Arccos 0 7: Mathway | Популярные задачи

Опубликовано

Mathway | Популярные задачи

1Найти точное значениеsin(30)
2Найти точное значениеsin(45)
3Найти точное значениеsin(30 град. )
4Найти точное значениеsin(60 град. )
5Найти точное значениеtan(30 град. )
6Найти точное значениеarcsin(-1)
7Найти точное значениеsin(pi/6)
8
Найти точное значение
cos(pi/4)
9Найти точное значениеsin(45 град. )
10Найти точное значениеsin(pi/3)
11Найти точное значениеarctan(-1)
12Найти точное значениеcos(45 град. )
13Найти точное значениеcos(30 град. )
14Найти точное значениеtan(60)
15
Найти точное значение
csc(45 град. )
16Найти точное значениеtan(60 град. )
17Найти точное значениеsec(30 град. )
18Найти точное значениеcos(60 град. )
19Найти точное значениеcos(150)
20Найти точное значениеsin(60)
21Найти точное значениеcos(pi/2)
22Найти точное значениеtan(45 град. )
23Найти точное значениеarctan(- квадратный корень из 3)
24Найти точное значениеcsc(60 град. )
25Найти точное значениеsec(45 град. )
26Найти точное значениеcsc(30 град. )
27Найти точное значениеsin(0)
28
Найти точное значениеsin(120)
29Найти точное значениеcos(90)
30Преобразовать из радианов в градусыpi/3
31Найти точное значениеtan(30)
32Преобразовать из градусов в радианы45
33Найти точное значениеcos(45)
34Упроститьsin(theta)^2+cos(theta)^2
35Преобразовать из радианов в градусыpi/6
36Найти точное значениеcot(30 град. )
37Найти точное значениеarccos(-1)
38Найти точное значениеarctan(0)
39Найти точное значениеcot(60 град. )
40Преобразовать из градусов в радианы30
41Преобразовать из радианов в градусы(2pi)/3
42Найти точное значениеsin((5pi)/3)
43Найти точное значениеsin((3pi)/4)
44Найти точное значениеtan(pi/2)
45Найти точное значениеsin(300)
46Найти точное значениеcos(30)
47Найти точное значениеcos(60)
48Найти точное значениеcos(0)
49Найти точное значениеcos(135)
50Найти точное значениеcos((5pi)/3)
51Найти точное значениеcos(210)
52Найти точное значениеsec(60 град. )
53Найти точное значениеsin(300 град. )
54Преобразовать из градусов в радианы135
55Преобразовать из градусов в радианы150
56Преобразовать из радианов в градусы(5pi)/6
57Преобразовать из радианов в градусы(5pi)/3
58Преобразовать из градусов в радианы89 град.
59Преобразовать из градусов в радианы60
60Найти точное значениеsin(135 град. )
61Найти точное значениеsin(150)
62Найти точное значениеsin(240 град. )
63Найти точное значениеcot(45 град. )
64Преобразовать из радианов в градусы(5pi)/4
65Найти точное значениеsin(225)
66Найти точное значениеsin(240)
67Найти точное значениеcos(150 град. )
68
Найти точное значениеtan(45)
69Вычислитьsin(30 град. )
70Найти точное значениеsec(0)
71Найти точное значениеcos((5pi)/6)
72Найти точное значениеcsc(30)
73Найти точное значениеarcsin(( квадратный корень из 2)/2)
74Найти точное значение
tan((5pi)/3)
75Найти точное значениеtan(0)
76Вычислитьsin(60 град. )
77Найти точное значениеarctan(-( квадратный корень из 3)/3)
78Преобразовать из радианов в градусы(3pi)/4
79Найти точное значениеsin((7pi)/4)
80Найти точное значениеarcsin(-1/2)
81Найти точное значение
sin((4pi)/3)
82Найти точное значениеcsc(45)
83Упроститьarctan( квадратный корень из 3)
84Найти точное значениеsin(135)
85Найти точное значениеsin(105)
86Найти точное значениеsin(150 град. )
87Найти точное значениеsin((2pi)/3)
88Найти точное значениеtan((2pi)/3)
89Преобразовать из радианов в градусыpi/4
90Найти точное значениеsin(pi/2)
91Найти точное значениеsec(45)
92Найти точное значениеcos((5pi)/4)
93Найти точное значениеcos((7pi)/6)
94Найти точное значениеarcsin(0)
95Найти точное значениеsin(120 град. )
96Найти точное значениеtan((7pi)/6)
97Найти точное значениеcos(270)
98Найти точное значениеsin((7pi)/6)
99Найти точное значениеarcsin(-( квадратный корень из 2)/2)
100Преобразовать из градусов в радианы88 град.

Обратные тригонометрические функции и их графики

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число , такое, что Или, можно сказать, что это такой угол , принадлежащий отрезку , синус которого равен числу а.

Арккосинусом числа а называется число , такое, что

Арктангенсом числа а называется число , такое, что

Арккотангенсом числа а называется число , такое, что

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Помните, мы уже встречались с обратными функциями.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

Логарифм числа b по основанию a — такое число с, что

При этом

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения — это и Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: Решение этого уравнения — иррациональное число Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку , синус которого равен — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это

А вторая серия решений нашего уравнения — это

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку ?

Дело в том, что углов, синус которых равен, например, , бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке .

Взгляните на тригонометрический круг. Вы увидите, что на отрезке каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка отвечает одно-единственное значение угла на отрезке . Это значит, что на отрезке можно задать функцию принимающую значения от до

Повторим определение еще раз:

Арксинусом числа a называется число , такое, что

Обозначение: Область определения арксинуса — отрезок Область значений — отрезок .

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке .

Мы готовы построить график функции

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку , следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок

Мы сказали, что у принадлежит отрезку . Это значит, что областью значений функции y = arcsin x является отрезок .

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями и

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка , синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка , синус которого равен единице. Очевидно, это

Продолжаем: — это такое число из отрезка , синус которого равен . Да, это

Строим график функции

Свойства функции

1. Область определения

2. Область значений

3. , то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция монотонно возрастает. Ее наименьшее значение, равное — , достигается при , а наибольшее значение, равное , при

5. Что общего у графиков функций и ? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции и график функции , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от до , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это при и , а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой

Аналогично, определим функцию Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок

Арккосинусом числа a называется число , такое, что 

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке

Обозначение: Область определения арккосинуса — отрезок Область значений — отрезок

Очевидно, отрезок выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение:

Построим график функции

Нам нужен такой участок функции , на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок . На этом отрезке функция монотонно убывает, то есть соответствие между множествами и взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку , будет такое число y, принадлежащее промежутку , что

Значит, , поскольку ;

, так как ;

, так как ,

, так как ,

Вот график арккосинуса:

Свойства функции

1. Область определения

2. Область значений

3.

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное , функция у = arccosx принимает при , а наименьшее значение, равное нулю, принимает при

5. Функции и являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число , такое, что

Обозначение: . Область определения арктангенса — промежуток Область значений — интервал .

Почему в определении арктангенса исключены концы промежутка — точки ? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу , такое, что

Как строить график — уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

— Выбираем такой участок графика функции , где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция принимает значения от до

Тогда у обратной функции, то есть у функции , область, определения будет вся числовая прямая, от до а областью значений — интервал

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

, значит,

, значит,

, значит,

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала значение тангенса стремится к бесконечности? — Очевидно, это

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте

На рисунке — график функции

Свойства функции

1. Область определения

2. Область значений

3. Функция нечетная.

4. Функция является строго возрастающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными — конечно, когда функция рассматривается на промежутке

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число , такое, что

График функции :

Свойства функции

1. Область определения

2. Область значений

3. Функция — общего вида, то есть ни четная, ни нечетная.

4. Функция является строго убывающей.

5. Прямые и — горизонтальные асимптоты данной функции.

6. Функции и являются взаимно обратными, если рассматривать на промежутке

Благодарим за то, что пользуйтесь нашими материалами. Информация на странице «Обратные тригонометрические функции и их графики» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ. Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий. Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена: 09.03.2023

Калькулятор Arccos | cos(x)


Arccos Calculator

cos -1 (x)



Результат:

900 градусов
0
Угол в радианах: 0

Что такое arccos?

Арккосинус (или арккосинус) является обратной функцией косинуса. В прямоугольном треугольнике cos угла y определяется как отношение стороны, прилежащей к углу, к гипотенузе. Когда мы возьмем арккосинус этого отношения, мы получим меру угла y. 9{-1} x$$

Выражение y = cos -1 ⁡x означает, что cos y = x , когда 0 ≤ y ≤ π и -1≤ x ≤ +1.

Арккосинус(x)=y определяется как множество всех углов, косинус которых равен x. Здесь следует отметить, что -1 не является показателем степени и, следовательно, cos -1 ⁡x ≠ 1 / cos x .

Свойства функции арккосинуса

Ниже приведены некоторые свойства функции арккосинуса.

Угол – Угол – это параметр, который рассчитывается, когда известен косинус (или арккосинус) угла. 9(-1)⁡х. Это значение равно 0 ≤ y ≤ π радиан или 0 ≤ y ≤ +180 градусов.

Ниже приведен график функции арккосинуса.

На приведенном выше графике ось Y обозначает угол в радианах, а ось X обозначает арккосинус этого угла. Красная кривая обозначает функцию арккосинуса. Для любого значения x от -1 до +1 функция арккосинуса возвращает значение от 0 до π радиан (или от 0⁰ до 180⁰). Например, когда x=1, y=arccosine(x) возвращает y=0 радиан. Это означает, что cos (0) = 1,

Если сравнить график арккосинуса с графиком синуса, можно увидеть, что график арккосинуса можно получить из графика косинуса, просто поменяв местами горизонтальную и вертикальную оси.

Значения арккосинуса(х)

Ниже приведены некоторые часто используемые значения арккосинуса(х).

y=cos -1 ⁡x в градусах y=cos -1 ⁡x в радианах х
0 0 1
30 $$π\over6$$ $$√3\более2$$
45 $$π\over4$$ $$1\over√2$$
60 $$π\over3$$ $$1\over2$$
90 $$π\over2$$ 0
120 $$2π\over3$$ $$-1\over2$$
135 $$3π\over4$$ $$-1\over√2$$
150 $$5π\over6$$ $$-√3\over2$$
180 $$π$$ -1

Значение арккосинуса(x) всегда положительное, даже если x отрицательное. Например, арккосинус (-1/2) = 120⁰ и арккосинус (1/2) = 60⁰ являются положительными. Это потому, что cos -1 ⁡(-x)=-cos -1 ⁡x.

Это показано ниже.

На этом рисунке ось x обозначает значения арккосинуса, тогда как ось y обозначает угол θ. Арккосинус (x) будет положительным, когда 0 ≤ θ ≤ π/2 (в квадранте 1), и отрицательным, когда π/2

Мы также можем заметить, что

cos⁡(cos -1 ⁡(x))=x, когда -1 ≤ x ≤ +1.

Например, cos⁡(cos -1 ⁡(1/2)) = cos⁡ 60⁰ = 1/2.

Аналогично, cos -1 ⁡⁡(cos⁡ x) = x, когда 0 ≤ x ≤ +π.

Например, cos -1 ⁡⁡(cos⁡ π/4) = cos -1 ⁡⁡⁡(1/√2) = π/4.

Если нам нужно найти арккосинус косинуса угла, который не лежит между 0 и π, правильный угол можно найти, добавляя или вычитая 2π радиан, пока мы не получим угол в диапазоне от 0 до π, что является диапазоном функции арккосинуса. Это потому, что 2π — это период функции cos. 99\over9} + . ..)$$

Области применения

Тригонометрические функции, а также обратные тригонометрические функции широко используются в технике, геометрии и физике. В повседневной жизни косвенные измерения используются для поиска ответов на проблемы, которые не могут быть легко решены с помощью инструментов измерения. В таких случаях тригонометрические и обратные тригонометрические функции находят широкое применение для вычисления этих неизвестных измерений.

Они также используются для решения тригонометрических уравнений, описывающих реальные задачи.

В этом разделе мы рассмотрим несколько примеров задач, связанных с использованием формулы арккосинуса.

Ответ: Угол -6π/5 радиан не лежит между 0 и π, но его можно привести к этому диапазону, добавляя или вычитая 2π радиан, пока мы не получим угол в диапазоне от 0 до π радиан, что является диапазоном функции арккосинуса.

В этом случае -6π/5 радиан можно записать как -6π/5+2π=4π/5 радиан, что находится между 0 и π.

Следовательно, cos -1 ⁡(cos⁡ -6π/5) = cos -1 ⁡ (cos⁡(4π/5) ) = 4π/5


Ответ: Задачу можно представить следующим образом.

В данном прямоугольном треугольнике стороны следующие. Нам нужно найти угол у.

AC указывает расстояние, пройденное человеком в северо-восточном направлении, а BC — расстояние от его начальной точки. Это можно представить в виде прямоугольного треугольника, как показано выше. Здесь AC= 28 миль, а BC= 8 миль.

9{-1}({2\over7}) ≈ 73,398⁰$$

Следовательно, человек шел на 73,4⁰ к северу от востока.


См. также:

  • Калькулятор арксинуса
  • Калькулятор арктангенса
  • Калькулятор синуса
  • Калькулятор косинуса
  • Калькулятор касательной
  • Калькулятор тригнометрии

Делиться:


Калькулятор — arccos(0) — Solumaths

Arccos, расчет онлайн

Резюме:

Функция arccos позволяет вычислить арккосинус числа. Функция arccos является обратной функцией функции косинуса.

arccos online


Описание:

Функция арккосинуса является обратной функцией функция косинуса, это вычисляет арккосинус числа онлайн .

Число, к которому вы хотите применить функцию арккосинуса, должно принадлежать диапазону [-1,1].

  1. Расчет арккосинуса
  2. Чтобы вычислить арккосинус числа, просто введите число и примените функция arccos . Таким образом, для вычисление арккосинуса числа, следующего за 0,4, вы должны ввести arccos(`0.4`) или сразу 0.4, если кнопка arccos уже есть, результат 1.1592)`.

  3. Таблица замечательных значений
  4. arccos(srt`-19 2)/2`) `
    arccos(`-1`) `pi`
    arccos(`-sqrt(3)/2`) `5*pi/6`
    `3*pi/4`
    arccos(`-1/2`) `2*pi/3`
    arccos(`0`) pi/2`
    arccos(`1/2`) `pi/3`
    arccos(`sqrt(2)/2`) `pi/4`
    arccos(`sqrt(3)/2`) `pi/6`
    arccos(`1`) `0`
Syntax :

arccos(x), где x — число.

Иногда используются другие обозначения: acos


Примеры:

arccos(`1`) возвращает 0


Производная арккосинуса :

Чтобы дифференцировать функцию арккосинуса онлайн, можно использовать калькулятор производной, который позволяет вычислить производную функции арккосинуса 92)`


Предел арккосинуса :

Калькулятор предела позволяет вычислить пределы функции арккосинуса.

предел арккосинуса (x) is limit(`»arccos»(x)`)


Обратная функция арккосинуса :

обратная функция арккосинуса представляет собой функцию косинуса, отмеченную как cos.



Графический арккосинус :

Графический калькулятор может отображать функцию арккосинуса в заданном интервале.


Онлайн-расчет с арккосинусом

См. также

Список связанных калькуляторов:

  • Арккосинус : arccos. Функция arccos позволяет вычислять арккосинус числа. Функция arccos является обратной функцией функции косинуса.
  • Арксинус : арксинус. Функция arcsin позволяет вычислить арксинус числа. Функция arcsin является обратной функцией функции синуса.
  • Арктангенс: арктангенс. Функция арктангенса позволяет вычислить арктангенс числа. Функция арктангенса является обратной функцией функции тангенса.
  • Тригонометрический калькулятор: simple_trig. Калькулятор, который использует тригонометрическую формулу для упрощения тригонометрического выражения.
  • Косинус: cos. Кос-тригонометрическая функция вычисляет косинус угла в радианах, градусов или градианов.
  • Косеканс: косеканс. Тригонометрическая функция sec позволяет вычислить секанс угла, выраженного в радианах, градусах или градусах.
  • Котангенс : котанг. Тригонометрическая функция котана для вычисления котана угла в радианах, градусов или градианов.
  • Тригонометрическое расширение: expand_trigo.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *