Как понять где фаза а где ноль в проводах: 5 способов узнать
Согласно нормам ПУЭ к выключателю должен подсоединяться фазный провод. При ремонте или реконструкции электропроводки могут возникнуть и другие ситуации, при которых имеет значение, какой из проводов нейтраль, а какой фаза.
При наличии бирок на концах проводников это несложно, но как понять где фаза, а где ноль в проводах, если маркировка на проводах отсутствует? В этом случае необходимо иметь минимальные знания электротехники или внимательно изучить следующую статью.
Зачем нужно определять, где фаза, а где ноль
Для работы электроприборов не имеет значения, к какой клемме присоединяется фазный, а к какой нулевой проводник, но для повышения безопасности людей, живущих в доме, эти провода в некоторых ситуациях должны подключаться определённым образом:
- К выключателю освещения необходимо подводить фазный провод, а к лампе нулевой. Это обеспечивает отсутствие напряжения в светильнике при выключенном освещении и позволяет производить замену лампы и ремонт осветительной аппаратуры без отключения автоматического выключателя.
- Наличие в схеме электропроводки УЗО. Использование вместо нулевого проводника заземляющего при подключении электроприборов, освещения и розеток приводит к появлению тока утечки, нарушению равенства токов в нейтрали и фазном проводе и срабатыванию дифзащиты
Простые способы, как найти фазу
Для поиска фазного провода в электропроводке используются различные методы.
По цветовой маркировке
Это самый простой метод, позволяющий выполнить эту работу без каких-либо приборов, однако он применим только к электропроводке, выполненной согласно стандарту IEC 60446, принятому в 2004 году.
В этом случае согласно правилам цветовой маркировки изоляции проводов фазный провод в однофазной электропроводке и двух- или трёхжильных кабелях чаще всего окрашен в коричневый цвет, а в трёхфазной проводке и четырёх- или пятижильных кабелях оболочка может быть любого цвета, кроме синего и жёлто-зелёного.
С помощью индикаторной отвертки
Этот инструмент позволяет определить фазный контакт даже в закрытой розетке. Принцип работы индикаторной отвёртки основан на протекании через него активного тока, причём жало индикатора должно касаться проверяемого проводника, а вторым проводником является тело человека.
Принципиальная схема индикатора состоит из следующих узлов:
- Жало отвёртки. Является одним из контактов электросхемы инструмента.
- Индикатор. В старых моделях это неоновая лампочка, в более новых светодиод или ЖК дисплей.
- Токоограничивающий элемент. В аппаратах с неонкой это резистор номиналом 1 МОм, в индикаторах со светодиодом или дисплеем ток ограничивается электронной схемой с питанием от батареек.
- Контактное кольцо или площадка. Находится в рукоятке и служит для замыкания цепи через тело и перед тем, как найти фазу и ноль индикаторной отверткой, следует дотронуться к нему пальцами.
При прикосновении жала к фазному проводу, а человека к контактному кольцу в рукоятке ток начинает идти по цепи «жало-неонка-резистор-контакт-тело-пол» и лампа загорается.
Важно! При помощи индикаторной отвёртки с гарантией можно найти только фазный провод. Отсутствие сигнала не указывает на нулевой проводник, он может быть отключённым или оборванным, а при подаче питания на нём так же может появиться напряжение. |
Как найти фазу указателем напряжения
Более надёжными являются индикаторы напряжения, как старые, которые использовались ещё в советское время, ПИН-90, так и более современные, имеющие встроенную функцию указания фазы.
Принцип действия этих устройств аналогичен индикаторной отвёртке, но конструкция прибора позволяет кроме фазного найти так же заземляющий и нейтральный проводники.
Для определения фазы один из щупов должен касаться проверяемого провода, а рукой при этом необходимо, в зависимости от конструкции, касаться второго щупа или специального вывода. При контакте с фазой на приборе загорится лампочка, светодиод или прозвучит звуковой сигнал.
С помощью мультиметра
Этот прибор можно применять для поиска фазы аналогично индикаторной отвёртке, однако необходимо использовать цифровой мультиметр. Он имеет встроенный усилитель сигнала и является более чувствительным, чем стрелочный прибор, требующий больший ток для работы показания которого составят менее 1 В. Есть два варианта, как найти фазу с помощью мультиметра.
Более надёжным способом является поиск фазного проводника при контакте тела с прибором:
- 1. перед тем, как найти фазу мультиметром, следует подключить щупы к прибору;
- 2. переключить мультиметр для измерения переменного напряжения ACV на предел 750В;
- 3. один из щупов взять за металлический наконечник незащищённой рукой;
- 4. вторым щупом поочерёдно дотронуться до всех проверяемых проводов.
При прикосновении к фазному контакту дисплей прибора покажет наличие напряжения. Его величина зависит от многих факторов и находится в диапазоне 20-100 Вольт. Так же, как и индикатор напряжения, после определения фазного проводника мультиметром можно найти нулевой провод и заземляющий.
Такой метод поиска фазы не указан в инструкции к прибору, поэтому для большей безопасности можно использовать «бесконтактный» метод, при котором нет необходимости дотрагиваться рукой до второго щупа. Показания мультиметра при этом составят 3-15 Вольт, что достаточно для поиска фазы.
При помощи контрольной лампы
Кроме методов, требующих специальных инструментов, существует достаточно опасный способ, как понять, где фаза, а где ноль в проводах при помощи контрольной лампы или контрольки. Для этого достаточно иметь обычную лампу, патрон и два куска провода. Для сборки этого приспособления провода с зачищенными концами подключают к патрону и закручивают в него лампу.
Для определения фазного провода один из проводов присоединяют к заведомо заземлённому элементу — нейтральному или заземляющему проводнику, шине заземления в электрощитке или контуру заземления здания, а вторым проводом поочерёдно прикасаются к проверяемым проводам. В случае контакта с фазным проводом лампа загорится.
В трёхпроводной электропроводке с заземляющим контактом контрольную лампу последовательно подключают попарно ко всем трём проводам. Тот проводник, при присоединении к которому лампа будет светиться с обоими другими проводами является фазным, оставшиеся являются нейтралью и заземлением.
Этот метод проверки наличия напряжения запрещён ПТБЭЭП и другими нормативными документами. Из-за высокого тока потребления контрольная лампа загорится только при низком сопротивлении электропроводки. Включённая последовательно с проверяемым контактом лампа или плохой контакт в скрутке или клеммнике не позволят лампочке включиться, однако прикосновение к этим проводам опасно для жизни.
Кроме того, возможна ситуация, при которой в кабеле будет обрыв в нулевом и заземляющем проводниках. При этом во всех вариантах подключения контролька светиться не будет, что позволит сделать ошибочный вывод об отсутствии напряжения в сети.
Как определить фазу и ноль
Далеко не всегда достаточно определить, какой из проводников является фазным.
Очень часто, особенно в трёхпроводной однофазной системе электроснабжения, нужно найти нулевой контакт. Это необходимо при подключении розеток или освещения и не всегда, если один из проводов фазный, то второй обязательно нейтраль.Он может быть отключённым, оборванным или замыкать на ту же или другую фазу. Поэтому необходимо проверку производить для всех проводов и существуют разные способы, как понять, где фаза, а где ноль в проводах.
Информация! Для поиска нулевого, фазного и заземляющего проводов можно использовать те же приборы, которые применялись для определения фазы. |
По цветовой маркировке
Это самый простой способ, позволяющий определить фазный и нулевой провод без каких-либо приборов, «на глаз». Единственный недостаток этого метода заключается в том, что он применим только к электропроводке, проложенной после 2004 года при полной уверенности, что при этом были соблюдены правила цветовой маркировки изоляции проводов:
- нейтраль N — синий или голубой;
- заземление РЕ — в продольную жёлто-зелёную полосу;
- фаза L — в однофазной электропроводке коричневая, в трёхфазной проводке оболочка может быть любого цвета кроме синего(голубого) и жёлто-зелёного.
Важно! Цветовая маркировка проводов не всегда и далеко не всеми электриками соблюдается. Поэтому этот метод является лишь косвенным, по которому нельзя судить есть напряжение на проводе или нет. |
При помощи контрольной лампы, индикатора или вольтметра
В двухпроводной схеме электроснабжения это сделать несложно. После определения фазного проводника необходимо узнать, является ли оставшийся проводник нейтралью. Для этого достаточно любым способом проверить потенциал между ними.
Если прибор покажет напряжение сети 220В, значит эти провода, соответственно, ноль и фаза. В противном случае ноль на этом контакте отсутствует из-за аварии или неправильного монтажа.
В трёхпроводной системе с заземляющим проводом выполнить поиск ноля сложнее. Для этого необходимо:
- 1. перед тем, как определить фазу и ноль, в электрощитке от вводного автомата нужно отключить нейтральную клемму;
- 2. найти фазный провод;
- 3. определить, с каким из двух оставшихся проводников и фазным прибор показывает наличие напряжения.
Этот контакт является заземлением.
Определение ноля и заземления при помощи УЗО
Один из самых простых методов различить нейтральный и заземляющий контакты — это при помощи контрольной лампы и УЗО или дифавтомат.
Лампочка или другой электроприбор должны иметь мощность не менее 10 Вт, а УЗО уставку срабатывания не более 30мА.
Для поиска ноля и заземления необходимо:
- найти фазу одним из вышеперечисленных способов;
- отключить вводной автоматический выключатель;
- подключить к фазному проводу и одному из оставшихся контрольную лампу;
- включить автомат;
- если сработает дифференциальная защита, то выбранный проводник является заземляющим, в противном случае это нейтраль.
Для надёжности данную последовательность действий желательно повторить для второго провода.
Совет! При отсутствии в схеме УЗО его допускается установить временно, снаружи электрощита. Подключение при этом можно выполнить при помощи отрезков гибкого провода. |
Вывод
В связи с тем, что определение фазы при помощи цветовой маркировки имеет ограниченную область применения — новая электропроводка, причём выполненная профессионалами, а использование контрольной лампы запрещено ПТБЭЭП и может быть опасным для жизни, существует только три надёжных способа, как узнать, где ноль, а где фаза. Это индикаторная отвёртка, индикатор напряжения с функцией поиска фазы и мультиметр, причём два последних устройства позволяют найти не только фазный проводник, но так же нейтраль и заземление.
Похожие материалы на сайте:
Понравилась статья — поделись с друзьями!
Как найти фазу, землю и ноль в квартирной электропроводке – PROFI.RU — За профи говорят дела
Алексей Помазовпрофессиональный электромонтёр, инженер промышленного оборудования, опыт работы — 18 лет
В комментариях к статье «Что нужно знать о ремонте электропроводки» был задан вопрос о том, как в электропроводке найти ноль и землю, если провода не соответствуют традиционным цветам. На вопрос отвечает специалист по электромонтажу, эксперт PROFI.RU.
Согласно правилам устройства электроустановок (ПУЭ, главный документ всех электриков) — электропровода разного назначения должны иметь отличающуюся по цвету маркировку. И если проводку в вашей квартире делал грамотный специалист, то, открыв разделительную коробку, вы увидите провода разного цвета.
- Земля будет жёлтой, зелёной либо жёлто-зелёной.
- Ноль будет синим или голубым.
- Фазе досталась самая богатая палитра, она бывает серой и красной, розовой и бирюзовой, оранжевой и фиолетовой, но чаще всего — коричневой, чёрной или белой.
Но иногда домашнего мастера ждёт неприятный сюрприз в виде проводов одного цвета. Или того хуже — от щитка до квартиры тянутся провода одного цвета, а внутри помещения — другого. Как разобраться в хитросплетении проводов?
Правильнее всего пригласить квалифицированного электрика, электричество — штука коварная и опасная. Но если вы совершенно уверены в своей осторожности и аккуратности, действуйте!
Ищем фазу
Первым делом отключите подачу тока в квартиру на электрощите. Все переключатели должны быть выключены! Затем нужно добраться до проводов, сняв уплотняющую рамку и раскрутив розетку.
Отсоединив провода от розетки, обязательно разведите их в разные стороны.
После этого можно освободить провода от изоляции и, подав в квартиру напряжение, приступить к поиску фазы при помощи индикаторной отвёртки. Держите инструмент только за защитный корпус, расположив указательный палец на металлическом конце рукоятки. Поочерёдно прикоснитесь жалом отвёртки к проводам. Фаза — тот, на котором загорится индикатор. Если провод двухжильный, этого достаточно: второй проводник — это ноль. В случае трёхжильного придётся продолжить изыскания при помощи мультиметра.
В поиске земли
Мультиметр — это комбинированный электроизмерительный прибор, сочетающий функции вольтметра, амперметра и омметра. Нужно включить мультиметр на измерение переменного напряжения в диапазоне выше 220 вольт. Одним из щупов прибора прикасаемся к найденной ранее фазе, другим — сначала к одному из неопознанных проводов, потом к другому. Смотрим, какое значение напряжения показывает мультиметр в каждом из случаев. 220 вольт соответствует нулю, при прикосновении к земле значение будет меньше.
Кстати, при помощи мультиметра можно определить и фазу. Диапазон измерения будет тот же — выше 220 вольт. Щупом, который тянется от гнезда с маркировкой V, поочерёдно прикасаемся к проводам. Фаза просигнализирует о себе показателем 8–15 вольт, а ноль — нулём на шкале прибора.
Как проверить заземление в розетке мультиметром, как найти фазу и ноль
В старых домах еще сохранились двухклеммные розетки. В этом случае проверить устройство можно просто с помощью тестера фазы. Нужно взять тестер (индикаторную отвертку), вставить его в любой разъем розетки. Приложить палец к металлическому колпачку на рукоятке. Когда неоновая лампочка загорится, она тем самым покажет «фазу». Вторая клемма должна быть нулевой. Но так случается не всегда.
Расцветка, индикаторная отвертка или мультиметр
Самый простой способ проверить заземление, это обратить внимание на цвет изоляции.
У заземляющего провода она должна быть желтой с зелеными полосами, а у нулевого светло-синей. Но не всегда это требование выполняется.
В некоторых домах старой постройки электропроводка сделана отдельными проводниками. Если хозяину пришлось проводить изменения в распределительной коробке, то вполне возможен вариант, когда на розетку приходят только два фазных или нулевых проводника. Поэтому необходимо проверить оба гнезда. При касании нуля неоновая лампочка на индикаторе напряжения не должна загораться.
В современных зданиях используются трехклеммные розетки. На нее приходят фазовый, нулевой и заземляющий проводники. Контакты должны соответствовать своему функциональному назначению.
Иначе, возможны несчастные случаи при использовании стиральной машины или бойлера. Поэтому возникают вопросы, как проверить заземление в розетке, чтобы избежать ошибок при монтаже и спокойно, без страха пользоваться своими приборами.
youtube.com/embed/Nmgx9t-0YeY» frameborder=»0″ allowfullscreen=»»/>
Индикаторная отвертка гарантированно определяет только фазу. Отличить ноль от земли она не может. Маленькой наводки недостаточно для загорания неоновой лампочки. Тогда найдем фазу и ноль мультиметром или вольтметром.
Варианты показания мультиметра
Любой прибор, индикаторную отвертку или тестер, необходимо проверить на работоспособность и только после этого применять. Изоляция должна быть целой, без трещин и разрывов. Острие щупа должно отделяться от держателя диэлектрической шайбой, для защиты от случайных прикосновений.
Корпус измерительного устройства должен быть целым. Перед замером штекеры вставляются в гнезда прибора, которые соответствует измерению переменного напряжения. Убедившись в исправности устройства, нужно перевести его в режим измерения переменного напряжения со шкалой 750 V. Это необходимо на случай измерения линейного напряжения, когда по ошибке на розетку завели две фазы.
Этот способ проверки розетки годится, если проверяющий уверен, что заземляющий контакт действительно земля. Тогда стоит задача найти ноль. Один щуп касается заземляющего контакта, а второй вставляется в любое гнездо розетки. Могут быть следующие варианты:
- прибор показывает 220 V, значит контакт фазовый;
- если 0 или единицы вольт, то это нулевой провод.
Если мультиметр относительно заземляющего показывает 0 вольт на гнездовых контактах, значит все они где-то замкнуты между собой.
Показания в несколько вольт говорят, что это ноль. Но как определить ноль, когда дом снабжается электричеством по системе энергоснабжения TN — C и повторным заземлением рядом со зданием? Ведь и в этом случае будут нулевые показания прибора.
Чтобы убедиться, что данный проводник нулевой, нужно отключить заземление в подъездном электрическом щите. Затем замерить напряжение между гнездовыми контактами розетки. Прибор показывает 220 V – найден ноль розетки. Мультиметр ничего не показывает – найдено заземление.
При показаниях прибора 220 V на каждом контакте относительно заземляющего, нужно произвести дополнительное измерение между двумя гнездами розетки. Прибор показывает 0, значит, одна фаза заведена на оба гнезда. В противном случае прибор покажет 380 V, что означает присутствие на розетке двух фаз.
Определение назначения проводников
При работе с электропроводкой обязательно нужно перепроверять назначения проводников розетки. Нет никакой гарантии, что электрик или предыдущий владелец помещения не перепутал провода. Поэтому, если тестер показывает напряжение 220 V относительно клеммы по внешнему виду являющейся заземляющей, это не значит, что она таковой и является.
Это значит, что один из контактов является фазой, а второй нулем или землей. Если тестер покажет 0, то здесь присутствуют нулевой и заземляющий проводник. Точно понять, что есть что, невозможно.
com/embed/oB1ZfYCnhJg» frameborder=»0″ allowfullscreen=»»/>
При отсутствии стопроцентной уверенности в назначении заземляющей клеммы розетки действуют иначе. Сначала нужно исключить наличие двух фаз. Проверяем напряжение между всеми контактами. Если прибор 380 V нигде не показывает, а только 220, значит, к розетке подведен один фазный проводник. Теперь нужно приступить к поиску заземления.
Сначала надо отключить заземляющий проводник в этажном щитке. Он присоединен через болтовое соединение к специальной шине, приваренной к корпусу электрического щита.
После этого замеряется напряжение между гнездовыми коннекторами.
Если прибор показывает 220 V, значит гнездовые контакты – это фазный и нулевой провод, а заземляющая клемма действительно таковой является. Теперь зная точно, где находится земля, можно определить остальные коннекторы, но предварительно нужно обратно присоединить «землю» к шине заземления.
Проводим измерение напряжения относительно земляной клеммы. Одно гнездо показывает 220 V – это фаза, второе – 0, то это нулевой контакт.
Если мультиметр показывает 0, значит, земля была присоединена к одному из гнездовых контактов, а второй является нулевым или фазным. Теперь измерения проводим между гнездовым и заземляющим контактом розетки. Если напряжение отсутствует, значит, это гнездо и есть настоящее заземление.
Показания в 220 V говорят сами за себя.
Проверка электропроводки
Проверка заземления электропроводки происходит примерно так же, как с розеткой. Для измерения параметров сети понадобятся мультиметр трехфазный или однофазный, а также индикаторная отвертка.
При ремонте электропроводки и подключении стиральной машины, электрического обогревателя, плиты, духовки и других приборов приходится менять кабели и соединения в распределительных коробках. В этом случае нужно выяснить назначение каждого проводника, необходимо проверить наличие заземления в нужных местах.
Вначале нужно отключить входной автомат на этажном щите. Затем вскрыть распределительную коробку. Развести провода в разные стороны, чтобы они не соприкасались между собой, и снять изоляцию в местах соединения.
После этого входной автомат включается. Индикаторной отверткой находятся фазные провода. Они могут принадлежать одной, двум или трем фазам.
При наличии трехфазного мультиметра, можно сразу проверить состояние сети. Однофазным мультиметром определение количества фаз происходит дольше. К примеру, если напряжения между тремя проводами составляют по 0 вольт, то это фазные провода от одной фазы.
Если прибор показывает напряжение между двумя проводами 380 V, а между двумя другими 0, то две фазы. При напряжении 380 V между всеми проводниками можно говорить о наличии трех фаз.
Определение заземления происходит, как и в случае с розеткой, только здесь проводов будет больше. Сначала отключается заземляющий провод в этажном щитке. Затем один щуп мультиметра цепляется за фазовый провод, а второй за проводник пока неизвестного назначения.
Если прибор покажет напряжение 220 V – этот провод нулевой, если ноль, то это и есть земля.
Дальше отключают входной автомат. Присоединяется заземляющий провод. Когда проверка закончена, выполняется правильное подсоединение всех элементов электросети, места соединений изолируются, коробка закрывается. Автомат защиты включается.
Как определить фазу | Практическая электроника
Как определить фазу? Чаще всего таким вопросом задаются тогда, когда надо определить фазу в домашней розетке либо в проводке. Сетевое напряжение, которое заходит в ваш дом, поступает по двум проводам, одним из которых является фаза, а другой – ноль. В этой статье вы найдете два способа, чтобы определить фазу в вашей домашней проводке либо в розетке.
С помощью индикаторной отвертки
На рынке либо в радиомагазине часто можно увидеть фазоиндикаторные отвертки. Чаще всего их называют пробниками. На вид пробник – это плоская отвертка, которая состоит из железного щупа, высокоомного резистора и неоновой лампочки. Все они подключаются последовательно.
Давайте же на практике попробуем определить фазу с помощью нашей фазоиндикаторной отвертки. Для того, чтобы это сделать, нам надо коснутся пальцем вершины отвертки, тем самым мы замкнем цепь фаза-пробник-мы-земля, если тыкнем на фазу. Через потечет ток, но он будет настолько слабым, что вы даже ничего не почувствуете. Тем временем на отвертке загорится неоновая лампочка. Значит, мы попали на фазу.
Втыкаем пробник и попадаем на “ноль”. Неоновая лампочка не горит. Значит, другой контакт розетки точно фаза.
Проверяем и убеждаемся. Неоновая лампочка горит, значит это у нас фаза.
С помощью мультиметра
А что, если у нас нет индикаторной отвертки? Как быть в этом случае? Для этих целей можно использовать обыкновенный мультиметр. Ставим крутилку на измерение переменного напряжения и берем любой щуп мультиметра в руки.
Второй щуп втыкаем в розетку и смотрим, что у нас мультиметр покажет на дисплее. Если мы касаемся нуля, то на дисплее мультиметра высветятся нули или несколько вольт. Если касаемся фазы, то на дисплее мультиметра появится приличное напряжение – это и есть фаза. Внизу на фото мы определили фазу.
Если также показывает нули, то одной рукой возьмитесь за батарею, а другой – за щуп мультиметра. Возможно, что ваш пол очень хорошо изолирован от земли. Когда будете измерять таким способом, главное не перепутайте режим измерения напряжения и силы тока. Если вы случайно поставите крутилку мультиметра в режим измерения силы тока и коснетесь батареи, то это может привести даже к летальному исходу! Будьте очень внимательны, если будете использовать этот способ.
Все те же самые операции касаются и трехфазной сети, где у нас три фазных провода и один ноль.
Как определить фазу, ноль и землю: правила, способы, советы
Современные отвертки-индикаторы избавят от головной боли человека, пытающегося осмыслить, как определить фазу, ноль, землю. Замечены сложности, расскажем ниже. Для тестирования применяется сигнал, генерируемый отверткой. Понятно, внутри стоят батарейки. Старая советская отвертка-индикатор на базе единственной газоразрядной лампочки негодна. Позволит безошибочно определить фазу. Следовательно, другая цепь – ноль или земля.
Правильно определить фазу
Провода трехжильные
Начнем терминами. Слова ноль русский язык лишен. Зато употреблялось обиходом за счет легкого произношения. Ноль – искаженный нуль, восходящий корнями к латинскому языку. Программист знает: под термином NULL принято подразумевать пустые, неопределенные переменные (лишенные типа). Иногда вид данных удобен для составления алгоритмов (при передаче значений функции).
Теперь попробуем найти фазу. Типичная отвертка-индикатор образована стальным щупом, вслед идет высокоомное сопротивление (к примеру, углерода), ограничивающее ток, источником света выступает газоразрядная лампочка малого размера. Мелочи, но незнающие термина контактная кнопка, определить ноль бессильны. На конце ручки отвертки-индикатора металлическая площадка. Это контактная кнопка, которую потрудитесь касаться пальцем. Иначе лампочка при прикосновении к фазе светиться откажется.
Объясним происходящее. Тело человека наделено емкостью. Не столь велика, хватает пропустить мизерный ток. Фаза начинает колебания, электроны идут в сеть и обратно. Создается небольшой ток. Размер сильно ограничен резистором, убиться, взявшись рукой за контактную площадку отвертки-индикатора, другой за трубу снабжения водой непросто. Обнаружить при помощи инструмента непосредственно землю невозможно.
Обнаружение фазы имеет основополагающее значение, напряжение не должно выходить на патрон люстры при выключенном выключателе. В противном случае обычный процесс замены лампочки может стать опасным, последним. По нормативам, фаза розетки слева. Если выключатели стоят, как принято (включается нажатием вверх), способы определения фазы вырождаются умением найти левую руку, понять, где находится низ:
- В розетке фаза занимает левое гнездо. Соответственно, правое считается нулем. Остается провод, изоляция желто-зеленая – земля (в противном случае – резервный провод питания напряжением 220 вольт).
Неверное положение нуля и фазы евророзетки
- В двойном выключателе входные, выходные контакты разнесены по разную сторону. Одни находятся внизу, другие – наверху. Бок, где один-единственный контакт, станет фазой. Два других, соответственно, – нулевым проводом (рабочий плюс защитный). Подразумевается, разводка электрики квартиры сделана верно, в старых домах часть раскладки верна, другая выполнена наоборот.
- Для одинарного выключателя столь просто определить фазу не получится, контакты лежат на одном боку (хотя если есть исключение, нуль находится снизу, если выполнены условия, указанные выше). Допускается попросту прозвонить тестером патрон. Сразу говорим, это нарушение техники безопасности, и прибор может сломаться. Поэтому рекомендовать метод штатным не можем. Попробуйте измерить переменное напряжение: 230 вольт окажется лишь меж двумя точками: фаза выключателя и нуль патрона.
Определение положения фазы по цвету изоляции жил провода
Нулевой рабочий провод снабжен синей изоляцией, земля желто-зеленая. Соответственно, на фазу приходится красный (коричневый) цвет. Правило может грубо нарушаться. Дома старой застройки часто оснащались проводами двух жил. Цвет изоляции в каждом случае белый. Отдельные устройства, наподобие датчиков освещенности или движения, имеют другую раскладку. К примеру, нулевой провод черный. Здесь приготовьтесь смотреть руководство по эксплуатации, вариантов раскладки бесчисленное количество.
Найти нулевой провод в квартире
По правилам, корпус подъездного щитка заземлен. Выполняется при помощи солидных размеров клеммы, затянутой мощным болтом в домах старой постройки, жителям современных зданий проще ориентироваться количеством жил. Нулевая шина имеет самое большое число подключений, фазы разводятся по квартирам (добрые электрики вешают стикеры А, В, С; злые – не вешают). Легко проследим по раскладке автоматов защиты, счетчиков.
Штекер 230 вольт Великобритании
В каждом случае общий провод будет нулевым. Цвет не играет решающей роли. Хотя по нормам современные кабели снабжены разукрашенной изоляцией. Обратите внимание – если в доме обустроено заземление, жил на входе минимум 5. Корпус щитка сажается на желто-зеленую. Нулевой провод послужит отводу рабочего тока от приборов (замыкает цепь). Объединение ветвей на стороне потребителя запрещено. Вот тройка правил, помогающих разобраться в подъездном щитке (обратите внимание, по правилам, жилец туда не должен казать носу вовсе – предупредили):
- Автомат защиты рвет фазу. Встречаются двухполюсные модели, используются сравнительно редко для помещений с особой опасностью (санузел). Поэтому по положению провода удастся сказать: это фаза. Потом стоит автомат вырубить, жилу прозвонить на стороне квартиры. Однозначно даст положение фазы.
- Напряжение меж нулевым проводом, любой фазой составляет 230 вольт. По ключевому признаку выделим жилу, на другую дающая указанную разницу. Разброс меж фазами составляет 400 вольт. Значения процентов на 10 выше, российские сети стараются соответствовать европейским стандартам.
- Токовыми клещами измерим значения на жилах. По каждой фазе проявится значение, сумма которых (по трем) должна течь обратно в сеть по нулевому (либо подходящему фазному). Заземление редко используется, ток здесь близкий нулевому при равномерной загрузке веток. Место, где значение больше всего, традиционно является нулевым проводником.
- Клемма заземления распределительного щитка на виду. Признаку поможет найти нулевой провод в домах с NT-C-S. В других случаях сюда подводится заземление.
Дополнительные сведения о нахождении земли, фазы, нулевого провода
Напоминаем, рассматривались случаи, когда под рукой нет отвертки-индикатора, зато присутствуют токовые клещи, мультиметр. Затем до входа в квартиру обнаруживают землю, фазу, нулевой провод, домашняя сеть прозванивается. Жилы три, методика лежит на поверхности: меж фазой и другим проводом разность потенциалов составит 230 вольт. Обратите внимание, методика непригодна в других случаях. К примеру, разница напряжений меж двумя одинаковыми фазными жилами составляет круглый нуль. Тестером измерить и определить сложно.
Добавим другой способ – промышленностью запрещен. Лампочка в патроне с двумя оголенными проводами. При помощи инструмента находят фазу, возможно жилу замыкать на заземление. Нельзя использовать водопроводные, газовые, канализационные трубы, прочие инженерные конструкции. По правилам, оплетка кабельной антенны снабжена занулением (заземлением). Относительно нее допустимо тестером (запрещенной стандартами лампочкой в патроне) находить фазу.
Для решительных людей порекомендуем пожарные лестницы, стальные шины громоотводов. Нужно зачистить металл до блеска, звонить на участок фазу. Обратите внимание, далеко не все пожарные лестницы заземлены (хотя обязаны быть), шины громоотводов 100%. Если обнаружите столь вопиющий произвол, обратитесь в управляющие организации, при отсутствии реакции – сообщите государственным инстанциям. Указывайте нарушение правил защитного зануления зданий.
Современные отвертки-индикаторы определения фазы, нулевого провода, земли
Когда нельзя понять, какого цвета провода, полезно пользоваться отверткой-индикатором. Инструкция диковинки на батарейках говорит: удастся при помощи щупа найти землю. Спешим огорчить читателей – любой длинный проводник определяется ложно. Разорванная в области пробок фаза, нулевой провод, настоящая земля – ответ один. Не каждая отвертка-индикатор способна выполнять функции одинаково эффективно. Смысл операции следующий:
Отвертка-индикатор
- Активная отвертка-индикатор способна обнаружить длинный проводник путем излучения туда сигнала, ловли отклика.
- На практике при плохом качестве контактов волна быстро затухает. Отвертка-индикатор показывает наличие земли на разомкнутой пробке фазы.
- Для определения земли существует условие – нужно пальцем коснуться контактной площадки. В этом разница меж активной и пассивной отвертками-индикаторами. В первой возможно по этому принципу найти фазу, во второй правильное определение происходит при условии отсутствия контакта с данной областью.
Современная отвертка-индикатор на расстоянии позволит судить, течет ли по проводу ток. Существует специальный дистанционный режим. Обычно даже два: повышенной и пониженной чувствительности. Позволит отсеять неиспользуемую часть проводки. Допустим, известны случаи: строители заводили в дом две фазы вместо одной, путали местами. Пользоваться проводкой нужно с большой осторожностью.
Хочется отметить, на практике измерить сопротивление проводки, прозвонить непросто. Гораздо удобнее определять наличие фазы. Нет опасности сжечь китайский тестер (бывает временами при попытках измерить сопротивление жилы под током). Следует также знать, низкоомные цепи определяются с ошибкой. К примеру, большинство тестеров при прямом замыкании щупов не дают нуль шкалы. Зато если не получится определить землю при помощи активной отвертки-индикатора, плохие контакты – запросто. Если при выключенных пробках огонек горит с пальцем, прижатым к контактной площадке, время задуматься о покупке нового автомата распределительной коробки, скрутки замените современными колпачками.
Часто занимающимся ремонтом рекомендуем выход из положения: маркировка проводов. Лучше делать краской принтера, цвета примерно совпадают:
- Красный – фаза.
- Синий – нулевой провод.
- Желтый – земля.
Обычно водорастворимая краска смывается с трудом. Цвета электрических проводов допустимо проставить колерами принтеров. Приведенная выше система не одинока, часто встречается. В продаже найдем черный цвет. Можете использовать, как заблагорассудится. Обозначение проводов выполняется один раз навсегда. Смыть маркировку проще концентрированной уксусной кислотой, вещество понадобится вознамерившимся отчистить руки (не всегда просто выходит на практике). Напоследок – старайтесь не заляпать одежду.
Как определить фазу и ноль правильно: советы и рекомендации
Категория: Электромонтажные работы
Для того чтобы починить розетку или подключить люстру, не обязательно звать на помощь электрика. Все эти работы при наличии определенного минимума знаний может выполнить даже школьник. Чтобы освоить элементарные навыки работы с электрической проводкой в квартире или частом доме необходимо сначала понять принцип устройства электросети, а также обзавестись индикаторной отверткой и недорогим тестером со стрелочной или цифровой индикацией, который называется мультиметром в связи с возможностью измерения сразу нескольких электрических параметров (сила тока, напряжение, сопротивление). Кроме того, для снятия изоляции, резания, сжатия или скрутки проводов, необходимо купить в магазине пассатижи, кусачки, нож и набор отверток различного размера. При этом необходимо чтобы весь инструмент имел надежные рукоятки, изготовленные из изоляционного материала. Из материалов нужна будет только изоляционная лента и клемники, позволяющие быстро соединять провода внутри коробок.
Перед тем, как приступать к подключению или починке электрического устройства или к ремонту электропроводки своими руками, необходимо в первую очередь понять, что представляют собой такие понятия, как фаза и ноль, которыми обычно оперируют электрики. Давайте рассмотрим, чем они отличаются, и как определить фазу и ноль при помощи различных приборов.
Что такое фаза?
Как известно, генератор, который вырабатывает электроэнергию, в сущности, представляет собой несколько огромных катушек провода, в которых возбуждается электрический ток движением постоянных магнитов. Все эти катушки соединены между собой таким образом, что один конец каждой из них соединен с землей (заземление), а другой представляет собой изолированный проводник, идущий к потребителям в виде воздушной линии или изолированного провода. Соответственно, один из двух проводов, которые заведены в квартиру, протянут от заземленного конца катушек электростанции, и представляет собой так называемый «ноль», а другой, который не соединен с землей, называется «фаза».
Как известно, в обычной бытовой розетке всегда есть ноль и одна фаза. В квартирах заведена всегда только одна фаза и ноль, поскольку все бытовые приборы и оборудование рассчитаны на однофазное питание. Однако от электростанции к потребителям идет всегда три фазы и ноль. Так куда же деваются еще две фазы? Почему их нет в квартире? На этот вопрос ответ находится в подвале многоэтажного дома, где установлен силовой щит. К нему подведены все три фазы, которые затем распределяются равномерно между квартирами для обеспечения одинаковой нагрузки.
Что такое ноль и заземление?
Гораздо проще обстоит дело с нолем. Этот проводник должен быть везде, вне зависимости от количества фаз в помещении. Как уже упоминалось, на электростанции ноль заземлен. Тогда почему же к розетке подведены три провода? Третий провод – это заземление, которое необходимо из соображения безопасности эксплуатации бытовых (и промышленных, кстати, тоже) электроприборов.
Дело в том, что если произойдет разрыв нулевого провода к объекту (жилому дому, предприятию, отдельному помещению), внутри объекта окажется только один (либо три) фазный провод, который подключен к огромному количеству различных устройств и приборов. Это значительно повышает вероятность поражения людей электрическим током путем прикосновения к металлическому корпусу или деталям прибора. Именно поэтому все корпуса бытового и промышленного оборудования дополнительно заземляются непосредственно на месте подключения и эксплуатации.
Как отличить друг от друга фазу и ноль?
Для начала отметим, что сегодня приобрела популярность цветовая маркировка проводов, согласно которой заземление должно представлять собой провод желто-зеленого цвета (зеленый с желтой полоской), фазный провод – в коричневой изоляции, и ноль – в синей (голубой). В случае наличия трех фаз остальные две фазы должны быть серого и черного цвета. Однако не рекомендуется доверять визуальному определению, поскольку во многих случаях оно является ошибочным.
Итак, как найти фазу и ноль, если провода не промаркированы или же вы не доверяете цветной маркировке? В бытовых условиях это можно сделать при помощи нескольких приборов: самодельного индикатора (так называемой «контрольки»), индикаторной отвертки и тестера (мультиметра). В первых двух случаях используется один и тот же принцип, который заключается в том, что между нулем и заземлением не должно быть разницы потенциалов (напряжения). В случае использования индикаторной отвертки проверяется каждый провод отдельно.
Итак, «контролька» – это классическое, хотя и примитивное, самодельное устройство, которое представляет собой небольшую лампочку на 220 вольт с патроном и двумя проводами длиной в несколько десятков сантиметров. «Контролькой» можно легко проверить наличие напряжения в розетке, сунув проводки в отверстия, а также определить таким же методом работоспособность проводки, которая идет к люстре, если она не работает. Для этого нужно лишь подключить «контрольку» параллельно проводам, к которым подключен осветительный прибор. Фаза определяется этим способом путем прикладывания одного провода «контрольки» к заземлению, а другого поочередно к проводам фазы и ноля. В данном случае от ноля лампочка, естественно, не будет светиться, а от фазы зажжется.
При определении мультиметром его необходимо включить в режим измерения переменного напряжения не менее 250 вольт. Принцип определения ноля и фазы точно такой же, как в предыдущем случае, просто индикатором в данном случае будет не лампочка, а стрелка или цифровые сегменты прибора. Преимущество в данном случае заключается в том, что тестером можно еще измерить величину напряжения. Один щуп (провод) прибора подключаем на землю, а вторым ищем ноль и фазу. При прикосновении к нулевому проводу стрелка отклоняться не будет, а на фазном проводе мультиметр покажет напряжение в 220 вольт (разумеется, с небольшой погрешностью).
Дополнительные рекомендации
Так чем же лучше всего воспользоваться, чтобы найти ноль и фазу в розетке? Неужели нельзя воспользоваться самодельной «контролькой» и отказаться от покупки других приборов? Конечно же можно, однако стоимость индикаторной отвертки копеечная, а в использовании она гораздо удобнее лампочки с патроном. Кроме того, некоторые современные отвертки имеют очень высокую чувствительность и способны индицировать фазный провод даже на расстоянии в несколько сантиметров.
Что касается мультиметра, его целесообразно приобрести тем, кто ближе знаком с электрическими приборами и электроникой. Этот прибор имеет широкие функциональные возможности в плане измерения различных электрических величин, поэтому он пригодится далеко не каждому человеку.
Избрав для себя оптимальный способ определения фазы и ноля, помните, что все электрические работы связаны с опасностью поражения током, поэтому строго соблюдайте правила техники безопасности при работе с электроприборами! Более наглядно процесс определения фазы и ноля изложен в видео к этому уроку.
Как определить фазу и ноль индикатором-пробником. Цвета фазного провода
Генераторы, вырабатывающие на электростанциях электроэнергию, имеют три обмотки, по одному из концов которых соединяют вместе, и этот общий провод называют Ноль. Оставшиеся три свободных конца обмоток называются Фазами.
Цвета и обозначение проводов
Для того, чтобы без приборов найти фазный, нулевой и заземляющий провод электропроводки, они, в соответствии с правилам ПУЭ покрываются изоляцией разный цветов.
На фотографии представлена цветовая маркировка электрического кабеля для однофазной электропроводки напряжением переменного тока 220 В.
На этой фотографии представлена цветовая маркировка электрического кабеля для трехфазной электропроводки напряжением переменного тока 380 В.
По представленным схемам в России начали маркировать провода с 2011 года. В СССР цветовая маркировка была другая, что необходимо учитывать при поиске фазы и нуля при подключении установочных электроизделий к старой электропроводке.
Таблица цветовой маркировки проводов до и после 2011 года
В таблице представлена цветовая маркировка проводов электрической проводки, принятая в СССР и России.
В некоторых других странах цветовая маркировка отличается, за исключением желто — зеленого провода. Международного стандарта пока нет.
Обозначение L1, L2 и L3, обозначают не один и тот же фазный провод. Напряжение между этими проводами составляет 380 В. Между любым из фазных и нулевым проводом напряжение составляет 220 В, оно и подается в электропроводку дома или квартиры.
В чем отличие проводов N и PE в электропроводке
По современным требованиям ПУЭ в квартиру кроме фазного и нулевого проводов, должен подводиться еще и заземляющий провод желто — зеленого.
Нулевой N и заземляющий провода PE подключаются к одной заземленной шине щитка в подъезде дома. Но функцию выполняют разную. Нулевой провод предназначен работы электропроводки, а заземляющий – для защиты человека от поражения электрическим током и подсоединяется к корпусам электроприборов через третий контакт электрической вилки. Если произойдет пробой изоляции и фаза попадет на корпус электроприбора, то весь ток потечет через заземляющий провод, перегорят плавкие вставки предохранителей или сработает автомат защиты, и человек не пострадает.
В случае, если электропроводка проложена в помещении кабелем без цветовой маркировки то определить, где нулевой, а где заземляющий проводник приборами невозможно, так как сопротивление между проводами составляет сотые доли Ома. Единственной подсказкой может послужить тот факт, что нулевой провод заводится в электрический счетчик, а заземляющий проходит мимо счетчика.
Внимание! Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.
Индикаторы-пробники для поиска фазы и ноля
Прибор, предназначенный для поиска ноля и фазы, называется индикатором. Широкое применение получили световые индикаторы для определения фазы на неоновых лампочках. Низкая цена, высокая надежность, долгий срок службы. В последнее время появились индикаторы и на светодиодах. Они дороже и дополнительно требуют элементов питания.
На неоновой лампочке
Представляет собой диэлектрический корпус, внутри которого находятся резистор и неоновая лампочка. Касаясь по очереди к проводам электропроводки отверточным концом индикатора, Вы по свечению неоновой лампочки находите фазу. Если лампочка засветилась от прикосновения, значит, это фазный провод. Если не светится, значит, это нулевой провод.
Корпуса индикаторов бывают разных форм, цветов, но начинка у всех одинаковая. Для исключения случайного замыкания, советую на стержень отвертки надеть трубку из изоляционного материала. Не следует индикатором откручивать или затягивать винты с большим усилием. Корпус индикатора сделан из мягкой пластмассы, стержень отвертки запрессован неглубоко и при большой нагрузке корпус ломается.
Светодиодный индикатор-пробник
Индикатор-пробник для определения фазы на светодиодах появились сравнительно недавно и завоевывают все большую популярность, так как позволяют не только найти фазу, но и прозванивать цепи, проверять исправность лампочек накаливания, нагревательных элементов бытовых приборов, выключателей, сетевых проводов и многое другое. Есть модели, с помощью которых можно определять местонахождение электропровода в стенах (чтобы не повредить при сверлении) и найти, в случае необходимости, место их повреждения.
Конструкция светодиодного индикатора-пробника, такая же, как и на неоновой лампочке. Только вместо нее используются активные элементы (полевой транзистор или микросхема), светодиод и нескольких малогабаритных батареек постоянного тока. Батареек хватает на несколько лет работы.
Для нахождения фазы светодиодным индикатором-пробником, отверточным его концом прикасаются последовательно к проводникам, при этом к металлической площадке на торце рукой касаются нельзя. Эта площадка используется только при проверке целостности электрических цепей. Если при поиске фазы Вы будете касаться этой площадки, то светодиод будет светить и при касании индикатором к нулевому проводу!
Ярко засветившийся светодиод укажет на наличие фазы. По правилам, фазный провод должен быть с правой стороны розетки. Как проверять контакты и цепи таким индикатором-пробником, подробно изложено в прилагаемой к нему инструкции.
Как самому сделать индикатор-пробник
для поиска фазы и ноля на неоновой лампочке
При необходимости можно своими руками сделать индикатор-пробник для поиска и определения фазы.
Для этого нужно к одному из выводов любой неоновой лампочки, даже стартера от светильника дневного света, припаять резистор номиналом 1,5-2 Мом и на него надеть изолирующую трубку.
Лампочку с резистором можно разместить в ручку отвертки или корпус от шариковой ручки. Тогда внешний вид самодельного индикатора-пробника, мало чем будет отличаться, от промышленного образца.
Поиск или определение фазы выполняется точно так же, как и промышленным индикатором-пробником. Удерживая лампочку за цоколь, концом резистора прикасаются к проводнику.
При подборе резистора иногда возникают трудности с определением его номинала, если на корпусе резистора вместо числа нанесены цветные кольца. С этой задачей поможет справиться онлайн калькулятор.
Почему индикатор светится
при прикосновении к нулевому проводу
Такой вопрос мне задавали многократно. Одной из причин является неправильное применение светодиодного индикатора. Как правильно держать светодиодный индикатор-пробник при поиске фазы, написано в статье выше.
Второй возможно причиной такого поведения индикатора является обрыв нулевого провода. Например, сработал автомат защиты, установленный после счетчика на нулевом проводе. В старых квартирах это не редкость и является грубым нарушением обустройства электропроводки. Необходимо в обязательном порядке удалить автомат с нулевого провода или закоротить его выводы перемычкой.
При обрыве нулевого провода на него через включенные в электросеть приборы, например, через индикатор подсветки выключателя, телевизор в дежурном режиме, любое зарядное устройство, выключенный только кнопкой пуск компьютер и другие электроприборы, поступает фаза. Индикатор это и показывает. В таком случае нулевой провод может быть опасным и прикосновение к нему недопустимо. Нужно найти и устранить обрыв нулевого провода, который может находиться и в распределительных коробках.
Как найти фазу и ноль с помощью контрольки электрика
Контролька электрика на лампочке накаливания
Для проверки наличия питающего напряжения в электрической сети ранее электрики использовали самодельную контрольку, представляющую собой маломощную лампочку накаливания, вкрученную в электрический патрон. К патрону подсоединены два проводника из многожильного провода длиной около 50 см.
Для того, чтобы проверить наличие напряжения, нужно проводниками контрольки прикоснуться к проводам электропроводки. Если лампочка засветилась, напряжение есть.
Контролька электрика на светодиоде
Контролька электрика на лампочке требует бережного отношения и занимает много места. Гораздо удобнее сделать контрольку электрика на светодиоде по нижеприведенной схеме.
Схема простая, последовательно с любым светодиодом включается токоограничивающее сопротивление. Светодиод любого типа и цвета свечения. Пользоваться ней так же, как и контролькой электрика на лампочке.
Светодиод и резистор можно разместить в корпусе от шариковой ручки подходящего размера. На фото контролька для автомобилиста. Схема такой контрольки такая же. Только в зависимости от типа используемого светодиода, резистор R1 ставится номиналом около 1 кОм.
Проверить наличие напряжения на проводах в бортовой сети автомобиля такой контролькой просто, правый конец по схеме соединяется с массой, а левым касаетесь любого контакта. Если напряжение на контакте есть, светодиод засветится. Если к положительной клемме аккумулятора прикоснуться одним концом предохранителя, а ко второму прикоснуться контролькой, то если светодиод не будет светить, значит, предохранитель в обрыве. Так можно проверять и лампочки накаливания, и наличие контакта в переключателях.
Поиск фазы при наличии нулевого и заземляющего проводников
Если требуется найти фазу в электропроводке, которая имеет фазный, нулевой и заземляющий провода, то с помощью контрольки это легко сделать. Достаточно выполнить три касания проводами контрольки. Нужно присвоить каждому проводу условный номер, например 1, 2 и 3 и по очереди прикасаться к парам проводов 1 – 2, 2 – 3, 3 – 1.
Возможно следующее поведение лампочки. Если при прикосновении к 1 – 2 лампочка не засветилась, значит, провод 3 фазный. Если светит при прикосновении к 2 – 3 и 3 – 1, значит 3 фазный. Смысл простой, при прикосновении к нулевому и заземляющему проводнику лампочка светить не будет, так как практически это проводники, на щитке соединенные вместе.
Вместо контрольки можно включить любой вольтметр переменного тока, рассчитанный на измерение напряжения не менее 300 В. Если одним щупом вольтметра прикоснуться к фазному проводу, а другим к нулевому или заземляющему, то вольтметр покажет напряжение питающей сети.
Поиск фазы и нуля контролькой
Внимание, прикосновение к любым оголенным проводникам при поиске фазы контролькой может привести к поражению электрическим током.
Делается все очень просто, один конец провода контрольки подсоединяется к зачищенной до металла трубе центрального отопления или водопровода, а другим по очереди касаетесь проводам или контактам электропроводки. При прикосновении к фазному проводу лампочка засветит.
Если до металла трубы не добраться, то можно воспользоваться водой, текущей из смесителя. Для этого включаете воду и один провод контрольки помещаете под струю воды как можно ближе к смесителю. Вторым концом провода касаетесь проводов электропроводки. Слабый свет лампочки подскажет Вам, где фаза.
В контрольку лучше всего вкрутить самую маломощную лампочку, я использовал лампочку от подсветки холодильников мощностью 7,5 Вт. Для того, чтобы дотянуться до воды, можно использовать кусок любого провода или стандартный удлинитель.
Поиск фазы и ноля вольтметром или мультиметром
Нахождение фазы вольтметром или мультиметром проводится так же способом, как и контролькой электрика, только вместо концов контрольки подключается щупы прибора.
Для определения нуля в трехфазной сети с помощью тестера или мультиметра достаточно измерять напряжение между проводами, которое между фазами будет равно 380 В, а между нулем и любой из фаз – 220 В. То есть провод, относительно которого вольтметр будет на остальных трех показывать 220 В и есть нулевой.
Поиск фазы и ноля с помощью картошки
Если у Вас под рукой не оказалось технических средств для поиска фазы, то можно с успехом воспользоваться экзотическим или народным, иначе не назовешь, способом определения фазы, посредством картошки. Не подумайте, что это шутка. Для кого-то это может быть единственно доступный метод, который можно с успехом применить на практике.
Конец одного проводника нужно подсоединить к водопроводной трубе (если она не пластиковая) или батарее отопления. Если труба окрашена, то нужно место присоединения зачистить до металла, чтобы обеспечить электрический контакт. Противоположный его конец воткнуть в срез картошки. Другой проводник тоже втыкается одним концом на максимальном расстоянии от предыдущего в картошку, вторым концом через резистор номиналом не менее 1 Мом по очереди прикасаются к проводам электропроводки. Некоторое время нужно подождать. Если на срезе картошки реакции нет, это ноль, если есть – фаза. Я не рекомендую пользоваться этим методом, если не знаете правил безопасности работы с электрическими установками.
Как видите, на фото вокруг проводов при подсоединении к фазному проводу электропроводки на поверхности среза картошки произошли изменения. При прикосновении к нулевому проводу реакции не последует.
Андрей 19.09.2012
Здравствуйте, я в хрущевке полностью поменял проводку, протянул трехжильный кабель ВВГ 3×2,5. Можно ли на этажном распределительном щитке закрепить к корпусу желтый провод заземления? Электрик с ЖЭУ сказал сделать именно так.
АлександрВ квартирах хрушевок и сталинок обычно так и делают, электрик сказал правильно.
Как рассчитать фазовый сдвиг
Фазовый сдвиг — это небольшая разница между двумя волнами; в математике и электронике это задержка между двумя волнами с одинаковым периодом или частотой. Обычно фазовый сдвиг выражается в виде угла, который можно измерять в градусах или радианах, и угол может быть положительным или отрицательным. Например, сдвиг фазы на +90 градусов составляет одну четверть полного цикла; в этом случае вторая волна опережает первую на 90 градусов. Вы можете рассчитать фазовый сдвиг, используя частоту волн и временную задержку между ними.
Синусоидальная функция и фаза
В математике тригонометрическая синусоидальная функция создает плавный волнообразный график, который циклически переключается между максимальным и минимальным значением, повторяясь каждые 360 градусов или 2 пи радиана. При нулевом градусе функция имеет нулевое значение. При 90 градусах он достигает максимального положительного значения. При 180 градусах он снова возвращается к нулю. При 270 градусах функция принимает максимальное отрицательное значение, а при 360 она возвращается к нулю, завершая один полный цикл.Углы больше 360 просто повторяют предыдущий цикл. Синусоидальная волна со сдвигом фазы начинается и заканчивается при значении, отличном от нуля, хотя во всех остальных отношениях она напоминает «стандартную» синусоидальную волну.
Выбор порядка волн
Расчет фазового сдвига включает сравнение двух волн, и часть этого сравнения выбирает, какая волна является «первой», а какая «второй». В электронике вторая волна обычно является выходом усилителя или другого устройства, а первая волна — входом.В математике первая волна может быть исходной функцией, а вторая — последующей или вторичной функцией. Например, первая функция может быть y = sin (x), а вторая функция может быть y = cos (x). Порядок волн не влияет на абсолютное значение фазового сдвига, но он определяет, является ли сдвиг положительным или отрицательным.
Сравнение волн
При сравнении двух волн расположите их так, чтобы они читались слева направо с использованием одного и того же угла оси x или единиц времени.Например, график для обоих может начинаться с 0 секунд. Найдите пик на второй волне и найдите соответствующий пик на первой. При поиске соответствующего пика оставайтесь в пределах одного полного цикла, иначе результат разности фаз будет неверным. Обратите внимание на значения по оси X для обоих пиков, затем вычтите их, чтобы найти разницу. Например, если вторая волна достигает пика на 0,002 секунды, а первая — на 0,001 секунды, тогда разница составляет 0,001–0,002 = -0,001 секунды.
Расчет фазового сдвига
Для расчета фазового сдвига вам нужны частота и период волн.Например, электронный генератор может генерировать синусоидальные волны с частотой 100 Гц. Разделение частоты на 1 дает период или продолжительность каждого цикла, поэтому 1/100 дает период 0,01 секунды. Уравнение фазового сдвига: ps = 360 * td / p, где ps — фазовый сдвиг в градусах, td — разница во времени между волнами, а p — период волны. Продолжая пример, 360 * -0,001 / 0,01 дает фазовый сдвиг -36 градусов. Поскольку результатом является отрицательное число, фазовый сдвиг также отрицательный; вторая волна отстает от первой на 36 градусов.Для разности фаз в радианах используйте 2 * pi * td / p; в нашем примере это будет 6,28 * -,001 / 0,01 или -,628 радиан.
Как найти фазовый сдвиг триггерной функции
Шаги
Триггерные функции являются функциями углов. Обычно вы видите, что ваши триггерные функции включают синус, косинус, тангенс или котангенс. Когда дело доходит до оценки триггерных функций, обнаружение сдвига фазы является одним из типов проблем, которые вам нужно знать, как решить.Фазовый сдвиг — это то, насколько функция сдвинута по горизонтали вправо или влево. Это может показаться трудным найти, но на самом деле это довольно просто.
Допустим, вам нужно найти фазовый сдвиг для триггерной функции y = sin (2 x — 4) + 6. Все, что вам нужно сделать, это выполнить следующие шаги.
Шаг 1. При необходимости перепишите функцию в стандартной форме.
Первое, что вам нужно сделать, это переписать вашу функцию в стандартной форме для триггерных функций. Позже вы увидите, как это делает вашу жизнь намного проще!
Вот стандартная форма для триггерных функций.
A означает амплитуду функции. Буква B используется для расчета периода. Буква D дает вам вертикальный сдвиг. Ваш фазовый сдвиг равен C / B. Вы можете заменить синус любой другой триггерной операцией, такой как косинус, тангенс и котангенс.
Если вы посмотрите на функцию, для которой нужно найти фазовый сдвиг, y = sin (2 x — 4) + 6, похоже, что она уже в стандартной форме, поэтому вам не нужно ее переписывать .
Если ваша функция не в стандартной форме, вам нужно переписать ее так, чтобы она была. Например, если у вас было y = 6 + sin (2 x -4), вам нужно было бы переписать вашу функцию так, чтобы добавление 6 было в конце: y = sin (2 x — 4) + 6.
Шаг 2: Обозначьте свои ценности.
Второй шаг после того, как ваша функция находится в стандартной форме, — это пометить ваши значения A, B, C и D. Будьте осторожны при маркировке вашего значения C. Поскольку стандартная форма вычитает C, если ваша C также вычитается, тогда ваше значение C будет положительным, но если ваше C добавляется, то ваше значение C будет отрицательным.
Сравнивая вашу функцию со стандартной функцией, вы можете видеть, что ваш A = 1, ваш B = 2, ваш C = 4 и ваш D = 6.
Шаг 3: Рассчитайте фазовый сдвиг.
Третий и последний шаг — вычислить фазовый сдвиг. Помните, что фазовый сдвиг вашей функции в стандартной форме равен C / B. Все, что вам нужно сделать, это вставить свои значения для C и B. Остальные значения, A и D, не имеют значения. Если вы это помните, то единственные два числа, на которые вам нужно смотреть, — это ваши значения C и B.
Калькулятор фазового сдвигаДобро пожаловать в калькулятор фазового сдвига Omni , где мы изучим тригонометрические функции и способы вычисления их фазового сдвига. Фактически, мы рассмотрим больше: мы также объясним, как найти с амплитудой и как найти с периодом . На самом деле оказывается, что огромный класс функций ведет себя практически одинаково, а различия сводятся к описанию самих значений, упомянутых выше; амплитуда, период и фазовый сдвиг.Ну до вертикальный сдвиг хоть.
Амплитуда, период, фазовый сдвиг и вертикальный сдвиг
Как мы упоминали выше, мы сосредоточимся здесь на тригонометрических функциях : более конкретно на синусе и косинусе. Тем не менее, важно помнить, что многие из понятий являются более общими, особенно те, которые относятся к горизонтальному смещению или вертикальному смещению.
Прежде всего, давайте посмотрим на изображение, показывающее , где амплитуда, период, фазовый сдвиг и вертикальный сдвиг появляются на графике (обратите внимание, что то же изображение появляется в верхней части калькулятора фазового сдвига Omni).
Мы можем записать такие функции с помощью формулы (иногда называемой уравнением фазового сдвига или формулой фазового сдвига ):
-
f (x) = A * sin (Bx - C) + D
; или -
f (x) = A * cos (Bx - C) + D
,
для A
, B
, C
, D
произвольные действительные числа, но с A
и B
ненулевые (в противном случае это не была бы тригонометрическая функция).Очевидно, , эти четыре числа определяют амплитуду, период, фазовый сдвиг и вертикальный сдвиг . В некоторой степени картина показывает, как они влияют на график. Тем не менее, было бы полезно подкрепить визуальные элементы некоторыми определениями.
- Амплитуда показывает, как далеко (в любом случае) значения отклоняются от центральной линии графика. Для простого синуса или косинуса его значение равно
1
, поскольку центральная линия находится на0
, а значения функции находятся в диапазоне от-1
до1
. - Период — это длина по горизонтальной оси, после которой функция начинает повторяться. Другими словами, (бесконечный) граф — это всего лишь набор копий длины периода, склеенных вместе на концах . Для простого синуса или косинуса период равен
2π
, посколькуsin (0) = sin (2π) = sin (4π) = ...
и части между ними точно такие же (и аналогично для косинуса) . - Фазовый сдвиг (также называемый горизонтальным сдвигом или горизонтальным перемещением ) описывает, насколько далеко по горизонтали график сдвинулся от обычного синуса или косинуса.Таким образом, значение равно
0
, если у нас есть две функции без изменений. - Вертикальный сдвиг (также называемый вертикальным перемещением ) описывает, насколько вертикально график сдвинулся от обычного синуса или косинуса. Другими словами, это двойник сдвига фазы, который касается перпендикулярного направления . В частности, значение снова равно
0
, если две функции остались неизменными.
Хорошо, мы узнали, что такое фазовый сдвиг, а также три сопровождающих его значения.В разделах ниже описывается , как вычислить каждый из них на основе обозначений из формулы фазового сдвига выше. Сначала мы покажем , как найти амплитуду .
Как найти амплитуду
Мы знаем, что функции синуса и косинуса имеют значения в диапазоне от -1
до 1
. Более того, этот простой факт не изменит , если мы заменим sin (x)
или cos (x)
на sin (Bx - C)
или cos (Bx - C)
вместо не -нулевой B
и произвольный C
.Фактически, это потому, что функция f (x) = Bx - C
тогда является биекцией (то есть взаимно однозначным соответствием) на пространство действительных чисел.
Теперь посмотрим, что произойдет, если мы прибавим D
, т.е. если вместо этого у нас будет sin (Bx - C) + D
или cos (Bx - C) + D
. Поскольку первая часть дает что-то между -1
и 1
, все будет между -1 + D
и 1 + D
(для сравнения см. Как найти вертикальный сдвиг ).Это означает, что осевая линия падает на D
, а амплитуда все еще равна 1
, потому что значения падают на 1
от D
.
Следовательно, единственное, что может повлиять на амплитуду в формулах фазового сдвига A * sin (Bx - C) + D
и A * cos (Bx - C) + D
— это ненулевое значение А
. И действительно, поскольку sin (Bx - C)
и cos (Bx - C)
все это время находятся между -1
и 1
, множитель A
изменяет этот диапазон на -1 * A = -A
и 1 * A = A
.
Ага, как вы уже догадались: амплитуда уравнения фазового сдвига A * sin (Bx - C) + D
и A * cos (Bx - C) + D
просто равна А
.
Как найти период
Напомним, что функции синуса и косинуса имеют периоды (нет, не , что период ) равен 2π
, то есть мы имеем sin (x + 2π) = sin (x)
и cos (x + 2π) = cos (x)
для любого x
.В частности, это дает:
A * sin (x + 2π) + D = A * sin (x) + D
и A * cos (x + 2π) + D = A * cos (x) + D
Итак, мы видим, что A
и D
в формуле фазового сдвига не влияют на период . На самом деле, все сводится к , что происходит внутри тригонометрических функций . И еще:
sin (x - C + 2π) = sin (x - C)
и cos (x - C + 2π) = cos (x - C)
,
по тем же правилам, что и выше, поэтому это не C
или , которые выполняют эту работу.Итак, если отбросить три варианта, должен быть четвертым : B
.
Мы снова обратимся к , комментарию, который мы начали с , чтобы понять, почему и как B
влияет на периодичность в уравнениях фазового сдвига A * sin (Bx - C) + D
и A * cos (Bx - C) + D
. Ведь:
sin (Bx) = sin (Bx + 2π) = sin (B * (x + 2π / B ))
,
Таким образом, с каждым 2π / B
, добавленным к аргументу x
, , мы снова оказываемся в том же месте , и функция повторяется (и аналогично для косинуса).
В целом, период уравнения фазового сдвига равен 2π / B
.
Как найти фазовый сдвиг
По определению, фазовый сдвиг описывает горизонтальный перенос функции относительно обычного sin (x)
или cos (x)
. Таким образом, у основных функций он равен 0
. Фактически, если сравнить их графики:
… мы заметим, что мы можем получить, переведя другой (на самом деле, взаимные совместные функции имеют много общего).Если быть точным, то у нас:
sin (x + π / 2 ) = cos (x)
и cos (x - π / 2 ) = sin (x)
.
Пример выше уже предлагает, где в A * sin (Bx - C) + D
и A * cos (Bx - C) + D
, мы должны искать значения, ответственные за фазовые сдвиги. Однако, в отличие от амплитуды и периода, на этот раз нам понадобятся две из четырех букв .
В общем, (то есть не только в уравнениях фазового сдвига), мы получаем горизонтальный перенос произвольной функции f (x)
, вычисляя f (x - a)
: сдвиг графика на a
справа.Другими словами, мы заменяем каждое вхождение x
на x -
в формуле для f (x)
. Например, применение перевода к sin (x)
дает sin (x - a)
, но, скажем, для cos (3x + 1)
мы получим:
cos (3 * (x - a) + 1) = cos (3x - 3a + 1)
,
т.е. нельзя забывать о множителях, стоящих перед x
.
В нашем случае формула фазового сдвига дает:
A * sin (Bx - C) + D = A * sin (B * (x - C / B )) + D
,
, что составляет фазовый сдвиг C / B
(справа) функции A * sin (Bx)
.Конечно, мы можем повторить вышесказанное и для косинуса.
Подводя итог, , чтобы вычислить фазовый сдвиг уравнения фазового сдвига, вам нужно найти C / B
.
Как найти вертикальный сдвиг
Это простой , особенно теперь, когда мы увидели, что такое фазовый сдвиг, амплитуда и период и как их вычислить. Давайте продолжим то, что мы узнали до сих пор.
Мы знаем, что в формулах фазового сдвига A * sin (Bx - C) + D
и A * cos (Bx - C) + D
, A
определяет, насколько сильно значения колеблются по обе стороны от осевая линия. B
определяет, насколько далеко мы расширяем выпуклости графика и, как следствие, как быстро мы можем повторять значения. Кроме того, вместе с C
они описывают, переместили ли мы функцию влево или вправо и насколько.
Очевидно, что горизонтальный сдвиг не влияет на вертикальный сдвиг : в конце концов, это два перпендикулярных направления. С другой стороны, амплитуда только говорит нам, насколько далеко простирается график по вертикали, но не сдвигает его на .В общем, у нас осталась только одна буква : D
.
D
в уравнениях фазового сдвига в точности соответствует вертикальному сдвигу . Он определяет диапазон функции, т.е. насколько далеко от обычной версии без D
мы перемещаем график.
На этом теоретическая часть на сегодня завершена. Пришло время увидеть , как вычислить фазовый сдвиг на хорошем примере . И знаешь, что? Мы покажем, как найти период, амплитуду и вертикальный сдвиг.В конце концов, а почему бы и нет? Больше математических расчетов = больше удовольствия!
Пример: использование калькулятора сдвига фазы амплитуды периода
Давайте посмотрим, как найти амплитуду, период, фазовый сдвиг и вертикальный сдвиг функции f (x) = 0,5 * sin (2x - 3) + 4
. Во-первых, пусть говорит калькулятор фазового сдвига Omni.
В верхней части нашего инструмента нам нужно выбрать функцию, которая появляется в нашей формуле. В нашем случае мы выбираем « синус » под «» Тригонометрическая функция в f .»Это вызовет символическое представление такого уравнения фазового сдвига : f (x) = A * sin (Bx - C) + D
. Оглядываясь назад на то, что у нас есть, мы вводим:
A = 0,5
, B = 2
, C = 3
, D = 4
.
(Обратите внимание, что еще до того, как мы введем значения, калькулятор фазового сдвига отображает график функции sin (x)
. Это связано с тем, что инструмент понимает, что не дает определенных значений как отсутствие чисел в соответствующих местах в формуле .Таким образом, он вообще не считывает ввод, как A = 1
, B = 1
, C = 0
и D = 0
, что дает 1 * sin (1 * x - 0) + 0. = sin (x)
.)
В тот момент, когда мы даем последнее значение, график функции появляется под вместе с амплитудой, периодом, фазовым сдвигом и вертикальным сдвигом дальше вниз. Также обратите внимание, что при необходимости вы можете перейти в расширенный режим калькулятора, чтобы найти значение функции в любой точке x₀
.
Теперь давайте объясним , как самому найти фазовый сдвиг и все остальные значения . Для этого достаточно вспомнить четыре раздела выше, чтобы вычислить:
- Амплитуда составляет
A = 0,5
; - Период равен
2π / B = 2π / 2 = π
; - Фазовый сдвиг составляет
C / B = 3/2 = 1,5
; и - Вертикальный сдвиг составляет
D = 4
.
Итого график выглядит так :
Кусок торта, не так ли? Обязательно поэкспериментируйте с калькулятором фазового сдвига, чтобы увидеть , как разные коэффициенты влияют на график .А как только вам это надоест, переходите к другим калькуляторам Omni trig и приготовьтесь получить еще больше удовольствия !
FAQ
Как рассчитать фазовый сдвиг?
Чтобы вычислить фазовый сдвиг функции вида A × sin (Bx - C) + D
или A × cos (Bx - C) + D
, необходимо:
- Определить
B
. - Определить
C
. - Разделение
C / B
. - Помните , что если результат:
- Положительно , график смещен вправо.
- Отрицательно , график сдвинут влево.
- Наслаждайтесь , обнаружив фазовый сдвиг.
Как найти фазовый сдвиг на графике?
Чтобы найти фазовый сдвиг по графику , нужно:
- Определите , является ли это смещенным синусом или косинусом.
- Посмотрите на график справа от вертикальной оси.
- Найдите первый:
- Пик , если коэффициент перед функцией положительный; или
- Кормушка , если коэффициент отрицательный.
- Вычислите расстояние от вертикальной линии до этой точки.
- Если функция была синусом, вычтите
π / 2
из этого расстояния. - Оцените , найдя фазовый сдвиг по графику.
Как найти амплитуду, период и фазовый сдвиг?
Нахождение амплитуды, периода и фазового сдвига функции вида A × sin (Bx - C) + D
или A × cos (Bx - C) + D
происходит следующим образом:
- Амплитуда равна
A
; - Период равен
2π / B
; и - Фазовый сдвиг равен
C / B
.
Как построить график триггерных функций со сдвигом фазы?
Для работы с графиком с фазовым сдвигом необходимо:
- Определите , что такое триггерная функция.
- Сфокусируйте на точке
(0,0)
на плоскости. - Если фазовый сдвиг:
- Положительный , переместите вправо.
- Отрицательный , переместите влево.
- Переместите на расстояние, заданное фазовым сдвигом.
- Точка, в которую вы приземляетесь, — это ваша начальная точка .
- Нарисуйте график несмещенной функции, как если бы точка была
(0,0)
. - Оцените , построив график триггерной функции со сдвигом фазы.
Одинаковы ли сдвиг по горизонтали и фазе?
Что касается тригонометрических функций, да . Обычно мы оставляем за собой термин « фазовый сдвиг » для триггерных функций. Другими словами, мы можем иметь горизонтальный сдвиг любого графика или функции .Тем не менее, когда это фактически тригонометрический сдвиг, мы можем эквивалентно назвать этот горизонтальный сдвиг фазовым сдвигом.
Gain and Phase Shift, Part 1
Gain and Phase Shift, Part 1Усиление и фаза Сдвиг
Часть 1: Справочная информация: A Демпфированный принудительный осциллятор
В этом модуле мы изучаем связь между «входом» и «выходом» для моделируется затухающий гармонический осциллятор (механический, электрический, электронный) дифференциальным уравнением
, где c и k — неотрицательные константы с c
так что решения однородное уравнение
все имеют форму
Это переходный процесс часть любого решения.Переходный процесс экспоненциально затухает до 0 , и мы остаемся с решением устойчивого состояния . Это проиллюстрировано на следующем рисунке, где показано решение начального значения проблема
, где c = 1 , k = 2 , F 0 = 5 и омега = 2 .
Мы называем движущую функцию, F 0 cos (omega t) , функция входа и мы называем решение в установившемся режиме функцией output .Мы ссылаемся до omega в качестве частоты возбуждения или входной частоты , хотя технически частота составляет омега / (2 пи) .
Устойчивое решение имеет вид
Прямой расчет показывает что коэффициенты A и B равны
и
Если вычесть
мы видим, что установившееся состояние решение можно записать как
где
Теперь коэффициенты cos (omega t) и sin (omega t) — числа, у которых квадратов складываем 1 .Таким образом, мы можем рассматривать эти числа как косинус и синус некоторого угла фи . То есть решение имеет вид
Мы можем применить формулу для косинуса разности двух углов написать
Таким образом, мы видим, что устойчивый решение состояния — синусоидальная функция с той же частотой как входная функция, сдвинутая вправо на фи / омега радиан на оси т .Соотношение M выходной амплитуды MF 0 к входной амплитуде F 0 называется усиление и phi называется фазовым сдвигом .
- Объясните, почему усиление M и фазовый сдвиг phi не зависят от начальных условий y (0) и лет (0) .
- Объясните, почему
Мы решили написать формулу для phi в терминах обратного котангенса, а не обратного касательная, потому что c и omega должны быть ненулевыми, но мы не исключили, что omega равно k .
Расчет одно- и трехфазных параметров
Вы можете спросить: «Что такое константа?» Пример постоянной, с которой вы очень хорошо знакомы, — это число пи (π), которое получается делением длины окружности на ее диаметр. Независимо от длины окружности и диаметра соответствующего круга, их соотношение всегда равно пи.Вы можете использовать константы, относящиеся к определенным одно- и трехфазным напряжениям, для расчета тока (I) и киловатт (кВт). Посмотрим, как это сделать.
Однофазные расчеты
Базовая электрическая теория говорит нам, что для однофазной системы
кВт = (В × I × PF) ÷ 1000.
Для простоты предположим, что коэффициент мощности (PF) равен единице. Таким образом, приведенное выше уравнение становится
.кВт = (В × I) ÷ 1000.
Решая относительно I, уравнение принимает вид
I = 1000 кВт ÷ В (Уравнение 1)
Теперь, если мы посмотрим на часть этого уравнения «1000 ÷ В», вы увидите, что, вставив соответствующее однофазное напряжение для «V» и разделив его на «1000», вы получите конкретное число (или постоянная), которую можно использовать для умножения «кВт», чтобы получить потребляемый ток нагрузки при соответствующем напряжении.
Например, постоянная для расчета 120 В равна 8.33 (1000 ÷ 120). Используя эту константу, уравнение 1 становится
I = 8,33 кВт .
Итак, если у вас нагрузка 10 кВт, вы можете рассчитать потребляемый ток как 83,3 А (10 × 8,33). Если у вас есть оборудование, потребляющее 80 А, вы можете рассчитать относительный размер необходимого источника питания, который составляет 10 кВт (80 ÷ 8,33).
Таблица 1. Константы, используемые в однофазных системах
Используя ту же процедуру, но вставив соответствующее однофазное напряжение, вы получите следующие однофазные константы, как показано в Таблица 1 .
Трехфазные расчеты
Для трехфазных систем мы используем следующее уравнение:
кВт = (В × I × PF × 1,732) ÷ 1000.
Опять же, принимая единицу PF и решая это уравнение относительно «I», вы получаете:
I = 1000 кВт ÷ 1,732 В.
Таблица 2. Константы, используемые в трехфазных системах
Теперь, если вы посмотрите на часть этого уравнения «1000 4 1,732 В», вы увидите это, вставив соответствующее трехфазное напряжение для «V» и умножив его на 1.732, вы можете затем разделить это количество на «1000», чтобы получить конкретное число (или константу), которое вы можете использовать для умножения «кВт», чтобы получить ток, потребляемый этой трехфазной нагрузкой при соответствующем трехфазном напряжении. Таблица 2 перечисляет каждую 3-фазную постоянную для соответствующего 3-фазного напряжения, полученного из вышеуказанного расчета.
РАСЧЕТ СДВИГА ФАЗ С ОСЦИЛЛОСКОПОМ
Электронные схемы неизбежно задерживают сигналы и, хотя это не всегда плохо, сдвигают фазу сигнала.Величина фазового сдвига будет разной для разных схем из-за их уникальной конструкции. Вы можете выбрать схему с минимальным фазовым сдвигом, а затем визуально измерить фазовый сдвиг с помощью осциллографа. Вы можете рассчитать фазовый сдвиг, измерив входной сигнал схемы с помощью первого канала осциллографа и выход схемы с помощью второго канала осциллографа.
Во-первых, подключите Т-образный соединитель BNC к выходу синусоидального генератора, который, по сути, даст вашему генератору два выхода.Подключите кабель BNC от одного конца тройника к входу первого канала на вашем прицеле. Затем подключите другой кабель BNC от другого конца Т-образного соединителя к входу схемы, которую вы тестируете, и подключите пробник осциллографа ко входу второго канала, подключив пробник к выходу схемы.
Включите генератор, схему и осциллограф и отрегулируйте генератор до тех пор, пока его частота и амплитуда не попадут в рабочий диапазон схемы. Будьте осторожны, чтобы не перегрузить схему с генератором.
Поворачивайте регулятор горизонтальной развертки осциллографа до тех пор, пока вы в конечном итоге не увидите два или три цикла синусоидальной волны на дисплее осциллографа, а затем отрегулируйте положение по вертикали и чувствительность, пока не увидите синусоидальные волны на обоих каналах (канал один вверху и канал два на экране. Нижний). Установите триггер развертки осциллографа на первый канал, чтобы при необходимости стабилизировать синусоидальную волну.
Найдите пик на канале 1 синусоидальной волны. Следуйте за этой точкой вниз до горизонтальных отметок временного деления в центре дисплея осциллографа.Затем найдите соответствующий пик на втором канале и его временную метку. Подсчитайте основные деления между отметками временного деления для первого и второго канала (включая любые доли деления) — это фазовый сдвиг двух ваших сигналов.
Еще раз проверьте верхнюю синусоиду и подсчитайте основные деления для всего цикла (включая дроби снова). Затем вам нужно разделить разницу между сигналами для каналов один и два на деления для всего цикла и умножить два числа пи, чтобы найти фазовый сдвиг в радианах.Чтобы получить фазовый сдвиг в градусах, умножьте его на триста шестьдесят, а не на два числа пи.
(Примечание: некоторые цифровые запоминающие осциллографы могут автоматически измерять и вычислять разницу во времени между точками на дисплее. В этом случае вы должны выбрать функцию измерения времени и расположить два вертикальных курсора в начальной и конечной точках для интервала, который вы хотите вычислить. Осциллограф покажет разницу во времени.)
Амплитуда, период, фазовый сдвиг и вертикальный сдвиг тригонометрических графиков
Некоторые функции похожи на синус и косинус, которые повторяются бесконечно, и они известны как периодические функции.
Период
Период — это время, необходимое функции для выполнения одного цикла. Период идет от одной точки пика к другой или говорит от одной точки до другой точки совпадения.
Амплитуда
Амплитуда — это высота от центральной линии до точки пика или впадины. Мы можем найти высоту от самых высоких точек до самых низких точек и разделить ее на 2.
Фазовый сдвиг
Насколько далеко функция сдвинута по горизонтали (влево и вправо) от обычного места.
Вертикальный сдвиг
Вертикальный сдвиг — это насколько функция сдвинута по вертикали (вверх и вниз) от обычного места.
Тригонометрическая функция записывается в следующем виде:
Y = грех (B (x + C)) + D
- Амплитуда записывается как A.
- Период равен 2π / B.
- Фазовый сдвиг равен C. Если он равен + C, он сдвигается влево. Если фазовый сдвиг — C, функция сдвигается вправо.
- Вертикальный сдвиг записывается как D.Если это + D, функции перемещаются вверх. Если это — D, функция перемещается вниз.
Обратите внимание, что мы используем радианы, а не градусы, и в одном вращении есть 2π радиана.
Пример 1 — Sin X
Это основная измененная формула синуса. A = 1, B = 1, C = 0 и D = 0. Таким образом, амплитуда равна 1, ее период равен 2π, фазового или вертикального сдвига нет.
Пример 2 — 2 sin (4 (x — 0,5)) + 3
Его амплитуда A равна 2.
Его период составляет 2π / B = 2π / 4 = π / 2
Его фазовый сдвиг составляет -0,5 или 0,5 вправо
Его вертикальный сдвиг D составляет 3
Другими словами, число 2 говорит нам, что он будет в 2 раза выше, чем обычно, поэтому амплитуда равна 2.
Обычный период равен 2π, но в нашей ситуации, которая ускоряется, делает его короче на 4, таким образом, период равен π / 2.
Пример 3 — узнать 3 греха (100t + 1)
Во-первых, t + 1 должны быть заключены в скобки, но мы должны разделить 1 на 100 —
.3 sin (100t + 1) = 3 sin (100 (t + 0.01))
Теперь мы видим, что —
Амплитуда A равна 3, его период 2π / 100 = 0,02, фазовый сдвиг C = 0,01, который находится слева, а вертикальный сдвиг D = 0
Частота
Это количество раз, когда что-то происходит в единицу времени.
Пример — есть синусоидальная функция, которая повторяется 4 раза между 0 и 1 —
Таким образом, частота равна 4.