6 3 решить: найди решение урлвнения а-6=3 — Школьные Знания.com

Опубликовано

Содержание

Mathway | Популярные задачи

1Найти объемсфера (5)
2Найти площадьокружность (5)
3Найти площадь поверхностисфера (5)
4Найти площадьокружность (7)
5Найти площадьокружность (2)
6Найти площадьокружность (4)
7Найти площадьокружность (6)
8
Найти объем
сфера (4)
9Найти площадьокружность (3)
10Вычислить(5/4(424333-10220^2))^(1/2)
11Разложить на простые множители741
12Найти объемсфера (3)
13Вычислить3 квадратный корень из 8*3 квадратный корень из 10
14Найти площадьокружность (10)
15Найти площадьокружность (8)
16Найти площадь поверхностисфера (6)
17Разложить на простые множители1162
18Найти площадьокружность (1)
19Найти длину окружностиокружность (5)
20Найти объемсфера (2)
21Найти объемсфера (6)
22Найти площадь поверхностисфера (4)
23Найти объемсфера (7)
24Вычислитьквадратный корень из -121
25Разложить на простые множители513
26Вычислитьквадратный корень из 3/16* квадратный корень из 3/9
27Найти объемпрямоугольный параллелепипед (2)(2)(2)
28Найти длину окружностиокружность (6)
29Найти длину окружностиокружность (3)
30Найти площадь поверхностисфера (2)
31Вычислить
2 1/2÷22000000
32Найти объемпрямоугольный параллелепипед (5)(5)(5)
33Найти объемпрямоугольный параллелепипед (10)(10)(10)
34Найти длину окружностиокружность (4)
35Перевести в процентное соотношение1. 2-4*-1+2
45Разложить на простые множители228
46Вычислить0+0
47
Найти площадь
окружность (9)
48Найти длину окружностиокружность (8)
49Найти длину окружностиокружность (7)
50Найти объемсфера (10)
51Найти площадь поверхностисфера (10)
52Найти площадь поверхностисфера (7)
53Определить, простое число или составное5
54
Перевести в процентное соотношение
3/9
55Найти возможные множители8
56Вычислить(-2)^3*(-2)^9
57Вычислить35÷0. 2
60Преобразовать в упрощенную дробь2 1/4
61Найти площадь поверхностисфера (12)
62Найти объемсфера (1)
63Найти длину окружностиокружность (2)
64Найти объемпрямоугольный параллелепипед (12)(12)(12)
65Сложение2+2=
66Найти площадь поверхностипрямоугольный параллелепипед (3)(3)(3)
67Вычислитькорень пятой степени из 6* корень шестой степени из 7
68Вычислить7/40+17/50
69Разложить на простые множители1617
70Вычислить27-( квадратный корень из 89)/32
71Вычислить9÷4
72Вычислить2+ квадратный корень из 21
73Вычислить-2^2-9^2
74Вычислить1-(1-15/16)
75Преобразовать в упрощенную дробь8
76Оценка656-521
77Вычислить3 1/2
78Вычислить-5^-2
79Вычислить4-(6)/-5
80Вычислить3-3*6+2
81Найти площадь поверхностипрямоугольный параллелепипед (5)(5)(5)
82Найти площадь поверхностисфера (8)
83Найти площадьокружность (14)
84Преобразовать в десятичную форму11/5
85Вычислить3 квадратный корень из 12*3 квадратный корень из 6
86Вычислить(11/-7)^4
87Вычислить(4/3)^-2
88Вычислить1/2*3*9
89Вычислить12/4-17/-4
90Вычислить2/11+17/19
91Вычислить3/5+3/10
92Вычислить4/5*3/8
93Вычислить6/(2(2+1))
94Упроститьквадратный корень из 144
95Преобразовать в упрощенную дробь725%
96Преобразовать в упрощенную дробь6 1/4
97Вычислить7/10-2/5
98Вычислить6÷3
99Вычислить5+4
100Вычислитьквадратный корень из 12- квадратный корень из 192

Как решать квадратные уравнения? Формулы и Примеры

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b2 − 4ac. А вот свойства дискриминанта:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x2 — 2x + 6 = 0
  • x2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x2 ), а значит уравнение называется приведенным.

