Действия с корнями.
Умножение корней с одинаковыми показателями
Чтобы перемножить корни с одинаковыми показателями, нужно оставить тот же показатель корня, а подкоренные выражения перемножить.
√(81) × √(25) =
= √(81 × 25) =
= 9 × 5 =
= 45
Умножение корней с разными показателями
Чтобы перемножить корни с разными показателями, нужно сначала привести корни к общему показателю, а потом перемножить полученные корни с одинаковым показателем. Чтобы умножить корень на число, надо занести под знак корня это число, возведённое в степень с показателем, как у корня.
∛(729) × √(25) =
= √(81) × √(25) =
= √(81 × 25) =
= 9 × 5 =
= 45
Деление корней с одинаковыми и разными показателями
Чтобы разделить корни с одинаковыми показателями, нужно разделить подкоренные выражения, а показатель корня оставить прежний.
√(81) / √(25) =
= √(81 / 25) =
= 9 / 5
Если показатели корней разные, то сначала нужно привести корни к общему показателю, а потом — поделить получившиеся корни с одинаковыми показателями. Можно делить (число на корень или корень на число) — для этого нужно занести под знак корня (в числитель или в знаменатель) это число, возведённое в степень с показателем, как у корня.
∛(729) / √(25) =
= √(81) / √(25) =
= √(81 / 25) =
= 9 / 5
Возведение корней в степень
Чтобы возвести корень в степень, нужно возвести в эту степень подкоренное выражение, а показатель корня оставить тем же.
(∛(125))2 = (∛(1252))
Извлечение корня из корня
Чтобы извлечь корень из корня, нужно перемножить показатели корней, а подкоренное выражение оставить прежним.
Уничтожение иррациональности в знаменателе
Чтобы избавиться от иррациональности в знаменателе, нужно домножить на одно и то же выражение числитель и знаменатель дроби, пользуясь по мере надобности формулами сокращённого умножения. Если в знаменатетеле дроби корень числа — домножаем на такой же корень, и в знаменателе оказывается само число.
7 / √(5) =
= 7 × √(5) / 5
Если в знаменателе дроби сумма/разность корней двух чисел — домножаем на разность/сумму этих корней, и в знаменателе оказывается разность самих чисел.
7 / [ √(7) — √(3) ] =
= 7 × [ √(7) + √(3) ] / [ 7 — 3 ] =
= 7 × [ √(7) + √(3) ] / 4
Если в знаменателе сумма/разность кубических корней двух чисел — домножаем на неполный квадрат разности/суммы этих кубических корней. В знаменателе получается сумма/разность самих чисел.Если в знаменателе неполный квадрат суммы/разности кубических корней двух чисел — домножаем на разность/сумму этих кубических корней. В знаменателе получается разность/сумма самих чисел.
5 / [ ∛(7) + ∛(4) ] =
= 5 × [ ∛(49) — ∛(7 × 4) + ∛(16) ] / [ 7 + 4 ] =
= 5 × [ ∛(49) — ∛(7 × 4) + ∛(16) ] / 11
← Предыдущий урок
Оглавление
Следующий урок →
Корень (кубический, квадратный) в степени: решения, таблицы, примеры
youtube.com/embed/BvMYQ5eCBGg» frameborder=»0″ allowfullscreen=»allowfullscreen»>Степенью называется выражение вида .
Здесь — основание степени, — показатель степени.
Степень с натуральным показателем
Проще всего определяется степень с натуральным (то есть целым положительным) показателем.
По определению, .
Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.
.
Возвести число в куб — значит умножить его само на себя три раза.
.
Возвести число в натуральную степень — значит умножить его само на себя раз:
Степень с целым показателем
Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.
По определению,
.
Это верно для . Выражение 00 не определено.
Определим также, что такое степень с целым отрицательным показателем.
Конечно, все это верно для , поскольку на ноль делить нельзя.
Например,
Заметим, что при возведении в минус первую степень дробь переворачивается.
Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где — целое, — натуральное.
Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.
Определение.
Арифметический квадратный корень из числа — это такое неотрицательное число, квадрат которого равен .
Согласно определению,
В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение для нас сейчас имеет смысл только при .
Выражение всегда неотрицательно, т. е. . Например, .
Свойства арифметического квадратного корня:
Запомним важное правило:
По определению, .
Кубический корень
Аналогично, кубический корень из — это такое число, которое при возведении в третью степень дает число .
Например, , так как ;
, так как ;
, так как .
Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.
Теперь мы можем дать определение корня -ной степени для любого целого .
Корень -ной степени
Корень -ной степени из числа — это такое число, при возведении которого в -ную степень получается число .
Например,
Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.
Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.
Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.
По определению,
в общем случае .
Сразу договоримся, что основание степени больше 0.
Например,
Выражение по определению равно .
При этом также выполняется условие, что больше 0.
Например,
Запомним правила действий со степенями:
— при перемножении степеней показатели складываются;
— при делении степени на степень показатели вычитаются;
— при возведении степени в степень показатели перемножаются;
Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:
1.
Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.
2.
3.
Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.
4. Найдите значение выражения при
Решение:
При получим
Ответ: -0,5.
5. Найдите значение выражения при
Решение:
При a = 12 получим
Мы воспользовались свойствами степеней.
Ответ: 144.
6. Найдите значение выражения при b = — 5.
Решение:
При b = — 5 получим:
Ответ: -125.
7. Расположите в порядке возрастания:
Решение:
Запишем выражения как степени с положительным показателем и сравним.
Так как то
Так как то
Сравним и для этого оценим их разность:
значит
Получим : поэтому
Ответ:
8. Представьте выражение в виде степени:
Решение:
Вынесем за скобку степень с меньшим показателем:
Ответ:
9. Упростите выражение:
Решение:
Приведем основания 6 и 12 к основаниям 2 и 3:
(выполним деление степеней с одинаковыми основаниями)
Ответ: 0,25.
10. Чему равно значение выражения при ?
Решение:
При получим
Ответ: 9.
Сравнение арифметических корней11. Какое из чисел больше: или ?
Решение:
Возведем в квадрат оба числа (числа положительные):
Найдем разность полученных результатов:
так как
Значит, первое число больше второго.
Ответ:
Как избавиться от иррациональности в знаменателеЕсли дана дробь вида то нужно умножить числитель и знаменатель дроби на :
Тогда знаменатель станет рациональным.
Если дана дробь вида или то нужно умножить числитель и знаменатель дроби на сопряженное выражение, чтобы получить в знаменателе разность квадратов.
Сопряженные выражения — это выражения, отличающиеся только знаками. Например,
и и — сопряженные выражения.
Пример:
12. Вот несколько примеров — как избавиться от иррациональности в знаменателе:
Пример 1.
Пример 2.
Пример 3.
Пример 4.
Совет. Если в знаменателе дана сумма двух корней, то в разности первым числом пишите то, которое больше, и тогда разность квадратов корней будет положительным числом.
Пример 5.
13. Сравните и
1)
2) Сравним и 14.
то и а значит,
Ответ: меньше.
Как упрощать иррациональные выражения, пользуясь формулами сокращенного умноженияПокажем несколько примеров.
14. Упростите: выражения:
Пример 5.
т.к.
Пример 6.
Пример 7.
так как
Следующие несколько задач решаются с помощью формулы:
Решение:
Получим уравнение
Ответ:
19. Вычислите значение выражения:
Решение:
Ответ: 1.
20. Вычислите значение выражения:
Решение:
Ответ: 1.
21. Вычислите значение выражения: если
Решение.
Если то следовательно
Ответ: — 1.
22. Вычислите:
Решение:
Ответ: 1.
Рассмотрим уравнение вида где
Это равенство выполняется, только если
Подробно об таких уравнениях — в статье «Показательные уравнения».
При решении уравнений такого вида мы пользуемся монотонностью показательной функции.
23. Решите уравнение:
а)
б)
в)
Решение.
23. Решите уравнение:
Решение:
тогда
Ответ: -1.
24. Решите уравнение:
Решение:
Ответ: 4.
25. Решите уравнение:
Решение:
Значит,
Ответ: -0,2.
Если вы хотите разобрать большее количество примеров — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн
Как умножать квадратные корни
Все математические ресурсы SAT
16 диагностических тестов 660 практических тестов Вопрос дня Карточки Learn by Concept
← Предыдущая 1 2 Следующая →
SAT Math Help » Арифметика » Базовое возведение в квадрат / квадратные корни » Квадратные корни и операции » Как умножать квадратные корни
Упростить:
Возможные ответы:
Правильный ответ:
Объяснение:
При умножении квадратных корней разрешается умножать числа внутри квадратного корня. Затем упростите, если необходимо.
Сообщить об ошибке. Объяснение:
При умножении квадратных корней разрешается умножать числа внутри квадратного корня. Затем упростите, если необходимо.
Сообщить об ошибке. Объяснение:
При умножении квадратных корней разрешается умножать числа внутри квадратного корня. Затем упростите, если необходимо.
Сообщить об ошибке
Упрощение:
Возможные ответы:
Правильный ответ:
Объяснение:
Чтобы упростить задачу, просто распределите радикал перед каждым термином в круглых скобках.
Отчет о ошибке
Оцените и упростите:
Возможные ответы:
Правильный ответ:
Объяснение:
Чтобы умножить квадратные корни, мы умножаем числа внутри корня и можем упростить их, если это возможно.
Сообщить об ошибке
Упростить и оценить:
Возможные ответы:
Правильный ответ:
04
04
09 Объяснение:
Чтобы умножить квадратные корни, мы умножаем числа внутри корня и можем упростить их, если это возможно.
В этом случае упростим каждый отдельный радикал и перемножим их.
Сообщить об ошибке
Упрощение:
Возможные ответы:
Правильный ответ:
Объяснение:
Чтобы умножить квадратные корни, мы умножаем числа внутри корня и можем упростить их, если это возможно.
Сообщить об ошибке. Объяснение:
Чтобы умножить квадратные корни, мы умножаем числа внутри корня.
Любые числа вне корня также умножаются. Мы можем упростить их, если это возможно.
Сообщить об ошибке. Объяснение:
Чтобы умножить квадратные корни, мы умножаем числа внутри корня.
Любые числа вне корня также умножаются.
Мы можем упростить их, если это возможно.
Сообщить об ошибке. Объяснение:
Чтобы умножить квадратные корни, мы умножаем числа внутри корня.
Любые числа вне корня также умножаются.
Мы можем упростить их, если это возможно.
Сообщить об ошибке
← Предыдущая 1 2 Следующая →
Уведомление об авторских правах
Все математические ресурсы SAT
16 Диагностические тесты 660 практических тестов Вопрос дня Карточки Learn by ConceptКак умножать радикалы вместе — Криста Кинг Математика
Умножение радикалов с одинаковым корнем
Когда мы умножаем два радикала с одинаковым корнем (оба квадратных корня, оба кубических корня и т. д.), мы просто умножаем подкоренные (выражения под знаками радикалов) и ставим произведение под знаком корня.
Привет! Я Криста.
Я создаю онлайн-курсы, чтобы помочь вам в учебе по математике. Читать далее.
Как умножать радикалы
Пройти курс
Хотите узнать больше о Pre-Algebra? У меня есть пошаговый курс для этого. 🙂
Учить больше
Нахождение произведения корней
Пример
Найдите продукт.
???\sqrt3\sqrt2???
Когда мы видим два радикала рядом друг с другом вот так, это означает, что мы должны их перемножить.
Чтобы умножить два квадратных корня, мы просто умножаем подкоренные и ставим произведение под знаком радикала. То есть произведение двух квадратных корней равно квадратному корню из произведения подкоренных.
???\sqrt{3\cdot2}???
???\sqrt{6}???
Полезно помнить, что мы можем использовать это правило для умножения радикалов и в обратном направлении. Другими словами, если нам дано ???\sqrt{6}???, мы можем разложить ???6??? как ???3\cdot2???, затем переписать ???\sqrt6??? как ???\sqrt{3\cdot2}???, и, наконец, перепишите квадратный корень из произведения (из ???3??? и ???2???) как произведение их квадратных корней.
???\sqrt{6}???
???\sqrt{3\cdot2}???
???\sqrt3\sqrt2???
Иногда переписывание радикала как произведения радикалов может помочь нам решить проблему, над которой мы работаем, поэтому полезно помнить, что с этим правилом умножения радикалов можно действовать в обоих направлениях.
Теорема о квадратных корнях говорит нам, что если ???m??? и/или ???н??? неотрицательные действительные числа, то
???\sqrt{m}\sqrt{n}=\sqrt{mn}??? и ???\sqrt{mn}=\sqrt{m}\sqrt{n}???
Давайте сделаем еще один пример, где мы умножаем два квадратных корня.
Чтобы умножить два квадратных корня, мы просто умножаем подкоренные и ставим произведение под знаком радикала.
Пример
Найдите продукт.
???\sqrt5\sqrt5???
Давайте повторим те же шаги, что и раньше, где мы перепишем произведение квадратных корней как квадратный корень из произведения подкоренных.
???\sqrt{5\cdot5}???
???\sqrt{25}???
Но теперь нам нужно понять, что ???\sqrt{25}??? просто ???5???, так как ???5??? умноженное само на себя равно ???25???. Итак, мы можем написать ???\sqrt{25}??? как раз ???5???.
Что приводит нас к тому, что при умножении двух одинаковых квадратных корней результат будет таким же, как подкоренное в каждом из квадратных корней. Итак,
Точно так же, когда у нас есть произведение трех одинаковых кубических корней, мы получаем число, равное подкоренному в каждом из них.