Таблица косинусов, найти значения угла косинусов
Косинус угла представляет собой одну из тригонометрических функций. Является соотношением ближнего к углу прямоугольного треугольника катета к гипотенузе. Записывается следующим образом: cos (А) = АС/АВ, где АС – ближний катет угла (А), АВ – гипотенуза.
Зачем необходимо производить такие сложные на первый взгляд вычисления? Еще с древних времен известна аксиома: знаю угол – знаю его тригонометрическую функцию. Соответственно, если известен cos любого угла, в таблице Брадиса можно найти этот угол. И наоборот – зная угол, не сложно вычислить косинус. Отсюда можно найти следующие данные: длина катетов и гипотенузы.
Эти данные используются не только в голых математических вычислениях. Невозможно составить даже элементарный план местности, не зная тригонометрических функций. Посредством онлайн калькулятора можно облегчить задачу и получать требуемые данные за доли секунды.
Таблица косинусов от 0° — 360°
|
|
|
|
|
|
|
|
|
|
Смотрите также
Таблица Брадиса sin cos tg ctg
Калькулятор поможет рассчитать точные значения тригонометрических функций sin, cos, tg и ctg для различных значений углов в градусах или радианах.
На данной странице таблица Брадиса, которая дает значение sin, cos, tg, ctg любого острого угла, содержащего целое число градусов и десятых долей градуса. Для нахождения значения угла берется число на пересечении строки, которое соответствует числу градусов и столбца, которое соответствует числу минут. Например, sin 70°30′ = 0.9426.
Найти точное значениеТаблица Брадиса sin, cos
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos | ||||
0 | 90° | ||||||||||||||
0° | 0,0000 | 0017 | 0035 | 0052 | 0070 | 0087 | 0105 | 0122 | 0140 | 0157 | 0175 | 89° | 3 | 6 | 9 |
1° | 0175 | 0192 | 0209 | 0227 | 0244 | 0262 | 0279 | 0297 | 0314 | 0332 | 0349 | 88° | 3 | 6 | 9 |
2° | 0349 | 0366 | 0384 | 0401 | 0419 | 0436 | 0454 | 0471 | 0488 | 0506 | 0523 | 87° | 3 | 6 | 9 |
3° | 0523 | 0541 | 0558 | 0576 | 0593 | 0610 | 0628 | 0645 | 0663 | 0680 | 0698 | 86° | 3 | 6 | 9 |
4° | 0698 | 0715 | 0732 | 0750 | 0767 | 0785 | 0802 | 0819 | 0837 | 0854 | 0872 | 85° | 3 | 6 | 9 |
5° | 0872 | 0889 | 0906 | 0924 | 0941 | 0958 | 0976 | 0993 | 1011 | 1028 | 1045 | 84° | 3 | 6 | 9 |
6° | 1045 | 1063 | 1080 | 1097 | 1115 | 1132 | 1149 | 1167 | 1184 | 1201 | 1219 | 83° | 3 | 6 | 9 |
7° | 1219 | 1236 | 1253 | 1271 | 1288 | 1305 | 1323 | 1340 | 1357 | 1374 | 1392 | 82° | 3 | 6 | 9 |
8° | 1392 | 1409 | 1426 | 1444 | 1461 | 1478 | 1495 | 1513 | 1530 | 1547 | 1564 | 81° | 3 | 6 | 9 |
9° | 1564 | 1582 | 1599 | 1616 | 1633 | 1650 | 1668 | 1685 | 1702 | 1719 | 1736 | 80° | 3 | 6 | 9 |
10° | 1736 | 1754 | 1771 | 1788 | 1805 | 1822 | 1840 | 1857 | 1874 | 1891 | 1908 | 79° | 3 | 6 | 9 |
11° | 1908 | 1925 | 1942 | 1959 | 1977 | 1994 | 2011 | 2028 | 2045 | 2062 | 2079 | 78° | 3 | 6 | 9 |
12° | 2079 | 2096 | 2113 | 2130 | 2147 | 2164 | 2181 | 2198 | 2215 | 2233 | 2250 | 77° | 3 | 6 | 9 |
13° | 2250 | 2267 | 2284 | 2300 | 2317 | 2334 | 2351 | 2368 | 2385 | 2402 | 2419 | 76° | 3 | 6 | 8 |
14° | 2419 | 2436 | 2453 | 2470 | 2487 | 2504 | 2521 | 2538 | 2554 | 2571 | 2588 | 75° | 3 | 6 | 8 |
15° | 2588 | 2605 | 2622 | 2639 | 2656 | 2672 | 2689 | 2706 | 2723 | 2740 | 2756 | 74° | 3 | 6 | 8 |
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos | ||||
16° | 2756 | 2773 | 2790 | 2807 | 2823 | 2840 | 2857 | 2874 | 2890 | 2907 | 2924 | 73° | 3 | 6 | 8 |
17° | 2924 | 2940 | 2957 | 2974 | 2990 | 3007 | 3024 | 3040 | 3057 | 3074 | 3090 | 72° | 3 | 6 | 8 |
18° | 3090 | 3107 | 3123 | 3140 | 3156 | 3173 | 3190 | 3206 | 3223 | 3239 | 3256 | 71° | 3 | 6 | 8 |
19° | 3256 | 3272 | 3289 | 3305 | 3322 | 3338 | 3355 | 3371 | 3387 | 3404 | 3420 | 70° | 3 | 5 | 8 |
20° | 3420 | 3437 | 3453 | 3469 | 3486 | 3502 | 3518 | 3535 | 3551 | 3567 | 3584 | 69° | 3 | 5 | 8 |
21° | 3584 | 3600 | 3616 | 3633 | 3649 | 3665 | 3681 | 3697 | 3714 | 3730 | 3746 | 68° | 3 | 5 | 8 |
22° | 3746 | 3762 | 3778 | 3795 | 3811 | 3827 | 3843 | 3859 | 3875 | 3891 | 3907 | 67° | 3 | 5 | 8 |
23° | 3907 | 3923 | 3939 | 3955 | 3971 | 3987 | 4003 | 4019 | 4035 | 4051 | 4067 | 66° | 3 | 5 | 8 |
24° | 4067 | 4083 | 4099 | 4115 | 4131 | 4147 | 4163 | 4179 | 4195 | 4210 | 4226 | 65° | 3 | 5 | 8 |
25° | 4226 | 4242 | 4258 | 4274 | 4289 | 4305 | 4321 | 4337 | 4352 | 4368 | 4384 | 64° | 3 | 5 | 8 |
26° | 4384 | 4399 | 4415 | 4431 | 4446 | 4462 | 4478 | 4493 | 4509 | 4524 | 4540 | 63° | 3 | 5 | 8 |
27° | 4540 | 4555 | 4571 | 4586 | 4602 | 4617 | 4633 | 4648 | 4664 | 4679 | 4695 | 62° | 3 | 5 | 8 |
28° | 4695 | 4710 | 4726 | 4741 | 4756 | 4772 | 4787 | 4802 | 4818 | 4833 | 4848 | 61° | 3 | 5 | 8 |
29° | 4848 | 4863 | 4879 | 4894 | 4909 | 4924 | 4939 | 4955 | 4970 | 4985 | 5000 | 60° | 3 | 5 | 8 |
30° | 5000 | 5015 | 5030 | 5045 | 5060 | 5075 | 5090 | 5105 | 5120 | 5135 | 5150 | 59° | 3 | 5 | 8 |
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos | ||||
31° | 5150 | 5165 | 5180 | 5195 | 5210 | 5225 | 5240 | 5255 | 5270 | 5284 | 5299 | 58° | 2 | 5 | 7 |
32° | 5299 | 5314 | 5329 | 5344 | 5358 | 5373 | 5388 | 5402 | 5417 | 5432 | 5446 | 57° | 2 | 5 | 7 |
33° | 5446 | 5461 | 5476 | 5490 | 5505 | 5519 | 5534 | 5548 | 5563 | 5577 | 5592 | 56° | 2 | 5 | 7 |
34° | 5592 | 5606 | 5621 | 5635 | 5650 | 5664 | 5678 | 5693 | 5707 | 5721 | 5736 | 55° | 2 | 5 | 7 |
35° | 5736 | 5750 | 5764 | 5779 | 5793 | 5807 | 5821 | 5835 | 5850 | 5864 | 5878 | 54° | 2 | 5 | 7 |
36° | 5878 | 5892 | 5906 | 5920 | 5934 | 5948 | 5962 | 5976 | 5990 | 6004 | 6018 | 53° | 2 | 5 | 7 |
37° | 6018 | 6032 | 6046 | 6060 | 6074 | 6088 | 6101 | 6115 | 6129 | 6143 | 6157 | 52° | 2 | 5 | 7 |
38° | 6157 | 6170 | 6184 | 6198 | 6211 | 6225 | 6239 | 6252 | 6266 | 6280 | 6293 | 51° | 2 | 5 | 7 |
39° | 6293 | 6307 | 6320 | 6334 | 6347 | 6361 | 6374 | 6388 | 6401 | 6414 | 6428 | 50° | 2 | 4 | 7 |
40° | 6428 | 6441 | 6455 | 6468 | 6481 | 6494 | 6508 | 6521 | 6534 | 6547 | 6561 | 49° | 2 | 4 | 7 |
41° | 6561 | 6574 | 6587 | 6600 | 6613 | 6626 | 6639 | 6652 | 6665 | 6678 | 6691 | 48° | 2 | 4 | 7 |
42° | 6691 | 6704 | 6717 | 6730 | 6743 | 6756 | 6769 | 6782 | 6794 | 6807 | 6820 | 47° | 2 | 4 | 6 |
43° | 6820 | 6833 | 6845 | 6858 | 6871 | 6884 | 6896 | 6909 | 6921 | 6934 | 6947 | 46° | 2 | 4 | 6 |
44° | 6947 | 6959 | 6972 | 6984 | 6997 | 7009 | 7022 | 7034 | 7046 | 7059 | 7071 | 45° | 2 | 4 | 6 |
45° | 7071 | 7083 | 7096 | 7108 | 7120 | 7133 | 7145 | 7157 | 7169 | 7181 | 7193 | 44° | 2 | 4 | 6 |
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos | ||||
46° | 7193 | 7206 | 7218 | 7230 | 7242 | 7254 | 7266 | 7278 | 7290 | 7302 | 7314 | 43° | 2 | 4 | 6 |
47° | 7314 | 7325 | 7337 | 7349 | 7361 | 7373 | 7385 | 7396 | 7408 | 7420 | 7431 | 42° | 2 | 4 | 6 |
48° | 7431 | 7443 | 7455 | 7466 | 7478 | 7490 | 7501 | 7513 | 7524 | 7536 | 7547 | 41° | 2 | 4 | 6 |
49° | 7547 | 7559 | 7570 | 7581 | 7593 | 7604 | 7615 | 7627 | 7638 | 7649 | 7660 | 40° | 2 | 4 | 6 |
50° | 7660 | 7672 | 7683 | 7694 | 7705 | 7716 | 7727 | 7738 | 7749 | 7760 | 7771 | 39° | 2 | 4 | 6 |
51° | 7771 | 7782 | 7793 | 7804 | 7815 | 7826 | 7837 | 7848 | 7859 | 7869 | 7880 | 38° | 2 | 4 | 5 |
52° | 7880 | 7891 | 7902 | 7912 | 7923 | 7934 | 7944 | 7955 | 7965 | 7976 | 7986 | 37° | 2 | 4 | 5 |
53° | 7986 | 7997 | 8007 | 8018 | 8028 | 8039 | 8049 | 8059 | 8070 | 8080 | 8090 | 36° | 2 | 3 | 5 |
54° | 8090 | 8100 | 8111 | 8121 | 8131 | 8141 | 8151 | 8161 | 8171 | 8181 | 8192 | 35° | 2 | 3 | 5 |
55° | 8192 | 8202 | 8211 | 8221 | 8231 | 8241 | 8251 | 8261 | 8271 | 8281 | 8290 | 34° | 2 | 3 | 5 |
56° | 8290 | 8300 | 8310 | 8320 | 8329 | 8339 | 8348 | 8358 | 8368 | 8377 | 8387 | 33° | 2 | 3 | 5 |
57° | 8387 | 8396 | 8406 | 8415 | 8425 | 8434 | 8443 | 8453 | 8462 | 8471 | 8480 | 32° | 2 | 3 | 5 |
58° | 8480 | 8490 | 8499 | 8508 | 8517 | 8526 | 8536 | 8545 | 8554 | 8563 | 8572 | 31° | 2 | 3 | 5 |
59° | 8572 | 8581 | 8590 | 8599 | 8607 | 8616 | 8625 | 8634 | 8643 | 8652 | 8660 | 30° | 1 | 3 | 4 |
60° | 8660 | 8669 | 8678 | 8686 | 8695 | 8704 | 8712 | 8721 | 8729 | 8738 | 8746 | 29° | 1 | 3 | 4 |
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos | ||||
61° | 8746 | 8755 | 8763 | 8771 | 8780 | 8788 | 8796 | 8805 | 8813 | 8821 | 8829 | 28° | 1 | 3 | 4 |
62° | 8829 | 8838 | 8846 | 8854 | 8862 | 8870 | 8878 | 8886 | 8894 | 8902 | 8910 | 27° | 1 | 3 | 4 |
63° | 8910 | 8918 | 8926 | 8934 | 8942 | 8949 | 8957 | 8965 | 8973 | 8980 | 8988 | 26° | 1 | 3 | 4 |
64° | 8988 | 8996 | 9003 | 9011 | 9018 | 9026 | 9033 | 9041 | 9048 | 9056 | 9063 | 25° | 1 | 3 | 4 |
65° | 9063 | 9070 | 9078 | 9085 | 9092 | 9100 | 9107 | 9114 | 9121 | 9128 | 9135 | 24° | 1 | 2 | 4 |
66° | 9135 | 9143 | 9150 | 9157 | 9164 | 9171 | 9178 | 9184 | 9191 | 9198 | 9205 | 23° | 1 | 2 | 3 |
67° | 9205 | 9212 | 9219 | 9225 | 9232 | 9239 | 9245 | 9252 | 9259 | 9265 | 9272 | 22° | 1 | 2 | 3 |
68° | 9272 | 9278 | 9285 | 9291 | 9298 | 9304 | 9311 | 9317 | 9323 | 9330 | 9336 | 21° | 1 | 2 | 3 |
69° | 9336 | 9342 | 9348 | 9354 | 9361 | 9367 | 9373 | 9379 | 9385 | 9391 | 9397 | 20° | 1 | 2 | 3 |
70° | 9397 | 9403 | 9409 | 9415 | 9421 | 9426 | 9432 | 9438 | 9444 | 9449 | 9455 | 19° | 1 | 2 | 3 |
71° | 9455 | 9461 | 9466 | 9472 | 9478 | 9483 | 9489 | 9494 | 9500 | 9505 | 9511 | 18° | 1 | 2 | 3 |
72° | 9511 | 9516 | 9521 | 9527 | 9532 | 9537 | 9542 | 9548 | 9553 | 9558 | 9563 | 17° | 1 | 2 | 3 |
73° | 9563 | 9568 | 9573 | 9578 | 9583 | 9588 | 9593 | 9598 | 9603 | 9608 | 9613 | 16° | 1 | 2 | 2 |
74° | 9613 | 9617 | 9622 | 9627 | 9632 | 9636 | 9641 | 9646 | 9650 | 9655 | 9659 | 15° | 1 | 2 | 2 |
75° | 9659 | 9664 | 9668 | 9673 | 9677 | 9681 | 9686 | 9690 | 9694 | 9699 | 9703 | 14° | 1 | 1 | 2 |
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos | ||||
76° | 9703 | 9707 | 9711 | 9715 | 9720 | 9724 | 9728 | 9732 | 9736 | 9740 | 9744 | 13° | 1 | 1 | 2 |
77° | 9744 | 9748 | 9751 | 9755 | 9759 | 9763 | 9767 | 9770 | 9774 | 9778 | 9781 | 12° | 1 | 1 | 2 |
78° | 9781 | 9785 | 9789 | 9792 | 9796 | 9799 | 9803 | 9806 | 9810 | 9813 | 9816 | 11° | 1 | 1 | 2 |
79° | 9816 | 9820 | 9823 | 9826 | 9829 | 9833 | 9836 | 9839 | 9842 | 9845 | 9848 | 10° | 1 | 1 | 2 |
80° | 9848 | 9851 | 9854 | 9857 | 9860 | 9863 | 9866 | 9869 | 9871 | 9874 | 9877 | 9° | 0 | 1 | 1 |
81° | 9877 | 9880 | 9882 | 9885 | 9888 | 9890 | 9893 | 9895 | 9898 | 9900 | 9903 | 8° | 0 | 1 | 1 |
82° | 9903 | 9905 | 9907 | 9910 | 9912 | 9914 | 9917 | 9919 | 9921 | 9923 | 9925 | 7° | 0 | 1 | 1 |
83° | 9925 | 9928 | 9930 | 9932 | 9934 | 9936 | 9938 | 9940 | 9942 | 9943 | 9945 | 6° | 0 | 1 | 1 |
84° | 9945 | 9947 | 9949 | 9951 | 9952 | 9954 | 9956 | 9957 | 9959 | 9960 | 9962 | 5° | 0 | 1 | 1 |
85° | 9962 | 9963 | 9965 | 9966 | 9968 | 9969 | 9971 | 9972 | 9973 | 9974 | 9976 | 4° | 0 | 0 | 1 |
86° | 9976 | 9977 | 9978 | 9979 | 9980 | 9981 | 9982 | 9983 | 9984 | 9985 | 9986 | 3° | 0 | 0 | 0 |
87° | 9986 | 9987 | 9988 | 9989 | 9990 | 9990 | 9991 | 9992 | 9993 | 9993 | 9994 | 2° | 0 | 0 | 0 |
88° | 9994 | 9995 | 9995 | 9996 | 9996 | 9997 | 9997 | 9997 | 9998 | 9998 | 9998 | 1° | 0 | 0 | 0 |
89° | 9998 | 9999 | 9999 | 9999 | 9999 | 1. 0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0° | 0 | 0 | 0 |
90° | 1 | ||||||||||||||
sin | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | cos |
Таблица Брадиса tg, ctg
tg | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | ctg | ||||
0 | 90° | ||||||||||||||
0° | 0,000 | 0017 | 0035 | 0052 | 0070 | 0087 | 0105 | 0122 | 0140 | 0157 | 0175 | 89° | 3 | 6 | 9 |
1° | 0175 | 0192 | 0209 | 0227 | 0244 | 0262 | 0279 | 0297 | 0314 | 0332 | 0349 | 88° | 3 | 6 | 9 |
2° | 0349 | 0367 | 0384 | 0402 | 0419 | 0437 | 0454 | 0472 | 0489 | 0507 | 0524 | 87° | 3 | 6 | 9 |
3° | 0524 | 0542 | 0559 | 0577 | 0594 | 0612 | 0629 | 0647 | 0664 | 0682 | 0699 | 86° | 3 | 6 | 9 |
4° | 0699 | 0717 | 0734 | 0752 | 0769 | 0787 | 0805 | 0822 | 0840 | 0857 | 0,0875 | 85° | 3 | 6 | 9 |
5° | 0,0875 | 0892 | 0910 | 0928 | 0945 | 0963 | 0981 | 0998 | 1016 | 1033 | 1051 | 84° | 3 | 6 | 9 |
6° | 1051 | 1069 | 1086 | 1104 | 1122 | 1139 | 1157 | 1175 | 1192 | 1210 | 1228 | 83° | 3 | 6 | 9 |
7° | 1228 | 1246 | 1263 | 1281 | 1299 | 1317 | 1334 | 1352 | 1370 | 1388 | 1405 | 82° | 3 | 6 | 9 |
8° | 1405 | 1423 | 1441 | 1459 | 1477 | 1495 | 1512 | 1530 | 1548 | 1566 | 1584 | 81° | 3 | 6 | 9 |
9° | 1584 | 1602 | 1620 | 1638 | 1655 | 1673 | 1691 | 1709 | 1727 | 1745 | 0,1763 | 80° | 3 | 6 | 9 |
10° | 0,1763 | 1781 | 1799 | 1817 | 1835 | 1853 | 1871 | 1890 | 1908 | 1926 | 1944 | 79° | 3 | 6 | 9 |
11° | 1944 | 1962 | 1980 | 1998 | 2016 | 2035 | 2053 | 2071 | 2089 | 2107 | 2126 | 78° | 3 | 6 | 9 |
12° | 2126 | 2144 | 2162 | 2180 | 2199 | 2217 | 2235 | 2254 | 2272 | 2290 | 2309 | 77° | 3 | 6 | 9 |
13° | 2309 | 2327 | 2345 | 2364 | 2382 | 2401 | 2419 | 2438 | 2456 | 2475 | 2493 | 76° | 3 | 6 | 9 |
14° | 2493 | 2512 | 2530 | 2549 | 2568 | 2586 | 2605 | 2623 | 2642 | 2661 | 0,2679 | 75° | 3 | 6 | 9 |
tg | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | ctg | ||||
15° | 0,2679 | 2698 | 2717 | 2736 | 2754 | 2773 | 2792 | 2811 | 2830 | 2849 | 2867 | 74° | 3 | 6 | 9 |
16° | 2867 | 2886 | 2905 | 2924 | 2943 | 2962 | 2981 | 3000 | 3019 | 3038 | 3057 | 73° | 3 | 6 | 9 |
17° | 3057 | 3076 | 3096 | 3115 | 3134 | 3153 | 3172 | 3191 | 3211 | 3230 | 3249 | 72° | 3 | 6 | 10 |
18° | 3249 | 3269 | 3288 | 3307 | 3327 | 3346 | 3365 | 3385 | 3404 | 3424 | 3443 | 71° | 3 | 6 | 10 |
19° | 3443 | 3463 | 3482 | 3502 | 3522 | 3541 | 3561 | 3581 | 3600 | 3620 | 0,3640 | 70° | 3 | 7 | 10 |
20° | 0,3640 | 3659 | 3679 | 3699 | 3719 | 3739 | 3759 | 3779 | 3799 | 3819 | 3839 | 69° | 3 | 7 | 10 |
21° | 3839 | 3859 | 3879 | 3899 | 3919 | 3939 | 3959 | 3979 | 4000 | 4020 | 4040 | 68° | 3 | 7 | 10 |
22° | 4040 | 4061 | 4081 | 4101 | 4122 | 4142 | 4163 | 4183 | 4204 | 4224 | 4245 | 67° | 3 | 7 | 10 |
23° | 4245 | 4265 | 4286 | 4307 | 4327 | 4348 | 4369 | 4390 | 4411 | 4431 | 4452 | 66° | 3 | 7 | 10 |
24° | 4452 | 4473 | 4494 | 4515 | 4536 | 4557 | 4578 | 4599 | 4621 | 4642 | 0,4663 | 65° | 4 | 7 | 11 |
25° | 0,4663 | 4684 | 4706 | 4727 | 4748 | 4770 | 4791 | 4813 | 4834 | 4856 | 4877 | 64° | 4 | 7 | 11 |
26° | 4877 | 4899 | 4921 | 4942 | 4964 | 4986 | 5008 | 5029 | 5051 | 5073 | 5095 | 63° | 4 | 7 | 11 |
27° | 5095 | 5117 | 5139 | 5161 | 5184 | 5206 | 5228 | 5250 | 5272 | 5295 | 5317 | 62° | 4 | 7 | 11 |
28° | 5317 | 5340 | 5362 | 5384 | 5407 | 5430 | 5452 | 5475 | 5498 | 5520 | 5543 | 61° | 4 | 8 | 11 |
29° | 5543 | 5566 | 5589 | 5612 | 5635 | 5658 | 5681 | 5704 | 5727 | 5750 | 0,5774 | 60° | 4 | 8 | 12 |
tg | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | ctg | ||||
30° | 0,5774 | 5797 | 5820 | 5844 | 5867 | 5890 | 5914 | 5938 | 5961 | 5985 | 6009 | 59° | 4 | 8 | 12 |
31° | 6009 | 6032 | 6056 | 6080 | 6104 | 6128 | 6152 | 6176 | 6200 | 6224 | 6249 | 58° | 4 | 8 | 12 |
32° | 6249 | 6273 | 6297 | 6322 | 6346 | 6371 | 6395 | 6420 | 6445 | 6469 | 6494 | 57° | 4 | 8 | 12 |
33° | 6494 | 6519 | 6544 | 6569 | 6594 | 6619 | 6644 | 6669 | 6694 | 6720 | 6745 | 56° | 4 | 8 | 13 |
34° | 6745 | 6771 | 6796 | 6822 | 6847 | 6873 | 6899 | 6924 | 6950 | 6976 | 0,7002 | 55° | 4 | 9 | 13 |
35° | 0,7002 | 7028 | 7054 | 7080 | 7107 | 7133 | 7159 | 7186 | 7212 | 7239 | 7265 | 54° | 4 | 8 | 13 |
36° | 7265 | 7292 | 7319 | 7346 | 7373 | 7400 | 7427 | 7454 | 7481 | 7508 | 7536 | 53° | 5 | 9 | 14° |
37° | 7536 | 7563 | 7590 | 7618 | 7646 | 7673 | 7701 | 7729 | 7757 | 7785 | 7813 | 52° | 5 | 9 | 14 |
38° | 7813 | 7841 | 7869 | 7898 | 7926 | 7954 | 7983 | 8012 | 8040 | 8069 | 8098 | 51° | 5 | 9 | 14 |
39° | 8098 | 8127 | 8156 | 8185 | 8214 | 8243 | 8273 | 8302 | 8332 | 8361 | 0,8391 | 50° | 5 | 10 | 15 |
40° | 0,8391 | 8421 | 8451 | 8481 | 8511 | 8541 | 8571 | 8601 | 8632 | 8662 | 0,8693 | 49° | 5 | 10 | 15 |
41° | 8693 | 8724 | 8754 | 8785 | 8816 | 8847 | 8878 | 8910 | 8941 | 8972 | 9004 | 48° | 5 | 10 | 16 |
42° | 9004 | 9036 | 9067 | 9099 | 9131 | 9163 | 9195 | 9228 | 9260 | 9293 | 9325 | 47° | 6 | 11 | 16 |
43° | 9325 | 9358 | 9391 | 9424 | 9457 | 9490 | 9523 | 9556 | 9590 | 9623 | 0,9657 | 46° | 6 | 11 | 17 |
44° | 9657 | 9691 | 9725 | 9759 | 9793 | 9827 | 9861 | 9896 | 9930 | 9965 | 1,0000 | 45° | 6 | 11 | 17 |
tg | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | ctg | ||||
45° | 1,0000 | 0035 | 0070 | 0105 | 0141 | 0176 | 0212 | 0247 | 0283 | 0319 | 0355 | 44° | 6 | 12 | 18 |
46° | 0355 | 0392 | 0428 | 0464 | 0501 | 0538 | 0575 | 0612 | 0649 | 0686 | 0724 | 43° | 6 | 12 | 18 |
47° | 0724 | 0761 | 0799 | 0837 | 0875 | 0913 | 0951 | 0990 | 1028 | 1067 | 1106 | 42° | 6 | 13 | 19 |
48° | 1106 | 1145 | 1184 | 1224 | 1263 | 1303 | 1343 | 1383 | 1423 | 1463 | 1504 | 41° | 7 | 13 | 20 |
49° | 1504 | 1544 | 1585 | 1626 | 1667 | 1708 | 1750 | 1792 | 1833 | 1875 | 1,1918 | 40° | 7 | 14 | 21 |
50° | 1,1918 | 1960 | 2002 | 2045 | 2088 | 2131 | 2174 | 2218 | 2261 | 2305 | 2349 | 39° | 7 | 14 | 22 |
51° | 2349 | 2393 | 2437 | 2482 | 2527 | 2572 | 2617 | 2662 | 2708 | 2753 | 2799 | 38° | 8 | 15 | 23 |
52° | 2799 | 2846 | 2892 | 2938 | 2985 | 3032 | 3079 | 3127 | 3175 | 3222 | 3270 | 37° | 8 | 16 | 24 |
53° | 3270 | 3319 | 3367 | 3416 | 3465 | 3514 | 3564 | 3613 | 3663 | 3713 | 3764 | 36° | 8 | 16 | 25 |
54° | 3764 | 3814 | 3865 | 3916 | 3968 | 4019 | 4071 | 4124 | 4176 | 4229 | 1,4281 | 35° | 9 | 17 | 26 |
55° | 1,4281 | 4335 | 4388 | 4442 | 4496 | 4550 | 4605 | 4659 | 4715 | 4770 | 4826 | 34° | 9 | 18 | 27 |
56° | 4826 | 4882 | 4938 | 4994 | 5051 | 5108 | 5166 | 5224 | 5282 | 5340 | 5399 | 33° | 10 | 19 | 29 |
57° | 5399 | 5458 | 5517 | 5577 | 5637 | 5697 | 5757 | 5818 | 5880 | 5941 | 6003 | 32° | 10 | 20 | 30 |
58° | 6003 | 6066 | 6128 | 6191 | 6255 | 6319 | 6383 | 6447 | 6512 | 6577 | 6643 | 31° | 11 | 21 | 32 |
59° | 6643 | 6709 | 6775 | 6842 | 6909 | 6977 | 7045 | 7113 | 7182 | 7251 | 1,7321 | 30° | 11 | 23 | 34 |
tg | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | ctg | ||||
60° | 1,732 | 1,739 | 1,746 | 1,753 | 1,760 | 1,767 | 1,775 | 1,782 | 1,789 | 1,797 | 1,804 | 29° | 1 | 2 | 4 |
61° | 1,804 | 1,811 | 1,819 | 1,827 | 1,834 | 1,842 | 1,849 | 1,857 | 1,865 | 1,873 | 1,881 | 28° | 1 | 3 | 4 |
62° | 1,881 | 1,889 | 1,897 | 1,905 | 1,913 | 1,921 | 1,929 | 1,937 | 1,946 | 1,954 | 1,963 | 27° | 1 | 3 | 4 |
63° | 1,963 | 1,971 | 1,980 | 1,988 | 1,997 | 2,006 | 2,014 | 2,023 | 2,032 | 2,041 | 2,05 | 26° | 1 | 3 | 4 |
64° | 2,050 | 2,059 | 2,069 | 2,078 | 2,087 | 2,097 | 2,106 | 2,116 | 2,125 | 2,135 | 2,145 | 25° | 2 | 3 | 5 |
65° | 2,145 | 2,154 | 2,164 | 2,174 | 2,184 | 2,194 | 2,204 | 2,215 | 2,225 | 2,236 | 2,246 | 24° | 2 | 3 | 5 |
66° | 2,246 | 2,257 | 2,267 | 2,278 | 2,289 | 2,3 | 2,311 | 2,322 | 2,333 | 2,344 | 2,356 | 23° | 2 | 4 | 5 |
67° | 2,356 | 2,367 | 2,379 | 2,391 | 2,402 | 2,414 | 2,426 | 2,438 | 2,450 | 2,463 | 2,475 | 22° | 2 | 4 | 6 |
68° | 2,475 | 2,488 | 2,5 | 2,513 | 2,526 | 2,539 | 2,552 | 2,565 | 2,578 | 2,592 | 2,605 | 21° | 2 | 4 | 6 |
69° | 2,605 | 2,619 | 2,633 | 2,646 | 2,66 | 2,675 | 2,689 | 2,703 | 2,718 | 2,733 | 2,747 | 20° | 2 | 5 | 7 |
70° | 2,747 | 2,762 | 2,778 | 2,793 | 2,808 | 2,824 | 2,840 | 2,856 | 2,872 | 2,888 | 2,904 | 19° | 3 | 5 | 8 |
71° | 2,904 | 2,921 | 2,937 | 2,954 | 2,971 | 2,989 | 3,006 | 3,024 | 3,042 | 3,06 | 3,078 | 18° | 3 | 6 | 9 |
72° | 3,078 | 3,096 | 3,115 | 3,133 | 3,152 | 3,172 | 3,191 | 3,211 | 3,230 | 3,251 | 3,271 | 17° | 3 | 6 | 10 |
73° | 3,271 | 3,291 | 3,312 | 3,333 | 3,354 | 3,376 | 3 | 7 | 10 | ||||||
3,398 | 3,42 | 3,442 | 3,465 | 3,487 | 16° | 4 | 7 | 11 | |||||||
74° | 3,487 | 3,511 | 3,534 | 3,558 | 3,582 | 3,606 | 4 | 8 | 12 | ||||||
3,630 | 3,655 | 3,681 | 3,706 | 3,732 | 15° | 4 | 8 | 13 | |||||||
75° | 3,732 | 3,758 | 3,785 | 3,812 | 3,839 | 3,867 | 4 | 9 | 13 | ||||||
3,895 | 3,923 | 3,952 | 3,981 | 4,011 | 14° | 5 | 10 | 14 | |||||||
tg | 0′ | 6′ | 12′ | 18′ | 24′ | 30′ | 36′ | 42′ | 48′ | 54′ | 60′ | 1′ | 2′ | 3′ | |
60′ | 54′ | 48′ | 42′ | 36′ | 30′ | 24′ | 18′ | 12′ | 6′ | 0′ | ctg |
Решение тригонометрических функций в онлайн калькуляторе
Онлайн калькулятор на нашем сайте легко и быстро решает тригонометрические функции, вам не понадобится таблица тригонометрических функций. С нашим калькулятором можно навсегда забыть, что такое таблица Брадиса! Наш бесплатный калькулятор позволяет решать и самые простые задачи (например, найти косинус или синус угла), и сложные выражения с использованием обратных и гиперболических функций тригонометрии.
Кнопки калькулятора для решения тригонометрических функций:
Наш тригонометрический калькулятор может осуществлять вычисления как в градусах, так и в радианах. Таким образом, найти косинус угла можно вне зависимости от единицы измерения, в которой он задан. Это очень удобно и экономит массу времени при емких расчетах. Прежде чем приступить к вычислениям, нужно на панели управления указать, какая единица измерения углов будет использоваться: градусы (Deg) или радианы (Rad).
Выбор единицы измерения угла:
Обратите внимание, что в одной операции нельзя использовать разные единицы измерения углов, другими словами выражение «сумма синус 30 градусов и косинус пи =» — будет посчитано неверно!
Ниже перечислены способы решений различных тригонометрических функций в нашем онлайн калькуляторе.
Простые тригонометрические функции
Простые тригонометрические функции: синус — sin(α), косинус — cos(β) и тангенс — tan(y). Рядом указаны их обозначения так, как они используются в калькуляторе (в зарубежной литературе тангенс сокращенно обозначается tan, в русской — tg).
Кнопки калькулятора, отвечающие за простые тригонометрические функции:
Функция косинуса является четной, поэтому ее значение для отрицательного угла будет положительным. Синус, тангенс и котангенс — нечетные тригонометрические функции, соответственно, значения тригонометрических функции для отрицательных углов также будут отрицательными. Онлайн калькулятор сам учитывает четность тригонометрических функций при умножении и делении. Вам не потребуется постоянно обращать внимание на соблюдение правила знаков.
Пример вычислений с простыми тригонометрическими функциями:
Обратные тригонометрические функции
Обратные тригонометрические функции: арксинус — asin(), арккосинус — acos() и арктангенс — atan().
Кнопки калькулятора, отвечающие за обратные тригонометрические функции:
Если не вдаваться в формулы и подробности относительно единичной окружности, то обратные тригонометрические функции можно объяснить на простом примере: арккосинус x — это угол, косинус которого равен x. Обратные тригонометрические функции являются многозначными, и одному значению аргумента принадлежит множество значений самой функции.
Пример выражения с обратными тригонометрическими функциями:
Гиперболические функции
Гиперболические функции: гиперболический синус — sinh(), гиперболический косинус — cosh() и гиперболический тангенс tanh(). Гиперболические (круговые) функции — семейство элементарных тригонометрических функций, выраженных через экспоненту.
Кнопки калькулятора, отвечающие за гиперболические функции:
Пример решения гиперболической функции:
Обратные гиперболические функции: гиперболический арксинус — asinh(), гиперболический арккосинус — acosh() и гиперболический арктангенс — atanh().
Кнопки калькулятора, отвечающие за обратные гиперболические функции:
Пример решения обратной гиперболической функции:
Все функции нашего бесплатного калькулятора собраны в одном разделе. Функции онлайн калькулятора >>
|
|
|
Онлайн калькулятор. Расчет произвольных выражений.
Полученный результат вычисления |
Калькулятор онлайн
Напишите любое выражение c использованием функций PHP и система выдаст результат выражения насколько он бы сложен не был
Конечно, пользоваться калькулятором в WEB интерфейсе, когда под рукой есть встроенные средства Windows, Linux, не очень понятно.
Поэтому этот калькулятор будет востребован все таки в общении с Jabber ботом.
Но для тех кого не устраивает этот калькулятор есть, более полная версия, работающая и в комплексном поле чисел.
Универсальный калькулятор комплексных чисел онлайн
Кроме этого еще есть
Калькулятор разных систем счисления онлайн
и
Калькулятор расчета количества рабочих дней
Синтаксис
Jabber: calc <выражение>
WEB: <выражение>
Выражением может быть любое математическая строка, выраженная языком PHP
Если есть какие либо переменные или символы не являюшщимися числами или функциями то они будут заменены на нули
Примеры
calc (5+10/1.1+sin(1))/sqrt(2)
Результат выражения 10.558787210794
Пример2:
calc pow(2,10)+24
Результат выражения 1048
Функции PHP
- acos — Арккосинус
- acosh — Гиперболический арккосинус
- asin — Арксинус
- asinh — Гиперболический арксинус
- atan — Арктангенс
- atanh — Гиперболический арктангенс
- cos — Косинус
- cosh — Гиперболический косинус
- exp — Вычисляет число e в степени
- log10 — Десятичный логарифм
- log — Натуральный логарифм
- pi — Возвращает число Пи
- pow — Возведение в степень
- sin — Синус
- sinh — Гиперболический синус
- sqrt — Квадратный корень
- tan — Тангенс
- tanh — Гиперболический тангенс
- Онлайн разложение дробно рациональной функции >>
Угол между векторами, онлайн калькулятор
Наш онлайн калькулятор помогает найти угол и косинус угла между векторами всего за несколько минут. Для нахождения угла между двумя векторами выберите их размерность, введите все координаты и нажмите кнопку «Вычислить», калькулятор выдаст подробный ход решения и ответ! Калькулятор сам посчитает скалярное произведение векторов, вычислит косинус угла и сам угол. Каждый шаг будет детально расписан, это поможет вам проверить свое решение и понять, как был получен ответ.
Введите данные для вычисления угла между векторамиРазмерность вектора:
2 3
Форма представления векторов:
координатами точками
Формула : |
Понравился сайт? Расскажи друзьям! | |||
Функции инженерного калькулятораКалькулятор умеет работать со степенями и логарифмами. Находит синус, косинус, тангенс и котангенс, а также арксинус, арккосинус, арктангенс и арккотангенс. Поддерживает двоичные логарифмы, логарифмы по основанию. Может возвести число в 10-ю степень. Также, калькулятор позволяет просматривать число Эйлера и число Пи. Помимо этого поддерживаются стандартные арифметический действия, с помощью которых вы можете сложить и вычесть числа, умножить и разделить, а также извлечь квадратный корень онлайн. Подробная инструкция и ознакомление с основными возможностями.
|
Arccos бесплатный онлайн-калькулятор | Justfreetools
Калькулятор Arccos (x). Калькулятор обратного косинуса.
Введите значение x (от -1 до 1) и нажмите кнопку «Рассчитать».
Калькулятор косинусов »
Определение Arccos
Функция арккосинуса является обратной функцией cos (x).
arccos ( x ) = cos -1 ( x )
Например, если косинус 60 ° равен 0,5:
cos (60 °) = 0.5
Тогда arccos 0,5 составляет 60 °:
arccos (0,5) = cos -1 (0,5) = 60 °
Стол Arccos
х | arccos (x) | |
---|---|---|
градус | радиан | |
-1 | 180 ° | π |
-0,8660254 | 150 ° | 5π / 6 |
-0.7071068 | 135 ° | 3π / 4 |
-0,5 | 120 ° | 2π / 3 |
0 | 90 ° | π / 2 |
0,5 | 60 ° | π / 3 |
0,7071068 | 45 ° | π / 4 |
0. 8660254 | 30 ° | π / 6 |
1 | 0 ° | 0 |
В настоящее время у нас есть около 935 калькуляторов, таблиц преобразования и полезных онлайн-инструментов и функций, которые сделают вашу жизнь проще или просто помогут вам выполнять свою работу или обязанности быстрее и эффективнее. Ниже перечислены наиболее часто используемые многими пользователями.
И мы все еще разрабатываем другие. Наша цель — стать универсальным сайтом для людей, которым нужно быстро производить расчеты или которым нужно быстро найти ответ на базовые конверсии.
Кроме того, мы считаем, что Интернет должен быть источником бесплатной информации. Таким образом, все наши инструменты и услуги полностью бесплатны и не требуют регистрации. Мы кодировали и разрабатывали каждый калькулятор индивидуально и подвергали каждый строгому всестороннему тестированию.Однако, пожалуйста, сообщите нам, если вы заметите даже малейшую ошибку — ваш вклад очень важен для нас. Хотя большинство калькуляторов на Justfreetools.com предназначены для универсального использования во всем мире, некоторые из них предназначены только для определенных стран.
Нашли ошибку? Дайте нам знать !
Мы получили ваше сообщение, мы свяжемся с вами в ближайшее время.
Ой! Что-то пошло не так, обновите страницу и попробуйте еще раз.
Arccos
Arccosine, записываемый как arccos или cos-1 (не путать с), является функцией обратного косинуса. Косинус имеет обратное значение только в ограниченной области 0≤x≤π. На рисунке ниже часть графика, выделенная красным, показывает часть графика cos (x), которая имеет инверсию.
Область должна быть ограничена, потому что для того, чтобы функция имела инверсию, функция должна быть взаимно однозначной, что означает, что ни одна горизонтальная линия не может пересекать график функции более одного раза.Поскольку косинус является периодической функцией, без ограничения области определения, горизонтальная линия будет периодически пересекать функцию бесконечно много раз.
Одно из свойств обратных функций состоит в том, что если точка (a, b) находится на графике функции f, точка (b, a) находится на графике ее обратной функции. Это фактически означает, что график обратной функции является отражением графика функции через линию y = x.
График y = arccos (x) показан ниже.
Как видно из рисунка, y = arccos (x) является отражением cos (x) в ограниченной области 0≤x≤π через линию y = x.Область arccos (x), -1≤x≤1, является диапазоном cos (x), а ее диапазон, 0≤x≤π, является областью cos (x).
Калькулятор Arccos
Ниже приведен калькулятор, позволяющий определить значение arccos числа от -1 до 1 или значение косинуса угла.
Использование специальных углов для поиска arccos
Хотя мы можем найти значение арккозинуса для любого значения x в интервале [-1, 1], существуют определенные углы, которые часто используются в тригонометрии (0 °, 30 °, 45 °, 60 °, 90 ° и их кратные и радианные эквиваленты), значения косинуса и арккосинуса которых, возможно, стоит запомнить.Ниже приведена таблица, показывающая эти углы (θ) в градусах и их соответствующие значения косинуса, cos (θ).
Один из методов, который может помочь запомнить эти значения, — это выразить все значения cos (θ) в виде дробей, содержащих квадратный корень. Начиная с 0 ° и до 90 °, cos (0 °) = 1 =. Последующие значения cos (30 °), cos (45 °), cos (60 °) и cos (90 °) следуют шаблону, так что использование значения cos (0 °) в качестве эталона для нахождения значений косинуса для последующих углов, мы просто уменьшаем число под знаком корня в числителе на 1, как показано ниже:
θ | 0 ° | 30 ° | 45 ° | 60 ° | 90 ° |
cos (θ) | 0 |
От 90 ° до 180 ° вместо этого мы увеличиваем число под корнем на 1, но также должны учитывать квадрант, в котором находится угол.Косинус отрицателен во втором и третьем квадрантах, поэтому значения будут равными, но отрицательными. В квадрантах I и IV значения будут положительными. Этот шаблон периодически повторяется для соответствующих угловых измерений.
После того, как мы запомнили значения или если у нас есть какая-то ссылка, становится относительно просто распознать и определить значения косинуса или арккосинуса для специальных углов.
Обратные свойства
Как правило, функции и их обратные показывают взаимосвязь
f (f -1 (x)) = x и f -1 (f (x)) = x
при условии, что x находится в области определения функции.То же самое верно для cos (x) и arccos (x) в их соответствующих ограниченных областях:
cos (arccos (x)) = x, для всех x в [-1, 1]
и
arccos (cos (x)) = x, для всех x в [0, π]
Эти свойства позволяют нам оценивать состав тригонометрических функций.
Состав арккозинуса и косинуса
Если x находится в пределах домена, вычислить композицию арккозинуса и косинуса относительно просто.
Примеры:
1.
2.
Если x не находится в пределах домена, нам нужно определить опорный угол, а также соответствующий квадрант. Учитывая arccos (cos ()), мы не можем оценить это, как мы делали выше, потому что x не находится в пределах [0, π], поэтому решение не может быть. Чтобы оценить это, нам нужно сначала определить cos (), прежде чем использовать arccos:
3.
В приведенном выше примере опорный угол равен, и cos () равен, но поскольку он лежит в квадранте III, его косинус отрицателен, и единственный угол, косинус которого равен, который находится в пределах области arccos (x), равен.
Состав других тригонометрических функций
Мы также можем составлять композиции, используя все другие тригонометрические функции: синус, тангенс, косеканс, секанс и котангенс.
Пример:
Найдите грех (arccos ()).
Поскольку это не одно из соотношений для специальных углов, мы можем использовать прямоугольный треугольник, чтобы найти значение этой композиции. Учитывая arccos () = θ, мы можем найти, что cos (θ) =. Правый треугольник ниже показывает θ и отношение его смежной стороны к гипотенузе треугольника.
Чтобы найти синус, нам нужно найти противоположную сторону, так как sin (θ) =. Пусть a будет длиной противоположной стороны. Используя теорему Пифагора,
а 2 + 12 2 = 13 2
а 2 + 144 = 169
а 2 = 25
а = 5
и
грех (arccos ()) = грех (θ) =
Тот же процесс можно использовать с выражением переменной.
Пример:
Найдите загар (arccos (4x)).
Учитывая arccos (4x) = θ, мы можем найти, что cos (θ) = и построить следующий прямоугольный треугольник:
Чтобы найти касательную, нам нужно найти противоположную сторону, так как tan (θ) =. Пусть b — длина противоположной стороны. Используя теорему Пифагора,
(4x) 2 + b 2 = 1 2
16x 2 + b 2 = 1
b 2 = 1 — 16x 2
б =
и
tan (arccos (4x)) = tan (θ) =, где — Arccosine также можно использовать для решения тригонометрических уравнений, включающих функцию косинуса. Пример: Решите следующие тригонометрические уравнения относительно x, где 0≤x <2π. 1. 2cos (x) = 2cos (x) = cos (x) = x = arccos () Косинус отрицателен в квадрантах II и III, поэтому есть два решения: x = и x =. Это единственные два угла в пределах 0≤x <2π, значение косинуса которых равно. 2. 6cos 2 (x) + 9cos (x) — 36 = 0 6cos 2 (x) + 9sin (x) — 6 = 0 (6cos (x) — 3) (cos (x) + 2) = 0 6cos (x) — 3 = 0 или cos (x) + 2 = 0 cos (x) = или cos (x) = -2 x = arccos () или x = arccos (-2) Решение относительно x = arccos (), x = или Мы не можем найти x = arccos (-2), потому что оно не определено, поэтому x = или являются единственными решениями. Воспользуйтесь нашим онлайн-калькулятором Arccos и калькулятором обратного косинуса (калькулятор cos-1 ). Если вы хотите преобразовать результат в другого ангела, воспользуйтесь нашим онлайн-конвертером углов. Пример 1: найти точное значение cos [arccos (-0,5)] Если косинус 120 ° равен -0.5, что дает нам cos (120 °) = — 0,5, затем cos [arccos (-0,5)] = — 0,5. , но мы можем избежать выполнения всех этих вычислений, просто используя свойства cos-1 (arccos), так как -1≤-0.5≤1, затем cos [arccos (-0.5)] = — 0.5. Пример 2: найти точное значение для cos [arccos (2/3)] , мы можем просто использовать наш калькулятор arccos, который даст нам arccos (2/3) = 0,841068671 рад, затем cos (0,841068671) = 2/3 , но мы можем избежать выполнения всех этих вычислений, просто используя свойства cos-1 (arccos), мы преобразуем, поскольку -1≤-2 / 3≤1, затем cos [arccos (2/3)] = 2/3. Определение Arccos предоставлено википедией: arccos (тригонометрия), обратная тригонометрическая функция косинуса. В математике обратные тригонометрические функции (иногда называемые циклометрическими функциями [1]) являются обратными функциями тригонометрических функций (с подходящими ограничениями). В частности, они являются обратными функциями синуса, косинуса, тангенса, котангенса, секанса и косеканса и используются для получения угла из любого из тригонометрических соотношений угла.Обратные тригонометрические функции широко используются в инженерии, навигации, физике и геометрии. Арккосинус x определяется как обратная тригонометрическая функция косинуса, когда -1≤x≤1. Когда: cos y = x. Тогда арккосинус x равен тригонометрической функции обратного косинуса x, которая равна y: arccos x = cos -1 x = y. Функция обратного косинуса, в современных обозначениях, записанная как arccos (x), дает угол θ, так что: \ cos \ theta = x Поскольку значения функции косинуса находятся в диапазоне от -1 до 1, область аргумента x в функции arccos ограничена тем же диапазоном: [-1,1]. Кроме того, из-за периодичности функции косинуса существует множество углов θ, которые могут давать одно и то же значение косинуса (т.е.е. θ + 2π, θ + 4π и т. д.). В результате невозможно определить одну обратную функцию, если только диапазон возвращаемых значений не ограничен, чтобы можно было установить взаимно однозначное отношение между θ и cosθ. Следовательно, можно определить несколько ветвей функции arccos. Обычно желаемый диапазон значений θ составляет от 0 до π. В этом случае ветвь arccos называется главной ветвью. Функцию arccos можно определить в форме ряда Тейлора, например: \ begin {split} \ arccos x & = \ frac {\ pi} {2} — \ arcsin x = \\ & = \ frac {\ pi} {2} — \ sum_ {n = 0} ^ {\ infty} \ frac {\ binom {2n} {n} x ^ {2n + 1}} {4 ^ n \ left (2n + 1 \ right)} = \\ & = \ frac {\ pi} {2} -x — \ frac {x ^ 3} {6} — \ frac {3x ^ 5} {40} — \ frac {5x ^ 7 } {112} \ cdots \ end {split} Приведенный выше ряд действителен для | x | ≤1. 2 ln (x)) `.3 (х). Гиперболические функции являются аналогами круговых тригонометрических функций. Косинус, обратный косинусу, называется arccos (cos-1 = acos). Вычисляет обратные гиперболические функции asinh (x), acosh (x) и atanh (x). Предел cos (x) равен limit_calculator (`cos (x)`) Косинус обратной функции: обратная функция косинуса — это функция арккосинуса, отмеченная как arccos. Если вы пропускаете круглые скобки или знак умножения, введите хотя бы пробел, т.е. если вы хотите преобразовать результат в другого ангела, используйте наш онлайн-конвертер углов.Калькулятор квадратичных формул; Калькулятор GCF; Калькулятор НОК; калькулятор косинусов; калькулятор синусов; калькулятор обратного косинуса; Калькулятор площади треугольника; Статьи по Теме. ДОМ; КОНТАКТ; 1 / x e π ← CE% 10 x log x e x ln x 7 8 9 / x 2 √x sin sin-1 4 5 6 ×! Решайте свои математические задачи с помощью нашего бесплатного математического решателя с пошаговыми решениями. Помните, что у вас не может быть числа больше 1 или меньше -1. arccos (x) = cos-1 (x) Например, если косинус 60 ° равен 0,5: cos (60 °) = 0,5. Из этого определения следует, что косинус любого угла всегда меньше или равен единице и может принимать отрицательные значения.Таблица Arccos Этот онлайн-калькулятор можно использовать для определения значения обратного косинуса угла. © 2007-2019. Пожалуйста, оставьте их в комментариях. Функция определяется только для x, большего или равного 1. Например; Определить обратный косинус 0,5 в радианах Решение; Введите десятичное число. ПОЖАЛУЙСТА, ПРОЧИТАЙТЕ МОЕ РАСКРЫТИЕ ДЛЯ БОЛЕЕ ПОДРОБНОЙ ИНФОРМАЦИИ. Используя этот сайт, вы соглашаетесь с нашей Политикой в отношении файлов cookie. Под калькулятором появятся шесть самых популярных триггерных функций — три основных: синус, косинус и тангенс, а также их обратные величины: косеканс, секанс и котангенс.0.А. x 3 3 √x cos cos-1 1 2 3-mod x y y √x tan tan-1 0. Графический косинус: Калькулятор обратного cos. Найдите значение cos − 11 c o s — 1 1 в радианах. Онлайн-калькулятор обратного косинуса (arccos) Это бесплатный онлайн-калькулятор обратного косинуса (arccos). Калькулятор косинусов определение Arccos. Метод 1: десятичный. В поле со списком выберите тип угла: градусы (°) или радианы (рад). На графике выше cos (α) = b / c. Калькулятор обратной касательной. Калькулятор косинусов определение Arccos. Метод 1: десятичный. Сначала найдите отношение соседней стороны к противоположной стороне.Тогда arccos 0,5 составляет 60 °: arccos (0,5) = cos-1 (0,5) = 60 ° Таблица Arccos Cos −1 (x), пример Arccos. Арккосинус (аркус косинус, арккосинус) является одной из обратных тригонометрических функций (антитригонометрические функции, функции дуги) и является обратной функцией косинуса. Калькулятор найдет обратный косинус заданного значения в радианах и градусах. Метод 2: напротив / рядом. arccos (x) = cos-1 (x) Например, если косинус 60 ° равен 0,5: cos (60 °) = 0,5. Первый шаг — ввести косинус входного угла.Он также известен как acos или обратный косинус. Найдите значение cos − 10 c o s — 1 0 в радианах. Найдите \ operatorname {acos} {\ left (\ frac {1} {2} \ right)}. Калькулятор Arccsc. Подробнее … \ bold {\ sin \ cos} \ bold {\ ge \ div \ rightarrow} \ bold {\ overline {x} \ space \ mathbb {C} \ forall} Это четная функция. Калькулятор косинусов. Калькулятор найдет обратную квадратную матрицу, используя метод исключения Гаусса, с указанными шагами. Онлайн-калькулятор обратного котангенса (arccot) Это бесплатный онлайн-калькулятор обратного котангенса (arccot). Легко владеть недвижимостью, ООО,
Стоимость корректировки Ping Club,
Обручальное кольцо Mbk,
Коко Мартин и Джулия Монтес Бэби,
Монтерей Цыпленок Чили,
Подвесные двигатели Mercury Nz Цены,
Мистер Пинк против Ханидью,
Хелена Роблокс, идентификатор
Nzxt Case Manta Mnt No Ps Bk,
Щенки родезийского риджбека на продажу Чешир, Найдите угол в градусах или радианах, используя обратный косинус с помощью калькулятора arccos ниже. Arccos — это тригонометрическая функция для вычисления обратного косинуса. Arccos также можно выразить как cos -1 (x). Arccos используется для отмены или отмены функции косинуса. Если вы знаете косинус угла, вы можете использовать arccos для вычисления угла. Поскольку arccos является обратной функцией косинуса, а многие углы имеют одно и то же значение косинуса, arccos является периодической функцией. Каждое значение arccos может привести к нескольким значениям угла. Первичный результат для arccos известен как главное значение и представляет собой угол в диапазоне от 0 ° до 180 °. Для вычисления arccos используйте научный калькулятор и функцию acos или просто воспользуйтесь калькулятором выше. В большинстве научных калькуляторов для вычисления cos требуется значение угла в радианах. Формула обратного косинуса: y = cos (x) | х = arccos (у) Таким образом, если y равно косинусу x , то x равно arccos y . Если вы построите график функции arccos для каждого возможного значения косинуса, он образует кривую от (-1, π) до (1, 0). Поскольку значение косинуса всегда находится в диапазоне от -1 до 1, кривая обратного косинуса начинается при x = -1 и заканчивается при x = 1. Поскольку пик косинусоидальной волны находится в 0 радиан, а угол падения волны составляет π радиан, значение y заканчивается в этих точках. В таблице ниже показаны общие значения косинуса и arccos или угла для каждого из них. Возможно, вас заинтересуют наши калькуляторы обратного синуса и арктангенса. В этой статье описаны синтаксис формулы и использование функции ACOS в Microsoft Excel. Возвращает арккосинус или обратный косинус числа. Арккосинус — это угол, косинус которого равен числу . Возвращаемый угол указывается в радианах в диапазоне от 0 (ноль) до пи. ACOS (номер) Аргументы функции ACOS следующие: Если вы хотите преобразовать результат из радиан в градусы, умножьте его на 180 / PI () или используйте функцию ГРАДУСЫ. Скопируйте пример данных из следующей таблицы и вставьте его в ячейку A1 нового листа Excel. Чтобы формулы отображали результаты, выберите их, нажмите F2, а затем нажмите Enter. При необходимости вы можете настроить ширину столбца, чтобы увидеть все данные. Формула Описание Результат = ACOS (-0.5) Арккосинус -0,5 в радианах, 2 * пи / 3 2. Использование арккосинуса для решения тригонометрических уравнений
Простой калькулятор Arccos | Калькулятор обратного косинуса Cos-1
Калькулятор Arccos:
Cos
−1 ( x ), Arccos Пример Cos
−1 ( x ), Arccos Определение:
Калькулятор обратного cos Таблица Arccos (cos-1):
Таблица Arccos (cos-1). Калькулятор Arcos cos-1 x arccos (x) arccos (x) Угол Единицы рад) в градусах пи (°) в градусах arccos -1 π 180 ° arccos -√3 / 2 5π / 6 150 ° arccos -√2 / 2 3π / 4 135 ° arccos -1/2 2π / 3 120 ° arccos 0 π / 2 90 ° arccos 1/2 π / 3 60 ° arccos √2 / 2 π / 4 45 ° arccos √3 / 2 π / 6 30 ° 901 20 arccos 1 0 ′ 0 ° Подробнее Калькулятор
Вычисление функции обратного косинуса
Определения
Общие положения
Series
— Расчет arccos (x)
Как найти Arccos
Формула обратного косинуса
График обратного косинуса
Таблица обратных косинусов
Косинус Угол (градусы) Угол (радианы) -1 180 ° π –√6 + √24 165 ° 11π12 –√32 150 ° 5π6 –√22 135 ° 3π4 –12 120 ° 2π3 –√6 — √24 105 ° 7π12 0 90 ° π2 √6 — √24 75 ° 5π12 12 60 ° π3 √22 45 ° π4 √32 30 ° π6 √6 + √24 15 ° π12 1 0 ° 0 Функция ACOS — служба поддержки Office
Описание
Синтаксис
Замечание
Пример