  • 2x2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Запоминаем!

У преобразованного уравнения те же корни, что и у первоначального. Ну или вообще нет корней.

Пример 1. Превратим неприведенное уравнение: 8x2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x2 + 2,5x — 1,125 = 0.

Пройдите тест и узнайте, какие темы отделяют от пятёрки по математике

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax

2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax
    2
    + 0x+c=0 и оно равносильно ax2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax2 + bx + 0 = 0, иначе его можно написать как ax2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax2 + c = 0, при b = 0;
  • ax2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax

2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax2 = 0.

Уравнение ax2 = 0 равносильно x2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x2 = 0 является нуль, так как 02 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x2 = 0.

Как решаем:

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

    −6x2 = 0

    x2 = 0

    x = √0

    x = 0

Ответ: 0.

Как решить уравнение ax

2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax2 + c = 0:

  • перенесем c в правую часть: ax2 = — c,
  • разделим обе части на a: x2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а < 0, то уравнение x2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а < 0 ни для какого числа p равенство р2 = — c/а не является верным.

Если — c/а > 0, то корни уравнения x2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)2 = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax2 + c = 0 равносильно уравнению х2= -c/a, которое:

  • не имеет корней при — c/а < 0;
  • имеет два корня х = √- c/а и х = -√- c/а при — c/а > 0.

Пример 1. Найти решение уравнения 8x2 + 5 = 0.

Как решать:

  1. Перенесем свободный член в правую часть:

    8x2 = — 5

  2. Разделим обе части на 8:

    x2 = — 5/8

  3. В правой части осталось число со знаком минус, значит у данного уравнения нет корней.

Ответ: уравнение 8x2 + 5 = 0 не имеет корней.

Как решить уравнение ax

2 + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Неполное квадратное уравнение ax2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

  1. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

  2. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax2 + bx = 0 имеет два корня:

  • x = 0;
  • x = −b/a.

Пример 1. Решить уравнение 0,5x2 + 0,125x = 0

Как решать:

  1. Вынести х за скобки

    х(0,5x + 0,125) = 0

  2. Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  3. Решить линейное уравнение:

    0,5x = −0,125,
    х = −0,125/0,5

  4. Разделить:

    х = −0,25

  5. Значит корни исходного уравнения — 0 и −0,25.

Ответ: х = 0 и х = −0,25.

Как разложить квадратное уравнение

С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

Формула разложения квадратного трехчлена

Если x1 и x2 — корни квадратного трехчлена ax2 + bx + c, то справедливо равенство ax2 + bx + c = a (x − x1) (x − x2).

Дискриминант: формула корней квадратного уравнения

Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

где D = b2 − 4ac — дискриминант квадратного уравнения.

Эта запись означает:

, .

Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

Алгоритм решения квадратных уравнений по формулам корней

Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

  • вычислить его значение дискриминанта по формуле D = b2−4ac;
  • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
  • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

Примеры решения квадратных уравнений

Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

Пример 1. Решить уравнение −4x2 + 28x — 49 = 0.

Как решаем:

  1. Найдем дискриминант: D = 282 — 4(-4)(-49) = 784 — 784 = 0
  2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
  3. Найдем корень

    х = — 28/2(-4)

    х = 3,5

Ответ: единственный корень 3,5.

Пример 2. Решить уравнение 54 — 6x2 = 0.

Как решаем:

  1. Произведем равносильные преобразования. Умножим обе части на −1

    54 — 6x2 = 0 | *(-1)

    6x2 — 54 = 0

  2. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    6x2 = 54

    х2 = 9

    х = ±√9

    х1 = 3, х2 = — 3

Ответ: два корня 3 и — 3.

Пример 3. Решить уравнение x2— х = 0.

Как решаем:

  1. Преобразуем уравнение так, чтобы появились множители

    х(х — 1) = 0

    х₁ = 0, х₂ = 1

Ответ: два корня 0 и 1.

Пример 4. Решить уравнение x2— 10 = 39.

Как решаем:

  1. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    x2— 10 = 39

    x2= 39 + 10

    x2= 49

    х = ±√49

    х₁ = 7, х₂ = −7

Ответ: два корня 7 и −7.

Пример 5. Решить уравнение 3x2— 4x+94 = 0.

Как решаем:

  1. Найдем дискриминант по формуле

    D = (-4)2 — 4 * 3 * 94 = 16 — 1128 = −1112

  2. Дискриминант отрицательный, поэтому корней нет.

Ответ: корней нет.

В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

Например, нам нужно решить квадратное уравнение ax2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n)2— 4ac = 4n2 — 4ac = 4(n2— ac) и подставим в формулу корней:

Для удобства вычислений обозначим выражение n2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

где D1 = n2— ac.

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

  • вычислить D1= n2— ac;
  • если D1< 0, значит действительных корней нет;
  • если D1= 0, значит можно вычислить единственный корень уравнения по формуле x = -n/a;
  • если же D1> 0, значит можно найти два действительных корня по формуле

Формула Виета


Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: 

Теорема Виета

Сумма корней x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

 

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

Обратная теорема Виета

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x2 + bx + c = 0.

Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

Пример 1. Решить при помощи теоремы Виета: x2 − 6x + 8 = 0.

Как решаем:

  1. Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

  2. Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

  3. Значит числа 4 и 2 — корни уравнения x2 − 6x + 8 = 0. p>

     

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x2 — 4 x — 6 = 0, чем 1100x2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Покажем, как это работает на примере 12x2— 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x2 — 7x + 8 = 0. Вот так просто.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x2 + 4x — 18 = 0.

Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x2— 3x + 7 = 0 перейти к решению 2x2 + 3x — 7 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

  • x₁ + x₂ = — b/a,
  • x₁* x₂ = c/a.

Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x2— 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

Калькулятор комбинаций (nCr)

Калькулятор Использование

Калькулятор комбинаций найдет количество возможных комбинаций, которые можно получить, взяв выборку предметов из большего набора. По сути, он показывает, сколько различных возможных подмножеств можно составить из большего набора. Для этого калькулятора порядок элементов, выбранных в подмножестве, не имеет значения.

Факториал
Есть! способы расположения n различных объектов в упорядоченную последовательность, перестановки, где n = r.
Комбинация
Количество способов выбрать выборку из r элементов из набора n различных объектов, где порядок не имеет значения и замены не допускаются.
Перестановка
Количество способов выбрать выборку из r элементов из набора n различных объектов, где порядок имеет значение, а замены запрещены. Когда n = r, это сводится к n!, простому факториалу n.
Замена комбинации
Количество способов выбрать выборку из r элементов из набора n различных объектов, где порядок не имеет значения и разрешены замены.
Замена замены
Количество способов выбрать выборку из r элементов из набора n различных объектов, где порядок имеет значение и разрешены замены.
набор или популяция
р
подмножество n или набор образцов

 

Формула комбинаций:

\( C(n,r) = \dfrac{n!}{( r! (n — r)! )} \)

Для n ≥ r ≥ 0,

Формула показывает нам, сколько способов можно получить выборку из «r» элементов из большего набора «n» различимых объектов, где порядок не имеет значения и повторения не допускаются. [1] «Число способов выбрать r неупорядоченных исходов из n возможностей». [2]

Также называется r-комбинацией или «n выберите r» или биномиальный коэффициент . В некоторых ресурсах в нотации используется k вместо r, поэтому вы можете увидеть, что это называется k-комбинацией или «n выбирает k».


Комбинированная задача 1

Выберите 2 приза из набора из 6 призов

Вы заняли первое место в конкурсе и можете выбрать 2 приза из таблицы, в которой 6 призов пронумерованы от 1 до 6. Сколько различные комбинации из 2 призов вы могли бы выбрать?

В этом примере мы берем подмножество из 2 призов (r) из большего набора из 6 призов (n). Глядя на формулу, мы должны вычислить «6 выбирают 2».

C (6,2)= 6!/(2! * (6-2)!) = 6!/(2! * 4!) = 15 возможных призовых комбинаций

15 возможных комбинаций {1 ,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6 }, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}


Комбинированная задача 2

Выберите 3 учащихся из класс 25

Учительница выбирает 3 учеников из своего класса для участия в конкурсе правописания. Она хочет выяснить, сколько уникальных команд по 3 человека можно создать из ее класса из 25 человек.

В этом примере мы берем подмножество из 3 учеников (r) из большей группы из 25 учеников (n). Глядя на формулу, мы должны вычислить «25 выбирают 3».

C (25,3)= 25!/(3! * (25-3)!)= 2300 возможных команд


Комбинированная задача 3

Выберите 4 пункта меню из 18 пунктов меню

Ресторан просит своих постоянных клиентов выбрать из меню 4 любимых блюда. Если в меню 18 позиций на выбор, сколько разных ответов могут дать покупатели?

Здесь мы берем подмножество из 4 пунктов (r) из большего меню из 18 пунктов (n). Следовательно, мы должны просто найти «18 выбирают 4».

C (18,4)= 18!/(4! * (18-4)!)= 3060 Возможные ответы


Задача о рукопожатии

Сколько в группе из n человек возможны разные рукопожатия?

Сначала найдем всего возможных рукопожатий. То есть, если каждый человек один раз пожал руку каждому другому человеку в группе, каково общее количество рукопожатий?

Можно предположить, что каждый человек в группе совершит в общей сложности n-1 рукопожатий. Поскольку есть n человек, всего будет n раз (n-1) рукопожатий. Другими словами, общее количество людей, умноженное на количество рукопожатий, которое может сделать каждый, и будет общим числом рукопожатий. Группа из 3 человек составит в общей сложности 3 (3-1) = 3 * 2 = 6. Каждый человек регистрирует 2 рукопожатия с двумя другими людьми в группе; 3*2.

Всего рукопожатий = n(n-1)

Однако это включает каждое рукопожатие дважды (1 с 2, 2 с 1, 1 с 3, 3 с 1, 2 с 3 и 3 с 2), и поскольку исходный вопрос хочет знать, сколько возможны разные рукопожатия мы должны разделить на 2, чтобы получить правильный ответ.

Всего разных рукопожатий = n(n-1)/2

Задача о рукопожатиях как задача о комбинациях

Мы также можем решить эту задачу о рукопожатиях как задачу о комбинациях как C(n,2).

n (объектов) = количество человек в группе
р (выборка) = 2, количество людей, участвующих в каждом рукопожатии

Порядок элементов, выбранных в подмножестве, не имеет значения, поэтому для группы из 3 будет учитываться 1 с 2, 1 с 3 и 2 с 3, но игнорировать 2 с 1, 3 с 1 и 3 с 2, потому что эти последние 3 являются дубликатами первых 3 соответственно.

\( C(n,r) = \dfrac{n!}{( r! (n — r)! )} \)

\( C(n,2) = \dfrac{n!}{( 2! (n — 2)! )} \)

расширение факториалов,

\( = \dfrac{1\times2\times3. ..\times(n-2)\times(n-1)\times(n)}{( 2\times1\times(1\times2\times3…\times(n-2)) )} \)

отмена и упрощение,

\( = \dfrac{(n-1)\times(n)}{2} = \dfrac{n(n-1)}{2} \)

что то же самое как уравнение выше.


Задача о комбинациях бутербродов

Это классическая математическая задача. Сколько комбинаций сэндвичей возможно? и так обычно и происходит.

Рассчитайте возможные комбинации бутербродов, если вы можете выбрать по одному продукту из каждой из четырех категорий:

  • 1 хлеб из 8 вариантов
  • 1 мясо из 5 вариантов
  • 1 сыр из 5 вариантов
  • 1 топпинг из 3 вариантов

Часто вы увидите ответ без какой-либо ссылки на уравнение комбинаций C(n,r) как произведение количества возможных вариантов в каждой из категорий. В этом случае мы вычисляем:

8 × 5 × 5 × 3 = 600
возможных комбинаций сэндвичей

С точки зрения приведенного ниже уравнения комбинаций, количество возможных вариантов для каждой категории равно количеству возможных комбинаций для каждой категории, поскольку мы делаем только 1 выбор; например, C(8,1) = 8, C(5,1) = 5 и C(3,1) = 3, используя следующее уравнение:

C(n,r) = n! / ( r!(n — r)! )

Мы можем использовать это уравнение комбинаций для расчета более сложной задачи сэндвича.

Задача комбинаций бутербродов с множественным выбором

Рассчитайте возможные комбинации, если вы можете выбрать несколько предметов из каждой из четырех категорий:

  • 1 хлеб из 8 вариантов
  • 3 вида мяса из 5 вариантов
  • 2 сыра из 5 вариантов
  • От 0 до 3 начинок из 3 вариантов

Применяя уравнение комбинаций, где порядок не имеет значения и замены не допускаются, мы вычисляем количество возможных комбинаций в каждой из категорий. Вы можете использовать калькулятор выше, чтобы доказать, что каждое из них верно.

  • 1 хлеб из 8 вариантов равен C(8,1) = 8
  • 3 вида мяса из 5 вариантов C(5,3) = 10
  • 2 сыра из 5 вариантов C(5,2) = 10
  • от 0 до 3 начинок из 3 вариантов; мы должны вычислить каждое возможное количество вариантов от 0 до 3 и получить C(3,0) + C(3,1) + C(3,2) + C(3,3) = 8

Умножая возможные комбинации для каждой категории, получаем:

8 × 10 × 10 × 8 = 6400
возможных комбинаций сэндвичей

Сколько возможных комбинаций существует, если вашим клиентам разрешено выбирать такие варианты, которые остаются в пределах общего разрешенного количества порций:

  • 2 порции одного мяса и 1 порция другого?
  • 3 порции только одного мяса?
  • 2 порции только одного сыра?

В предыдущем расчете замены не допускались; клиенты должны были выбрать 3 разных мяса и 2 разных сыра. Теперь разрешены замены, покупатели могут выбирать любой товар более одного раза при выборе своей порции. Для мяса и сыров это теперь замена комбинаций или проблема с множественным выбором с использованием уравнения комбинаций с заменами:

C R (n,r) = C(n+r-1, r) = (n+r-1)! / (r! (n — 1)!)

Для мяса, где количество объектов n = 5 и количество вариантов выбора r = 3, мы можем вычислить либо замена комбинаций C R (5,3) = 35 или заменить члены и вычислить комбинации C(n+r-1, r) = C(5+3-1, 3) = С(7, 3) = 35 .

Подсчитав выбор сыра таким же образом, мы получили общее количество возможных вариантов для каждой категории, равное 9.0005

  • хлеб 8
  • мясо 35
  • сыр 15
  • начинки это 8

и, наконец, мы умножаем, чтобы найти общее количество

8 × 35 × 15 × 8 =; 33 600
возможных комбинаций бутербродов!

Сколько комбинаций возможно, если клиентам также разрешены замены при выборе начинки?


Ссылки

[1] Zwillinger, Daniel (главный редактор).

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *