ 3 =2 ∙ 3 =6 ÷ 3 =3 ÷ 3 =
3 ∙ 3 =1 ∙ 3 =9 ÷ 3 =15 ÷ 3 =
4 ∙ 3 =7 ∙ 3 = 12 ÷ 3 =9 ÷ 3 =
5 ∙ 3 =5 ∙ 3 =15 ÷ 3 =12 ÷ 3 =
6 ∙ 3 =6 ∙ 3 =18 ÷ 3 =30 ÷ 3 =
7 ∙ 3 =4 ∙ 3 =21 ÷ 3 =18 ÷ 3 =
8 ∙ 3 =10 ∙ 3 =24 ÷ 3 =21 ÷ 3 =
9 ∙ 3 =9 ∙ 3 =27 ÷ 3 =24 ÷ 3 =
10 ∙ 3 =8 ∙ 3 =30 ÷ 3 =27 ÷ 3 =

Способы записи таблицы умножения на 3:

xПриподнятая точка*Знак не указан
1 x 3 = 31 ∙ 3 = 31 * 3 = 31 __ 3 = 3
2 x 3 = 62 ∙ 3 = 62 * 3 = 62 __ 3 = 6
3 x 3 = 93 ∙ 3 = 93 * 3 = 93 __ 3 = 9
4 x 3 = 124 ∙ 3 = 124 * 3 = 124 __ 3 = 12
5 x 3 = 155 ∙ 3 = 155 * 3 = 155 __ 3 = 15
6 x 3 = 186 ∙ 3 = 186 * 3 = 186 __ 3 = 18
7 x 3 = 217 ∙ 3 = 217 * 3 = 217 __ 3 = 21
8 x 3 = 248 ∙ 3 = 248 * 3 = 248 __ 3 = 24
9 x 3 = 279 ∙ 3 = 279 * 3 = 279 __ 3 = 27
10 x 3 = 3010 ∙ 3 = 3010 * 3 = 3010 __ 3 = 30

Способы записи таблицы деления на 3:

/: ÷Знак не указан
3 / 3 = 13 : 3 = 13 ÷ 3 = 13 __ 3 = 1
6 / 3 = 26 : 3 = 26 ÷ 3 = 26 __ 3 = 2
9 / 3 = 39 : 3 = 39 ÷ 3 = 39 __ 3 = 3
12 / 3 = 4
12 : 3 = 412 ÷ 3 = 412 __ 3 = 4
15 / 3 = 515 : 3 = 515 ÷ 3 = 515 __ 3 = 5
18 / 3 = 618 : 3 = 618 ÷ 3 = 618 __ 3 = 6
21 / 3 = 721 : 3 = 721 ÷ 3 = 721 __ 3 = 7
24 / 3 = 824 : 3 = 824 ÷ 3 = 824 __ 3 = 8
27 / 3 = 927 : 3 = 927 ÷ 3 = 927 __ 3 = 9
30 / 3 = 1030 : 3 = 1030 ÷ 3 = 1030 __ 3 = 10

Умножение на:

‹ Умножение на 2 Вверх Умножение на 4 ›

Калькулятор дробей


Этот калькулятор дробей выполняет базовые и расширенные операции с дробями, выражения с дробями в сочетании с целыми, десятичными и смешанными числами. Он также показывает подробную пошаговую информацию о процедуре расчета дроби. Калькулятор помогает найти значение из операций с несколькими дробями. Решайте задачи с двумя, тремя и более дробями и числами в одном выражении.

Правила выражения с дробями:

Дроби — используйте косую черту для деления числителя на знаменатель, т.е. для пятисотых введите 5/100 . Если вы используете смешанные числа, оставьте пробел между целой и дробной частями.

Смешанные числа (смешанные числа или дроби) сохраняют один пробел между целым числом и дробью
и используют косую черту для ввода дробей, например, 1 2/3 . Пример отрицательной смешанной дроби: -5 1/2 .
Поскольку косая черта одновременно является знаком дробной строки и деления, используйте двоеточие (:) в качестве оператора деления дробей, т. е. 1/2 : 1/3 .
Decimals (десятичные числа) вводятся с десятичной точкой . и они автоматически преобразуются в дроби — т. е. 1,45 .

Math Symbols


Symbol Symbol name Symbol Meaning Example
+ plus sign addition 1/2 + 1/3
знак минус вычитание 1 1/2 — 2/3
* asterisk multiplication 2/3 * 3/4 ​​
× times sign multiplication 2 /3 × 5/6
: division sign division 1/2 : 3
/ division slash division 1/3 / 5 1/2
• сложение дробей и смешанных чисел: 8/5 + 6 2/7
• деление целых чисел и дробей: 5 ÷ 1/2
• сложные дроби: 5/8 : 2 2/3
• десятичная дробь: 0,625
• Преобразование дроби в десятичную: 1/4
• Преобразование дроби в процент: 1/8 %
• сравнение дробей: 1/4 2/3
• умножение дроби на целое число: 6 * 3/4 ​​
• квадратный корень дроби: sqrt(1/16)
• уменьшение или упрощение дроби (упрощение) — деление числителя и знаменателя дроби на одно и то же ненулевое число — эквивалентная дробь: 4/22
• выражение со скобками: 1/3 * (1/2 — 3 3/8)
• составная дробь: 3/4 от 5/7
• кратные дроби: 2/3 от 3/5
• разделить, чтобы найти частное: 3/5 ÷ 2/3

Калькулятор следует известным правилам для порядка операций . Наиболее распространенные мнемоники для запоминания этого порядка операций:
PEMDAS — Скобки, Экспоненты, Умножение, Деление, Сложение, Вычитание.
BEDMAS — Скобки, Экспоненты, Деление, Умножение, Сложение, Вычитание
BODMAS — Скобки, Порядок, Деление, Умножение, Сложение, Вычитание.
GEMDAS — Символы группировки — скобки (){}, возведения в степень, умножение, деление, сложение, вычитание.
MDAS — Умножение и деление имеют тот же приоритет, что и сложение и вычитание. Правило MDAS является частью порядка операций правила PEMDAS.
Будьте осторожны; всегда выполняйте умножение и деление перед сложением и вычитанием . Некоторые операторы (+ и -) и (* и /) имеют одинаковый приоритет и должны оцениваться слева направо.

  • Дробь и десятичная дробь
    Пишите в виде дроби и десятичной дроби. Один и два плюс три и пять сотых
  • Деа делает
    Деа делает 18 из 27 бросков в баскетбольном матче. Какая десятичная дробь представляет долю выстрелов, которые делает Деа?
  • Одна суббота
    Однажды субботним вечером в кинотеатре 40 девушек, 25 юношей, 18 женщин и 17 мужчин. Какую часть составляют девочки?
  • Десятичная дробь
    Запишите дробь 3/22 в виде десятичной дроби.
  • Дети 9
    В комнате 11 детей. Шесть детей — девочки. Какую часть детей составляют девочки?
  • Четверть
    Четверть числа 72 это:
  • Сократить 9
    Сократить дробь 16/24 до наименьших членов.
  • Мэтью
    У Мэтью восемь карандашей. У трех из них нет ластика на конце. Какая часть карандашей не имеет ластика на конце?
  • Значение Z
    При x = -9, каково значение Z, где Z равно числителю дроби x минус 17 в знаменателе 6,5 конец дроби Дайте ответ с точностью до 2 знаков после запятой.
  • Из 550 000,00
    Из 550 000,00 было использовано 325 000,00. Какая часть от общей суммы была использована?
  • В столовой
    В классной комнате Джейкоба 18 учеников. Шесть учеников приносят обед в школу. Остальные обедают в столовой. Проще говоря, какая часть студентов обедает в столовой?

more math problems »

  • decimals
  • fractions
  • triangle ΔABC
  • percentage %
  • permille ‰
  • prime factors
  • complex numbers
  • LCM
  • GCD
  • LCD
  • combinatorics
  • equations
  • статистика
  • … все математические калькуляторы

Калькулятор степени

Создано Матеушем Мухой и Петром Малеком

Отзыв от Bogna Szyk и Jack Bowater

Последнее обновление: 12 февраля 2023 г.

Содержание:
  • Что такое экспонента?
  • Калькулятор отрицательной степени
  • Связанные темы
  • Часто задаваемые вопросы

Калькулятор степени вычисляет значение любого основания, возведенного в любую степень. На этой странице будут рассмотрены все связанные темы, включая отрицательную экспоненту. Начнем с основ.

Что такое экспонента?

Показатель степени — это способ представить, сколько раз число, известное как основание, умножается само на себя. Он представлен в виде небольшого числа в правом верхнем углу базы. Например: означает, что вы умножаете x на себя два раза, что равно

x × x . Аналогично, 4² = 4 × 4 и т. д. Если показатель степени равен 3, в примере результат будет 5 × 5 × 5 .

Это просто с небольшими числами, но для больших чисел, десятичных дробей или когда они возведены в очень большую или отрицательную степень, используйте наш инструмент. Если вы хотите возвести в степень вручную, сделайте следующее:

  1. Определите основание и степень, в которую оно возведено, например, 3⁵ .
  2. Запишите основание столько же раз, сколько и показатель степени. 3 3 3 3 3
  3. Поместите символ умножения между каждым основанием. 3 × 3 × 3 × 3 × 3 .
  4. Умножай! 3 × 3 × 3 × 3 × 3 = 243 .

Калькулятор отрицательного показателя степени

Концепция довольно проста, когда показатель степени положительный, но что происходит, когда показатель степени отрицательный? По определению, если оно равно -2, мы должны умножить само основание на 9.0330 минус два

раз. На самом деле то, что здесь происходит, мы берем обратное основание, меняем отрицательный показатель степени на положительный и действуем как обычно. Если вы хотите решить это вручную, сделайте следующее:

  1. Определите основание и показатель степени.
  2. Напишите обратную величину основания и измените знак экспоненты на положительный
  3. Запишите обратную величину основания столько же раз, сколько и показатель степени.
  4. Поместите между каждым символ умножения.
  5. Умножь и получи результат.

Вот простой пример: 5⁻⁴ = (1/5)⁴ = (1/5) × (1/5) × (1/5) × (1/5) = 1/625 = 0,0016

Возведение в квадрат основания (возведение числа в степень 2) и извлечение квадратного корня — схожие понятия; многие люди считают одно противоположным или уничтожающим другое.

Если вы хотите возвести в квадрат число 6, вы берете 6 × 6 = 36 . Теперь, если вы хотите найти, при умножении двух одинаковых чисел получается 36, вы берете квадратный корень из 36. Этот квадратный корень дает значение 6. Можно также отметить, что возведение квадратного корня в квадрат удаляет радикал.

Аналогичным образом, возведение основания в куб (возведение числа в степень 3) даст нам идеальный куб. Если вам нужно вычислить кубический корень, вы можете воспользоваться нашим калькулятором кубического корня, который является отличным инструментом для вычисления кубического корня любого числа.

В модульной арифметике существуют специальные методы возведения в степень — узнайте больше с помощью калькулятора модуля мощности.

Кроме того, вы можете воспользоваться нашим калькулятором логарифмов, который является обратной функцией показателя степени.

Любое число, возведенное в степень 0, равно 1. Калькулятор отрицательного показателя степени полезен при работе с экспоненциальным затуханием, формула которого имеет отрицательный показатель степени.

Часто задаваемые вопросы

Что такое 6 с показателем степени 4?

1296 . Чтобы вычислить 6 с показателем степени 4 , запишите его как 6 4 и умножьте четыре экземпляра 6 вместе. Его можно записать как 6 × 6 × 6 × 6 = 1296 .

Как умножить показатели степени?

Если вы хотите умножить показатели степени , убедитесь , что они имеют такое же основание . Затем просто добавьте исходные показатели степени , чтобы найти новую степень произведения. Например, чтобы получить , умножьте 2 3 на 2 5 :

  1. Добавьте 3 + 5 = 8 .
  2. Запишите результат как 2 8 .
  3. Рассчитайте как 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 = 256 .

Как разделить показатели степени?

Вы также можете разделить степени с тем же основанием, вычитая степени .

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *