Как определить фазы: Как определить фазу и ноль без приборов: подробная инструкция

Опубликовано

Содержание

Как определить фазу и ноль — Построй свой дом

 

Любые электромонтажные работы в частном доме связаны с определением назначения жил проводки. Если сказать проще, возникает необходимость определить фазу и «ноль», а также заземляющий провод. Эта несложная для профессиональных электромонтеров задача порой ставит в тупик тех, кто мало знаком с правилами устройства электрических сетей. О том, как определить фазу и ноль в вашей электрической сети мы и поговорим в этой статье.

 

Устройство бытовых электрических сетей

 

В предыдущей статье мы уже говорили, что при технологическом присоединении вашего дома, вам подводится трехфазное напряжение 380 В. Разводка по дому имеет напряжение 220 В, так как она подключена к одной из фаз и нулевому проводнику. Кроме того, правильно смонтированная бытовая проводка должна быть обязательно заземлена. О том, как устроен заземляющий контур мы говорили в предыдущей статье.

В домах старой застройки заземляющего проводника может и не быть. Таким образом, при монтаже проводки и электроприборов необходимо знать назначение каждого из двух или трех проводов.

 

Правила подключения электрических приборов

 

Также следует знать правила подключения различных приборов. При монтаже обычной розетки подключение фазного и нулевого провода производится к клеммам в произвольном порядке, а заземляющий провод, при его наличии, подключают к медной или латунной шине. В выключатель подключают фазный провод, чтобы при его отключении в патроне осветительного прибора не было напряжения. Это обеспечит безопасность при смене ламп. Сложные бытовые приборы необходимо подключать в обязательном соответствии с маркировкой проводов, в противном случае безопасность их использования не гарантирована.

 

Приборы и инструменты для электромонтажных работ

 

Прежде чем приступить к электромонтажным работам и определить фазу и ноль в проводке, необходимо подготовить необходимые приборы и инструмент:

  • Мультиметр стрелочный или цифровой;
  • Индикаторную отвертку или тестер;
  • Маркер;
  • Пассатижи;
  • Нож для зачистки изоляции.

 

Также вам необходимо выяснить, где расположена защитная аппаратура: автоматические выключатели и УЗО. Обычно их устанавливают в распределительном щитке. Все операции по подключению электроаппаратуры и зачистке проводов необходимо проводить при отключенных автоматах.

 

Правила работы с индикаторной отверткой

 

Чтобы проверить фазу с помощью индикаторной отвертки необходимо зажать отвертку между большим и средним пальцем руки, не касаясь не изолированной части. Указательным пальцем дотронуться до металлического пятачка на торце ручки. Металлическим концом отвертки прикасаются к оголенным концам проводов. Если провод фазный, загорится светодиод.

 

Визуальный метод определения фазы

 

Если проводка выполнена по всем правилам, то определить фазу, ноль и заземляющий проводник в распределительной коробке можно по цвету изоляции. Заземление имеет двухцветную желто-зеленую окраску, изоляция нулевого провода бывает синей или голубой, а фазный провод может быть белым, черным или коричневым. Убедиться в правильности подключения можно с помощью визуального осмотра, при этом необходимо проверить соответствие цвета изоляции не только в щитке, но и в распределительных коробках. Для этого необходимо сделать следующие действия:

  • Откройте щиток и осмотрите автоматические выключатели. В зависимости от расчетной нагрузки их количество может быть разным. Через автоматы может быть подключен только фазный провод. Заземляющий проводник подключают всегда сразу к шине. Проверьте соответствие цветовой маркировки всех проводов.
  • Если в щитке цвет изоляции кабеля, уходящего в квартиру, соответствует правилам, вскройте все распределительные коробки и осмотрите соединения проводов. В них цвета изоляции нуля и заземляющего провода также не должны быть перепутаны.
  • К фазе в распределительных коробках бывают подключены выключатели. Часто монтаж выполняют двужильным проводом, имеющим другие цвета изоляции, например, белый и бело-голубой. Это не должно вас смутить.

 

Определение фазы, нуля и заземляющего провода

 

Если сеть трех проводная и выполнена проводом одного цвета, либо вы не уверены в правильности подключения проводов, необходимо определять назначение проводников перед установкой каждого элемента сети.

 

 

  • Определите фазный провод с помощью индикаторной отвертки и отметьте его маркером.
  • Для определения нулевого и заземляющего провода понадобится мультиметр. Как известно, из-за перекоса фаз в нулевом проводе может появиться напряжение. Его величина обычно не превышает 30В. Установите мультиметр в режим измерения напряжения переменного тока. Одним щупом прикоснитесь к фазному проводу, вторым поочередно к двум другим проводам. Там, где значение напряжения окажется меньше, вторым проводом будет являться нулевой проводник.
  • Если значение напряжения одинаково, необходимо измерить сопротивление заземляющего провода. Для этого уже определенный фазный провод лучше изолировать, чтобы избежать случайного прикосновения к нему. Мультиметр ставят в режим измерения сопротивления. Находят заведомо заземленный элемент, например, трубу или батарею. Зачищают при необходимости краску и прикасаются одним щупом мультиметра к металлу, а другим поочередно к проводникам, назначение которых неясно. Сопротивление заземляющего провода по отношению к заземленным элементам не должно превышать 4 Ом, сопротивление нулевого провода будет больше.
  • Измерение сопротивления может также быть недостоверным, если нейтраль заземлена в щитке. В этом случае вам нужно найти заземляющий проводник, присоединенный к шине внутри щитка, и отключить его. После этой операции необходимо взять патрон с лампой и подключенными проводами, зачистить их концы и подключить один провод лампы к фазному проводу, а второй поочередно к двум другим. Лампа загорится при касании нулевого проводника.

 

Если все указанные рекомендации, как определить фазу и ноль, не привели к желаемому результату, лучше обратиться к профессиональным электрикам, которые с помощью специальных приборов произведут прозвонку всех цепей. Не забывайте, что речь идет о вашей безопасности.

 

В следующей статье я расскажу о видах ламп и цоколей.

 

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Как определить ноль и фазу? Самые быстрые способы

На чтение 5 мин. Просмотров 1.1k.

Часто при монтаже бытового электрооборудования мастеру важно знать, где находится «фаза». Такая необходимость возникает в тех случаях когда, например, требуется установить выключатель или подключить чувствительные к правильной фазировки электротехнические устройства.

Если выключатель света подключён правильно, то при положении «выкл» будет обесточен участок проводки который ведёт к патрону и можно абсолютно спокойно проводить монтажные работы в этом месте, например замену лампочки, не опасаясь удара электрическим током.

Определить наличие или отсутствие электрического тока в цепи «на глаз» не представляется возможным, поэтому стоит приобрести специальные приборы и инструменты.

Понадобиться могут:

  • Индикаторная отвёртка.
  • Тестер или мультиметр.
  • Пассатижи.

Цена их, как правило, не велика. При выборе стоит отдать предпочтение только тем моделям, которые имеют надёжную изоляцию.

Устройство бытовых электрических сетей

Прежде чем приступать к такой ответственной операции как определение фазного провода необходимо очень хорошо понимать устройство бытовой электрической сети.

В отличие от сетей, по которым осуществляется передача электрической энергии от электростанций к трансформатору, напряжение в жилом доме или квартире составляет всего 220 вольт, но даже это напряжение может быть опасно для жизни и здоровья, а также являться причиной пожара, вследствие короткого замыкания.

Поэтому работать с электричеством можно только при условии соблюдения правил техники безопасности.

Бытовая электросеть, как правило, состоит из трёхжильного провода:

Разберём теперь более подробно каждый.

Что такое «фаза»?

«Фаза» или фазный провод это проводник, по которому в дом поступает электричество от поставщика электроэнергии. Отличается он от других жил кабеля наличием напряжения 220 в..
Но чтобы эксплуатировать электрический прибор или технику одного только фазного провода недостаточно.

Подобно тому, как и «пальчиковая» батарейка не сможет обеспечить электричеством какой — либо прибор, подключённый только одним полюсом, так и фазный провод нуждается ещё в одном проводнике имя которому — «ноль».

Что такое ноль, и как его определить?

«Ноль» — это проводник, который протянут от генератора электростанции к потребителям, и хотя в нём электрический ток практически отсутствует, это полноправный участник в отношениях по передаче электрического тока по металлическим проводам.

Определить ноль совершенно не сложно. Для этой цели можно использовать мультиметр или тестер. Если замеры проводятся с помощью мультиметра, то необходимо один из щупов подсоединить к какому-нибудь заземлённому предмету, а другой поочерёдно к проводам, когда прибор покажет напряжение 2 — 3 В. то тот провод, к которому был подсоединён щуп в данный момент и является нулевым.

В роли заземлённого проводника может выступать металлический радиатор системы отопления в период, когда в нём находится жидкость под давлением.

Что такое заземление?

В отличие от «фазы» и «ноля» заземление, если можно так сказать, является местным жителем. Заземление — это проводник, который подключён к земле непосредственно в месте нахождения дома, и служит, для того чтобы при пробое изоляции фазного провода на корпус устройства исключить поражение человека электрическим током.

Как отличить друг от друга фазу и ноль?

Для того чтобы отличить «фазу» от других проводов можно воспользоваться таким инструментом, как индикаторная отвёртка.

Если дотронуться до металлической части провода, жалом этой отвёртки при этом, придерживая противоположный торец указательным пальцем то индикатор, будет светиться при наличии фазного провода. Также можно определить «фазу» с помощью мультиметра.

Для этого необходимо включить прибор в режим измерения переменного тока.

Выставить максимально возможное напряжение на приборе. Минусовой щуп необходимо подсоединить к какому-нибудь заземлённому предмету, например, к радиатору отопления, а другой попеременно подключать к проводникам.

Когда прибор покажет напряжение, которое примерно равно 220 В. то проводник, к которому вы подключились и есть фазный провод.

Как определить «фазу» и «ноль» без измерительных приборов.

Для того чтобы обнаружить фазу можно использовать проверенный временем, очень простой и недорогой способ.

С помощью обыкновенного патрона с лампой накаливания несложно определить пару «ноль» — «фаза». Нужно взять патрон и два провода, которые отходят от него попеременно подсоединять к проводам с предполагаемыми фазным и нулевым проводами.

Когда же лампочка загорится это будет означать что один из подключённых проводов является фазным. Теперь останется узнать какой именно. Очень просто это сделать если в электрической сети включена система УЗО. В этом случае если подключить патрон с лампой одним концом к третьему проводу, который является в данном случае заземлением, а другой попеременно к другим проводникам.

В момент, когда произойдёт автоматическое отключение электричества, будет означать то, что второй провод, к которому вы подсоединили щуп мультиметра, является «фазой». Соответственно третий проводник будет «ноль».

Если нет УЗО то после определения пары «фаза» — «ноль», один провод следует подключить к заземлению, а второй будет слегка искрить при соприкосновении с «фазой».

Заблуждения, которые могут возникнуть при определения фазного провода.

Это не совсем заблуждения, просто, если следовать этому способу определения
фазы можно неправильно сделать вывод о том, где именно она находится.

Способ определения фазы по цвету провода

Если рабочие, которые занимались монтажом проводки сделали всё правильно то фазный провод должен быть чёрного или коричневого цвета.

Но полностью полагаться на такой способ определения фазы нельзя, т. к. не исключено, что при подключении, провода просто перепутали. И вместо фазного провода чёрного цвета там будет «земля» или «ноль».

В заключении стоит отметить, что заниматься самостоятельными электромонтажными работами стоит только в том случае если вы очень хорошо разбираетесь в том, что делаете, в противном случае стоит обратиться к специалистам, которые выполнят работы по монтажу проводки, качественно и в срок.

Как самому определить фазу, ноль и заземление?

Смотрите также обзоры и статьи:

Любой человек, который запланировал выполнять любые электромонтажные работы во время ремонта в жилом или производственном помещении, рано или поздно столкнется с важнейшим вопросом: как самому определить где в электрической сети фаза, ноль и заземление. Ведь без этих знаний либо же придется воспользоваться услугами электрика, и нанимать его. Либо же самостоятельно, чтобы подключить люстру, бра, торшер, светильник, светодиодную ленту, любой электрический прибор, научится распознавать где защитный провод, где под напряжением, а где нулевой.

Определение по цветовой маркировке

Все современные кабели или электрические провода под своей изоляционной оболочкой содержат обычно три жилы, каждая из которых помечена изоляцией своего цвета. Таким образом, определить где какая жила можно и просто по цветовой маркировке. Так, обычно в новых проводах:

  • фаза отмечена черным, белым или коричневым цветами;
  • нейтральный провод, он же нулевой по мировым стандартам должен соответствовать синему или голубому цвету,
  • а заземление или защитный кабель обычно выполнен в двухцветном варианте – желто-зеленый, полосатый и т.п.

На постсоветском пространстве закреплен на законодательном уровне стандарт IEC 60446 2004 года, который и регламентирует какого цвета необходимо применять и изготавливать электроизоляцию проводов. Согласно нему в жилых квартирах:

  • синий или сине-белый провод – это ноль,
  • желто-зеленый – земля;
  • все остальные цвета могут быть фазой, как черный, так и красный.

Однако правило применимо в основном только для проводов, которые установлены в доме или офисе последние лет двадцать-тридцать. А как же быть с электросетями, которые были установлены раньше этого периода, где часто попадаются жилы с алюминиевым сечением? Или вам необходимо поменять часть какого-либо устройства или схемы, в которой данные цвета могли по стандартам и не быть использованы? Тогда вам пригодятся другие, более эффективные способы определения жил и напряжения в электропроводке.

Как определить ноль и фазу индикаторной отверткой

Одним из наиболее надежных, простых, доступных и не требующих особых затрат, и умений способом является определение ноль и фазы при помощи индикаторной отвертки. В чем заключается принцип работы индикаторной отвертки? Индикаторная отвертка – это ручной вспомогательный инструмент практически ничем не отличающийся от привычной нам плоской отвертки с пластиковой ручкой и металлическим наконечником, но есть одно «Но»: внутри рукояти есть индикационная лампочка или светодиод, который срабатывает свечением или загорается, если металлической частью коснутся фазы. На некоторых моделях для индикации следует также нажимать на специальную кнопку на рукояти, которая смыкает контакты и подает ток на индикатор. Однако в целях безопасности следует работать с такой отверткой только в резиновых перчатках электрика, чтобы избежать поражения электрическим током.

Как работать с индикаторной отверткой? В первую очередь, необходимо отключить напряжение в сети, и кусачками снять изоляцию на концах всех трех жил, оголив металлическую часть проводов, зачастую она будет медной. Дальше все три жилы необходимо развести между собой, так, чтобы они не соприкасались, чтобы избежать короткого замыкания при подаче на них напряжения.

После этого, одеть резиновые диэлектрические специальные перчатки и включить напряжение в сети. Хорошо, если ваш щиток имеет встроенный при монтаже устройства устройство защитного отключения. Или другими словами УЗО – он в аварийном режиме отключает питание в сети, если есть утечка тока на корпус.

Вооружившись индикаторной отверткой поочередно ее металлическим наконечником прикасаться к металлической оголенной части каждой жилы. Там, где лампочка индикаторной отвертки сработает и загорится – это фаза. Далее для работы с данными проводами следует изолентой после выключения напряжения замотать оголенные концы проводов.

Определение фазы, нуля и заземления контрольной лампой

Способ простой, однако не самый безопасный и требующий определенной ловкости и осторожности. Считается несколько кустарным и часто используется в грубых производственных условиях опытными мастерами, под рукой у которых не оказалось другого контрольного инструмента. Для того, чтобы воспользоваться данным методом, следует для начала собственно и собрать данную контрольную лампу. Для этого нужен патрон, два провода – фазы и нуля – и лампочка, можно самую обыкновенную, накаливания с вольфрамовой нитью. Это все необходимо скрутить, зачистить на концах его провода и поочередно скручивать с другими проводами в проводке, определить где фаза по тому, когда загорится лампа. Конечно же, скрутку нужно делать, отключив подачу напряжения на провода.

Если патрона не оказалось, можно задействовать часть светильника или настольной лампы, произведя ту же манипуляцию с концами его жил. Однако способ весьма сложный для неподготовленного и неопытного мастера, поскольку есть вероятность перепутать провода и пустить вместо постоянного тока, переменный, при котором лампочка тоже будет гореть. Лучше тогда основательно вывести жилу-землю, сделать ее нулем и тогда спокойно искать фазу.

Как определить фазу и ноль мультиметром

Мультиметры — универсальные многофункциональные приборы для измерения емкости, напряжения, сопротивления и силы тока, имеют отдельные выводы под щупы, укомплектованы самыми щупами, которыми легко и удобно пользоваться, точно определив напряжение. Это самый надежный и довольно простой способ определить фазу и ноль, без особых сложностей и безопасно для здоровья. Ведь все мультиметры имеют на своем корпусе прорезиненный диэлектрический чехол, который не только защищает от ударов тока, но и оставит прибор целым, если он случайно выскользнет из рук и упадет с высоты не более полутора метров. Универсальное мультифункциональное устройство для измерения силы тока, напряжения, сопротивления, емкости, частоты используется повсеместно, как автолюбителями, так и электронщиками, электриками, строителями, рабочими технических специальностей.

Есть целых пять причин, по которым стоит выбрать именно мультиметр для домашнего обихода и работы:

  • Высокая точность измерений – при максимальных значениях постоянного напряжения 0,8%, при больших позициях переменного — максимум 1,2%.
  • Возможность измерять переменное значение тока,
  • Одновременное измерение кроме постоянного и переменного напряжения, сопротивления, также такие величины как емкость, частота, скважность, а также температура благодаря термопаре.
  • Эргономический дизайн и большой мультифункциональный экран.
  • Усиленная индикация батареи и перегрузки.

Это надежный и добротный инструмент для качественного измерения всех требуемых показателей для проверки электрических показаний в цепи питания, а также замера целостности цепи, схемы, платы.

Как же определить фазу и ноль мультиметром? Для начала необходимо знать, что практически все современные мультифункциональные приборы данного типа имеют жидкокристаллический экран, на который выводятся показания в цифровом эквиваленте, однако не плавно, как это было в аналоговых устройствах, без экрана, а рывками.

Поэтому при измерении стоит выждать некоторое время, буквально секунду-две, чтобы прибор определил точное напряжение в сети. Кстати, на панельной панели мультиметра есть множество, свыше 20-30 режимов работы, которые выбираются поворотным рычагом. На этом круге нужно найти тот, что отвечает за переменное напряжение в сети и выглядит как обозначение вольт, также в большинстве мультиметров вручную нужно настроить и диапазон измерений, хотя многие могут это сделать и автоматически.

Далее один из щупов присоединяем к разъему мультиметра, а его другую сторону металлическим наконечником прикасаемся к проводу или в розетку. Если показания на экране прибора будут соответствовать 10-15 вольтам, то, скорее всего, вы попали не в фазу, а в ноль. Если показания в пределах от ста и до 250 вольт – то это и есть фаза.

Как определить фазу и ноль без приборов

Без никаких приборов, даже самых примитивных, искать фазу и ноль в сети не особо стоит. Но если у вас крайний случай, то, рискнуть, конечно можно, но нельзя сказать, что безопасность при этом будет выдержана. Есть несколько оригинальных, забавных, но в тоже время достаточно надежных и точных способа это сделать. Для первого из них стоит взять из подручных средств, которые скорее всего найдутся в каждом доме картофелину. Да-да! А помимо этого два провода на полметра и резистор на 1 мегаом. Все это необходимо собрать, чтобы один проводник был подключен к трубе, а второй – вставить в отрезанную половинку картофелины. Второй провод вставить в срез картофелины рядом с первым. Произведя подобную манипуляцию, только спустя минут пять-десять необходимо оценивать результат измерений.

Что же должно произойти? На том месте, где соприкасался проводник с фазой, должно появится сине-зеленый след от взаимодействия крахмалистых соединений с электричеством, т.е. окисление. Где его не окажется – это нулевой провод.

Второй такой же неоднозначный метод – использование чашки с обыкновенной водой. Тут срабатывает принцип, чем-то схожий с функционированием кипятильника – минус будет там, где вода возле проводника начнет пузырится. Соответственно, методом исключения – плюс будет находится на втором проводе.

Как определить заземление

Кроме очевидного способа по определению заземления, который заключается в идентификации земли по цвету изоляции в жиле, в частности желто-зеленого цвета по мировым стандартам, существует и несколько других, менее очевидных.

Например, если у вас в доме были случаи, что электроприборы, будь то стиральная машина, компьютер, микроволновка, бились током, то практически можно быть полностью уверенным, что заземление в вашей проводке отсутствует, поскольку именно оно должно ликвидировать остаточное напряжение на корпусы электроустройств.

Можно определить заземление мультиметром по принципу исключения, провод, в котором вовсе не будет наблюдаться отклонений по переменному напряжению – скорее всего и будет им.

Выводы

Очень важно научится самостоятельно понимать где в розетке в вашем доме фаза, ноль и заземление, ведь скорее всего доведется столкнуться с необходимостью замены или дополнительной установки каких-либо устройств, связанных с электричеством. Однако настоятельно рекомендуем пользоваться надежными методами, а нетрадиционными только в случае крайней необходимости! А лучше – воспользоваться мультиметром, индикаторной отверткой или вызвать опытного и надежного специалиста-электрика.

ПОДХОДЯЩИЕ ТОВАРЫ

Поделиться в соцсетях

мир электроники — Что такое фаза в электрике и как её определить

Практическая электроника 

 материалы в категории

Все мы конечно слышали такие слова как фаза и ноль в электрике. Многие из нас даже знают что фазовый провод ни в коем случае нельзя трогать- может и током шарахнуть…

А вот что это такое- фаза и ноль знают далеко не все…
Этакая аксиома (выражение не требующее доказательств): все знают что это есть, но не все знают что это такое…

Давайте попробуем разобраться: по определению фазой или фазовым смещением называют параметр отставания во времени. Применительно к электрическим машинам получается так: допустим мы имеем генератор переменного тока с двумя выводами.
Если ни один из этих выводов не заземлен то на них будет присутствовать переменное напряжение, причем значения потенциалов на выводах будут противоположны.

Не совсем понятно? Тогда немного по другому: переменное напряжение потому и называют переменным потому что оно постоянно меняет полярность. Ну то есть изменяется во времени от положительного потенциала к отрицательному и наоборот. Причем такие колебания происходят очень быстро- 50 раз в секунду (в некоторых странах 60 раз в секунду).
Возьмем, к примеру, самый обычный трансформатор (для простоты будем считать что он имеет всего лишь одну вторичную обмотку): если его включить в сеть переменного тока то на вторичной обмотке появится напряжение. Так вот: напряжение будет присутствовать на обеих концах вторичной обмотки, но потенциалы будут прямо-противоположны: когда на одном выводе «+», то на другом будет «-» и наоборот.
Вот это как раз и называется смещение по фазе.

Нетрудно догадаться что понятие фаза приемлемо лишь по отношению к переменному току.

Поехали дальше….
Если на электрической машине один из выводов заземлить, то напряжение останется лишь на одном проводе и будет оно изменяться уже относительно земли. Вот как раз такой провод в электрике и назвали фаза.

Что будет если вдруг мы коснемся фазы? Получится что образуется электрическая цепь между вами и землей и вы в этом случае будете нагрузкой!
Думаю нет нужды говорить что это опасно для жизни, поэтому при работе с промышленной сетью нужно уметь определить фазу.

Как определить фазу

Самый простой способ определить фазовый провод это конечно пробник. Промышленность всегда выпускала такие пробники а в наше время, благодаря китайским производителям, стоимость у них просто смешная…
Выглядит такой пробник как обыкновенная отвертка, но он прозрачный и имеет внутри неоновую лампочку. Его, кстати, так и называют- индикаторная отвертка

Для того чтобы определить фазу при помощи такой индикаторной отвертки нужно просто прикоснуться ею к проводу, но при этом еще необходимо держать палец на металлической верхушке индикатора. Включаясь таким образом мы создаем электрическую цепь между фазой и землей, но при этом мы не пострадаем так как индикаторная отвертка имеет внутри высокоомный ограничительный резистор.
Наличие фазы можно будет определить по свечению неоновой лампочки внутри индикатора.

Чуть выше я не зря упомянул о китайских производителях: пользоваться индикатором как отверткой нельзя- слишком хрупкий материал.

Второй способ определить определить фазу это при помощи мультиметра.

Как определить фазу мультиметром

Фазовый провод можно определить и мультиметром.
Делается это так: ставим мультиметр в режим проверки переменного напряжения.
Затем: к одному из щупов прикасаемся пальцем а вторым щупом- к проверяемому проводу. При наличие фазы на этом проводе на дисплее мультиметра будет показано напряжение:


Что делать если вдруг под рукою нет ни индикаторной отвертки ни мультиметра но фазу определить просто необходимо?

Можно определить фазу при помощи лампочки.
Потребуется немного: самая обыкновенная лампа накаливания, патрон и пара проводов.
Один из проводов нужно заземлить. В квартире для этой цели можно использовать батарею центрального отопления.
Заземлив один провод вторым касаемся к проверяемой цепи. Свечение лампочки укажет на присутствие фазы.

Примечание: изображения и основная часть материала взята с сайта Практическая электроника

Определение фаз а в с. Как определить где какая фаза

Электрооборудование трёхфазного тока (трансформаторы, генераторы, кабельные линии электропередач) подлежит обязательной фазировке, перед тем как оно впервые будет включено в сеть или же по окончании очередного ремонта, в результате которого могло произойти нарушение порядка чередования, следования фаз.

Фазировка заключается в проверке совпадения по фазе напряжений каждой из 3-х фаз включаемой электроустановки с соответствующими напряжениями сети. Подобного рода проверка, безусловно, необходима, ведь в процессе сборки, монтирования и ремонта электрооборудования фазы могли быть переставлены местами.

У электромашин, например, не исключается и ошибочное обозначение силовых выводов статорных обмоток; у кабелей в соединительных муфтах могут быть между собой соединены жилы разноимённых фаз.

Во всех этих случаях единственным выходом считается выполнение фазировки. Как правило, эта технологическая операция состоит из 3-х основных перечисленных ниже этапов.

Проверка и сравнение порядка чередования фаз у электрической установки и сети . Данная операция выполняется перед непосредственным включением на параллельную работу нескольких сетей, работающих независимо, нового генератора и генератора, прошедшего капитальный ремонт, при котором могла измениться схема присоединения обмоток статора к сети.

Лишь при получении положительных результатов, полученных при фазировке, генераторы или, скажем трансформаторы синхронизируются и включаются на параллельную работу.

Проверка одноимённости или расцветки фазных проводников , которые впоследствии надо будет соединить. Эта операция ставит перед собой цель проверить правильность соединения всех элементов установки между собой. Проще говоря, выверяется правильность подвода токоведущих жил к включающему аппарату.

Проверка совпадения по фазе одноимённых напряжений , то есть отсутствия между ними угла сдвига фаз. В электрических сетях во время фазировки линий электропередач и силовых трансформаторов, которые принадлежат одной электрической системе, достаточно выполнить 2 последние операции, поскольку у всех генераторов, работающих синхронно с сетью, порядок следования фаз одинаков.

Приборы для фазировки . Сегодня существует множество методик, которые зависят от прямого назначения электрооборудования, схем соединения обмоток и от используемых приспособлений и приборов. К основным приборам и приспособлениям можно отнести:

Вольтметры переменного тока , используемые при фазировки электроустановок до 1 кВ и подключаемые непосредственно к выводам электрооборудования.

Фазоуказатели , принцип действие которых похож на принцип действия АД (асинхронного двигателя), когда при подключении катушки приборов к 3-х фазной сети токов происходит образование вращающегося магнитного поля, которое заставляет вращаться рабочий диск. При этом по направлению вращения диска можно судить о правильности порядка следования фаз токов, проходящих по катушкам.

Универсальные приборы (портативные вольтамперфазоиндикаторы, универсальные фазоуказатели) .

Мегаомметры , представляющие собой переносные приборы, необходимые для измерения сопротивлений изоляции в широких диапазонах, что очень хорошо себя зарекомендовало при производстве фазировки.

Указатели напряжения для фазировки. Данные устройства хорошо подходят для фазировки электроустановок выше 1 кВ. При выполнении операции на отключённый аппарат (разъединитель, выключатель) на каждую сторону подаются фазируемые напряжения.

При этом, щупы прибора подносятся к токоведущим частям фазируемого аппарата, и дальше осуществляется наблюдение за свечением сигнальной лампы на устройстве.

Стоит учесть, что горение лампы говорит о несовпадении фаз, а отсутствие свечения лампочки – о согласованном включении и возможности включения коммутационного аппарата.

Методы фазировки . Эта операция может быть предварительной; выполняемой при монтаже и ремонте электрооборудования, и фазировкой непосредственно перед вводом в работу, осуществляемой перед первым включением оборудования, когда фазы могли быть переставлены местами.

Трехфазная цепь состоит из трех основных элементов: трехфазного генератора, линии передачи со всем необходимым оборудованием, приемников (потребителей). Напряжение между линейным проводом и нейтралью (Ua, Ub, Uc) называется фазным . Напряжение между двумя линейными проводами (UAB, UBC, UCA) называется линейным . Для соединения обмоток звездой, при симметричной нагрузке, справедливо соотношение между линейными и фазными токами и напряжениями:

14. Симметричный и несимметричный приемники в трехфазных цепях, векторные диаграммы.

.

Векторная диаграмма при соединении приемника звездой в случае симметричной нагрузки .

15. Ток в нейтральном проводе в трехфазных цепях. Нейтральный (нулевой рабочий) провод провод , соединяющий между собой нейтрали электроустановок в трёхфазных электрических сетях . При соединении обмоток генератора и приёмника электроэнергии по схеме «звезда» фазное напряжение зависит от подключаемой к каждой фазе нагрузки. В случае подключения, например, трёхфазного двигателя, нагрузка будет симметричной, и напряжение между нейтральными точками генератора и двигателя будет равно нулю. Однако, в случае, если к каждой фазе подключается разная нагрузка, в системе возникнет так называемое напряжение смещения нейтрали , которое вызовет несимметрию напряжений нагрузки. На практике это может привести к тому, что часть потребителей будет иметь пониженное напряжение, а часть повышенное. Пониженное напряжение приводит к некорректной работе подключённых электроустановок, а повышенное может, кроме этого, привести к повреждению электрооборудования или возникновению пожара . Соединение нейтральных точек генератора и приёмника электроэнергии нейтральным проводом позволяет снизить напряжение смещения нейтрали практически до нуля и выровнять фазные напряжения на приёмнике электроэнергии. Небольшое напряжение будет обусловлено только сопротивлением нулевого провода.

15 Вопрос Ток в нейтральном проводе в трехфазных цепях.

Трехфазные цепи с нейтральным проводе называют четерехпроводными цепями.

Обычно сопротивлением проводов не учитывается /

Тогда фазные напр. приемника будут равны фазн. напряжением генератора. .

При том что комплексные сопротивления равны , то токи определяются

В соответствии с 1 зак. Киргофа ток в нейтр. проводе

При симмет. напр.

При несим. напр.

Нейтр провод выравнивает фазные напряжения.

16 Режимы работы трехфазного премника.

Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.

Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии — линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи и равны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе . Если система фазных токов симметрична, то . Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А, В и С к нейтральной точке N; — фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

Отметим, что всегда — как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при осно. вании, равными 300), в этом случае

Обычно при расчетах принимается . Тогда для случая прямого чередования фаз , (при обратном чередовании фаз фазовые сдвиги у и меняются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору (его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряжений и получаем: ; .

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).

Для симметричной системы ЭДС имеем

.

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

В заключение отметим, что помимо рассмотренных соединений «звезда — звезда» и «треугольник — треугольник» на практике также применяются схемы «звезда — треугольник» и «треугольник — звезда».

Большинство трехфазных электродвигателей и других устройств учитывают такой параметр, как чередование фаз. На практике, несоответствие данного параметра изначальным настройкам может привести к различным аварийным ситуациям, некорректной работе электрических приборов и к травмированию персонала.

Что такое чередование фаз?

Под чередованием фаз следует понимать последовательность, в которой напряжение нарастает в каждой из них. Во всех трехфазных цепях напряжение представляет собой синусоидальную кривую. В каждой линии напряжение отличается на 120º от остальных.

Как видите, на рисунке 1, там где а) – показаны кривые напряжения во всех фазных проводах, смещенные на 120º. На соседнем рисунке б) изображена векторная диаграмма этих напряжений, На обоих рисунках показана разница между фазным и .

Если взять за основу, что из нулевой точки на рисунке а) выходит U­ A , то эта фаза является первой, на диаграмме б) наглядно стрелками показано, что очередность нарастания напряжения переходит от U­ A к U­ B , а за ним к U­ C . Это означает, что фазы чередуются в порядке A, B, C. Такой порядок чередования считается прямым.

Прямое и обратное чередование фаз

В трехфазной сети порядок чередования фаз может отличаться в зависимости от способов подключения к силовым трансформаторам на подстанциях, от последовательности включения обмоток генератора, из-за несоответствия выводов кабеля и по прочим причинам.


Рисунок 2: Прямая и обратная последовательность

Обратите внимание, цветовая маркировка определяет последовательность в соответствии их очередностью в алфавите по первым буквам цвета:

  • Желтый – первый;
  • Зеленый – второй;
  • Красный – третий.

На рисунке 2 изображен классический вариант прямой последовательности A – B – C (где A имеет желтый цвет и является первой, B – зеленый и является второй, а C – красный и является третей) и классический вариант обратной последовательности C – B – A. Но, помимо них на практике могут встречаться и другие варианты, прямого: B – C – A, C – A – B, и обратного чередования: A – C – B, B – A – C. Соответственно, в каждом из приведенных примеров чередование фаз будет начинаться с первой.

Зачем нужно учитывать порядок фаз?

Последовательность чередования играет значительную роль в таких ситуациях:

  • При параллельном включении в работу – ряд устройств (трансформаторы, генераторы и прочие электрические машины), могут соединяться в параллельную работу для повышения надежности системы или для обеспечения большего резерва мощности. Но, в случае неправильного подключения из-за соединения разноименных фаз произойдет .
  • При подключении трехфазного счетчика – так как его работа основана на совпадении фаз с соответствующими выводами прибора, то при нарушении правильности подключения может произойти сбой и самопроизвольное движение в отсутствии какой-либо нагрузки. Из-за чего такое подключение электросчетчика приведет к необходимости оплаты потребителем киловатт, которые он не расходовал.
  • При включении двигателя – следование фаз в сети определяет для электрической машины и направление вращения двигателя. В случае отсутствия правильной фазировки изменится и направление движения элементов, механически соединенных с ротором. Из-за чего может произойти нарушение технологического процесса или возникнуть угроза жизни персонала.

С целью предотвращения и других несовпадений, на практике выполняют проверку чередования и устанавливают защиту.

Как выполнить проверку?

Проверка может производиться несколькими способами. Целесообразность выбора того или другого варианта осуществляется в зависимости от параметров электрической сети и задач, которые необходимо решить. Так чередование можно узнать при помощи фазоуказателя, мегаомметра, мультиметра или по расцветке изоляции кабеля. Рассмотрите каждый из вариантов более подробно.

С помощью фазоуказателя

По принципу действия, фазоуказатель можно сравнить с обычным асинхронным двигателем. Рассмотрим в качестве примера наиболее распространенную модель фазоуказателя – ФУ-2 .


Рисунок 3: Принципиальная схема работы ФУ-2

Как видите на рисунке 3, у указателя последовательности фаз присутствуют три обмотки, которые подсоединяются к одноименным фазам в сети или устройстве. Между обмотками находится вращающийся ротор Р, который приводит в движение диск фазоуказателя Д.

На практике, после подсоединения к зажимам фазоуказателя соответствующих проводов, работник нажимает кнопку К, которая замыкает цепь обмоток. В зависимости от порядка чередования фаз, диск Д начнет вращаться по часовой или против часовой стрелки.

На самом приборе имеется стрелка, показывающая прямое чередование. Если при нажатии кнопки диск вращается в том же направлении, что и показано стрелкой, то эта трехфазная нагрузка имеет прямое чередование. Если диск начнет крутиться в противоположную от стрелки сторону, то чередование фаз обратное. Следует отметить, что этот прибор не способен определить, какая фаза на каком проводе находится, он может определить лишь порядок их чередования.

С помощью мегаомметра

Как один из способов прозвонки жил широко используется прибор для измерения сопротивления – мегаомметр.


Рис. 4: Прозвонка кабеля мегаомметром

Посмотрите на рисунок 4, для реализации такой схемы, вам понадобится отключить кабель от сети и от потребителя. При этом, с одного конца кабеля фазы поочередно соединяются с землей З, как и металлическая оболочка у бронированных кабелей. С другой стороны присоединяется мегаомметр М, один из зажимов которого заземляется, а второй поочередно подводится к каждой из фаз. На той, где мегаомметр покажет нулевое сопротивление, и будет одним проводом.

На концах одноименного провода устанавливается соответствующая маркировка. Недостатком такого способа прозвонки является большой объем трудозатрат. Так как каждая жила заземляется поочередно, после чего выполняется проверка. При этом на обоих концах кабеля должны устанавливаться ответственные сотрудники. Между ними должна обеспечиваться связь, для согласования действий и предупреждения подачи напряжения на работников.

По расцветке изоляции жил

Если в каком-либо устройстве имеется подключение разноцветными жилами, то фазировку оборудования можно выполнять по цветам. Для определения нахождения одноименных напряжений тех или иных фаз необходимо добраться до каждой жилы кабеля. Если на каждом проводе присутствует изоляция разных цветов, то сравнив их с местом присоединения к трансформатору или распедустройству, можно определить, где какая фаза находится.

Недостатком такого метода следует отметить ложную цветовую маркировку, так как производитель кабеля не всегда обеспечивает один и тот же цвет для каждой жилы на всей протяженности провода. Поэтому предварительно его все равно рекомендуется прозванивать и маркировать.

При помощи мультиметра

Для этого метода используется обычный мультиметр. Он наиболее актуален в тех ситуациях, когда необходимо включить в параллельную работу два смежных устройства и их шины расположены поблизости.


Рис. 5: фазировка мультиметром

Необходимо выполнить сравнение фазных напряжений в соседних линиях, на рисунке 5 приведен пример для фаз А и А1. Коммутационная аппаратура при этом должна быть разомкнута. Перед тем как пользоваться мультиметром, на нем выставляется класс напряжения, для линии, на которой будет производиться замер. Щупы подводятся к выводам фаз, при этом их изоляция должна обеспечивать защиту от напряжения, а на руки надеваются диэлектрические перчатки.

Если при подключении щупов к выводам A – A1 стрелка останется на нулевой отметке, то это значит, что фазы одинаковые. Если стрелка отклонится на величину линейного напряжения, вы меряете разноименные фазы.

Защита от нарушения порядка чередования

Для защиты электрического оборудования от неправильного чередования на практике применяется . Это реле настроено на работу двигателя или другого устройства в его прямом включении. Если из-за каких-то неполадок или неправильного подключения чередование нарушается, то трехфазное реле сразу отключит устройство. Его работа основана на анализе трехфазных токов и напряжений и последующем контроле этих параметров.

Подключение может выполняться через трансформаторы тока или напрямую, в зависимости от модели и класса напряжения в сети. Такая защита нашла широкое применение при подключении счетчиков индукционного типа, электрических машин и другого высокоточного оборудования.

Тематическое видео



Небольшое вступление

Попалась на глаза история о монтаже электрооборудования, а именно двух масляных трансформаторов. Работы были завершены успешно. В итоге имелась следующая схема электроснабжения. Собственно сами трансформаторы, вводные выключатели, секционные разъединители, две секции шин. Успешно, как считали монтажники, прошли пусконаладочные работы. Стали включать оба трансформатора на параллельную работу и получили . Естественно, монтажники утверждали, что произвели проверку чередования фаз с обоих источников и все совпадало. Но, о фазировке не было сказано ни слова. А зря! Теперь давайте разберемся подробно, что же пошло не так.

Что собой представляет чередование фаз?

Как известно, в трехфазной сети присутствует три разноименные фазы. Условно они обозначаются как А, В и С. Вспоминая теорию, можно говорить что синусоиды фаз смещены относительно друг друга на 120 градусов. Так вот всего может быть шесть разных порядков чередования, и все они делятся на два вида – прямое и обратное. Прямым чередованием считается следующий порядок – АВС, ВСА и САВ. Обратный порядок будет соответственно СВА, ВАС и АСВ.

Чтобы проверить порядок чередования фаз можно воспользоваться таким прибором, как фазоуказатель. О том, мы уже рассказывали. Конкретно рассмотрим последовательность проверки прибором ФУ 2.

Как выполнить проверку?

Сам прибор (предоставлен на фото ниже) представляет собой три обмотки и диск, который вращается при проверке. На нем нанесены черные метки, которые чередуются с белыми. Это сделано для удобства считывания результата. Работает прибор по принципу асинхронного двигателя.

Итак, подключаем на выводы прибора три провода от источника трехфазного напряжения. Нажимаем кнопку на приборе, которая расположена на боковой стенке. Увидим, что диск начал вращаться. Если он крутится по направлению нарисованной на приборе стрелки, значит, чередование фаз прямое и соответствует одному из вариантов порядка АВС, ВСА или САВ. Когда диск будет вращаться в противоположную стрелке сторону, можно говорить об обратном чередовании. В таком случае возможен один из таких трех вариантов – СВА, ВАС или АСВ.

Если возвращаться к истории с монтажниками, то все что они сделали – это лишь определение чередования фаз. Да, в обоих случаях порядок совпал. Однако нужно было еще проверить фазировку. А ее невозможно выполнить с помощью фазоуказателя. При включении были соединены разноименные фазы. Чтобы узнать где условно А, В и С, нужно было применить мультиметр или .

Мультиметром измеряется напряжение между фазами разных источников питания и если оно равно нулю, то фазы одноименные. Если же напряжение будет соответствовать линейному напряжению, то они разноименные. Это самый простой и действенный способ. Более подробно о том, вы можете узнать в нашей статье. Можно, конечно, воспользоваться осциллографом и смотреть по осциллограмме какая фаза от какой отстает на 120 градусов, но это нецелесообразно. Во-первых, так на порядок усложняется методика, и во-вторых такой прибор стоит немалых денег.

На видео ниже наглядно показывается, как проверить чередование фаз:

Когда нужно учитывать порядок?

Проверить чередование фаз нужно при эксплуатации трехфазных электродвигателей переменного тока. От порядка фаз будет меняться направление вращения двигателя, что иногда бывает очень важно, особенно если на участке находится много механизмов, использующих двигатели.

Также важно учитывать порядок следования фаз при подключении электросчетчика индукционного типа СА4. Если порядок будет обратный возможно такое явление как самопроизвольное движение диска на счетчике. Новые электронные счетчики, конечно, нечувствительны к чередованию фаз, но на их индикаторе появится соответствующее изображение.

Если имеется электрический силовой кабель, с помощью которого необходимо выполнить подключение трехфазной сети питания, и нужен контроль фазировки, выполнить его можно и без специальных приборов. Зачастую жилы внутри кабеля отличаются по цвету изоляции, что сильно упрощает процесс «прозвонки». Так, чтобы узнать где условно находится фаза А, В или С понадобится лишь . На двух концах мы увидим жилы одинакового цвета. Их мы и примем за одинаковые. Подробнее о вы можете узнать из нашей статьи.

Краткая историческая справка

Исторически первым явление вращающегося магнитного поля описал , и датой этого открытия принято считать 12 октября 1887 года, — момент подачи ученым заявок на патенты, касающиеся асинхронного двигателя и технологии передачи электроэнергии. 1 мая 1888 года в США, Тесла получит свои главные патенты — на изобретение многофазных электрических машин (в том числе на асинхронный электродвигатель) и на системы передачи электрической энергии посредством многофазного переменного тока.

Сутью новаторского подхода Тесла к данному вопросу явилось его предложение строить всю цепочку генерации, передачи, распределения и использования электроэнергии как единую многофазную систему переменного тока, включающую в себя и генератор, и линию передачи, и двигатель переменного тока, который Тесла называл тогда «индукционным».

На европейском континенте, параллельно изобретательской деятельности Тесла, аналогичную задачу решал Михаил Осипович Доливо-Добровольский, работа которого была направлена на оптимизацию способа широкомасштабного использования электроэнергии.

На основе технологии двухфазного тока Николы Тесла, Михаил Осипович самостоятельно разработал трёхфазную электрическую систему (как частный случай многофазной системы) и асинхронный электродвигатель совершенной конструкции — с ротором типа «беличья клетка». Патент на двигатель Михаил Осипович получит 8 марта 1889 года в Германии.

Симметричный приемник имеет одинаковые сопротивления в каждой из своих фаз. Напряжение между нейтральными точками равно нулю, сумма фазных напряжений равна нулю и ток в нейтральном проводнике равен нулю.

Таким образом для симметричного приемника соединенного «звездой» наличие нейтрали не влияет на его работу. Но соотношение между линейными и фазными напряжениями остаются в силе:

Несимметричный приемник, соединенный по схеме «звезда», в отсутствие нейтрального проводника будет обладать максимальным напряжением смещения нейтрали (проводимость нейтрали нулевая, сопротивление — бесконечность):

Максимальны в этом случае и искажения фазных напряжений приемника. Векторная диаграмма фазных напряжений источника, с построением напряжения нейтрали, отражает данный факт:

Очевидно, при изменении величин или характера сопротивлений приемника, величина напряжения смещения нейтрали варьируется в широчайших пределах, и нейтральная точка приемника на векторной диаграмме может располагаться в самых разных местах. При этом фазные напряжения приемника будут значительно различаться.

Вывод: симметричная нагрузка допускает удаление нейтрального провода без влияния на фазные напряжения у приемника; несимметричная нагрузка при удалении нейтрального проводника сразу ведет к устранению жесткой связи между напряжениями приемника и напряжениями фаз генератора, — на напряжения нагрузки влияют теперь только линейные напряжения генератора.

Несимметричная нагрузка приводит к несимметрии фазных напряжений на ней, и к смещению нейтральной точки дальше от центра треугольника векторной диаграммы.

Нейтральный провод поэтому необходим для выравнивания фазных напряжений приемника в условиях его несимметричности или при подключении к каждой из фаз однофазных приемников, рассчитанных на фазное, а не на линейное напряжение.

По этой же причине нельзя в цепь нейтрального провода устанавливать предохранитель, так как в случае разрыва нейтрального провода на фазных нагрузках возникнет тенденция .

Расчеты для «треугольника»

Теперь рассмотрим соединение фаз приемника по схеме «треугольник». На рисунке показаны выводы источника, причем нейтральный провод отсутствует, да и присоединять его здесь некуда. Задача при такой схеме соединения обычно заключается в том, чтобы вычислить фазные и линейные токи при известных напряжении источника и фазных сопротивлениях нагрузки.

Напряжения между линейными проводами — это и есть фазные напряжения при соединении нагрузки «треугольником». Исключая из рассмотрения сопротивления линейных проводов, линейные напряжения источника приравниваем к линейным напряжениям фаз потребителя. Фазные токи замыкаются по комплексным сопротивлениям нагрузки и по проводам.

За положительное направление фазного тока принимают направление соответствующее фазным напряжениям, от начала — к концу фазы, а для линейных токов — от источника — к приемнику. Токи в фазах нагрузки находятся по закону Ома:

Как определить фазу и ноль без приборов. 3 рабочих варианта | ASUTPP

Потребность в том, чтобы отличить фазный провод от нулевой шины возникает в ситуациях, когда проводятся работы по замене выключателей или установке розеток, например. От правильности определения нужного проводника в первую очередь зависит безопасность пользователя, поскольку любые ошибки в этом случае способны привести к непоправимым последствиям.

Это может быть не только выход из строя подключаемого прибора, но и поражение электрическим током или пожар, возникший из-за короткого замыкания в цепи. В ситуации, когда под рукой не оказалось нужного инструмента – пользователь может воспользоваться проверенными временем способами определения фазы без приборов.

1. Определение по маркировкеОпределение по маркировке

Согласно действующим нормативам ПУЭ каждый провод в современном кабеле должен иметь изоляционное покрытие соответствующей расцветки, а именно:

  • Фазный проводник помещается в изоляцию красного или коричневого цвета.
  • Жила в защитном покрытии синего цвета – это нулевой провод.
  • И, наконец, шина, имеющая изоляцию желто-зеленой раскраски – это заземляющий проводник.
Важно! Некоторые производители не придерживаются указанного порядка маркировки проводов, что вынуждает пользователей прибегать к другим методам их идентификации.

Кроме того, специалисты не советуют полностью полагаться на результаты визуального обследования жил домашней проводки, поскольку неопытный или рассеянный электрик мог подключить их без соблюдения правил.

2. Контрольная лампа

Существует еще один способ решения проблемы с подводящим напряжение электрическим жгутом, связанный с применением контрольной лампочки на 220 Вольт. Для выявления нужной жилы берется обычная лампа накаливания с двумя припаянными к ее цоколю и контактному пятачку проводниками (фото ниже).

Контролька

На ответных концах вспомогательных жил желательно зафиксировать разъемы типа «крокодилы», посредством которых удобно обустраивать любые соединения. Один из них прицепляется к хорошо залуженному держателю трубы отопления, а вторым производится поиск фазы. Если при присоединении вторым «крокодилом», помещенным в изоляцию, лампочка загорается – значит, этот провод будет фазным.

Обратите внимание: Перед коммутацией проводников напряжение с квартиры полностью снимается.

Подключать его можно только после того, как установлен надежный контакт между соединяемыми элементами. Хотя этот способ также достаточно прост, однако его применение не всегда безопасно, особенно – в городских квартирах, где фаза случайно может попасть на общий для подъезда стояк. В частных домах можно действовать без опаски, поскольку в качестве нулевой шины в этом случае можно использовать отвод от заземляющего контура.

3. Индикаторная отвертка

В хозяйстве любого запасливого хозяина должна иметься индикаторная отвертка, воспользовавшись которой удается легко распознать фазный провод.

При обращении с этим инструментом необходимо придерживаться следующих простых правил:

  • Очень важно чтобы отвертка была исправна, то есть действительно показывала наличие фазы.
  • Для этого ее следует заранее проверить на нагрузке, включенное состояние которой различается визуально (на настольной лампе, например).
  • При прикосновении к фазному контакту встроенная в нее неоновая лампочка начинает слабо светиться (фото ниже).
  • При введении жала в «земляную» клемму индикатор гореть не будет.
Использование индикаторной отвертки
Обратите внимание: Свечение появится только в том случае, если проверяющий приложит большой палец к специальной контактной площадке из металла.

Также важно отметить, что проводить проверку не рекомендуется при ярком солнечном свете, не позволяющем различить слабое свечение неонки.

Как проверить заземление в розетке мультиметром, как найти фазу и ноль

В старых домах еще сохранились двухклеммные розетки. В этом случае проверить устройство можно просто с помощью тестера фазы. Нужно взять тестер (индикаторную отвертку), вставить его в любой разъем розетки. Приложить палец к металлическому колпачку на рукоятке. Когда неоновая лампочка загорится, она тем самым покажет «фазу». Вторая клемма должна быть нулевой. Но так случается не всегда.

Расцветка, индикаторная отвертка или мультиметр

Самый простой способ проверить заземление, это обратить внимание на цвет изоляции.

У заземляющего провода она должна быть желтой с зелеными полосами, а у нулевого светло-синей. Но не всегда это требование выполняется.

В некоторых домах старой постройки электропроводка сделана отдельными проводниками. Если хозяину пришлось проводить изменения в распределительной коробке, то вполне возможен вариант, когда на розетку приходят только два фазных или нулевых проводника. Поэтому необходимо проверить оба гнезда. При касании нуля неоновая лампочка на индикаторе напряжения не должна загораться.

В современных зданиях используются трехклеммные розетки. На нее приходят фазовый, нулевой и заземляющий проводники. Контакты должны соответствовать своему функциональному назначению.

Иначе, возможны несчастные случаи при использовании стиральной машины или бойлера. Поэтому возникают вопросы, как проверить заземление в розетке, чтобы избежать ошибок при монтаже и спокойно, без страха пользоваться своими приборами.

Индикаторная отвертка гарантированно определяет только фазу. Отличить ноль от земли она не может. Маленькой наводки недостаточно для загорания неоновой лампочки. Тогда найдем фазу и ноль мультиметром или вольтметром.

Варианты показания мультиметра

Любой прибор, индикаторную отвертку или тестер, необходимо проверить на работоспособность и только после этого применять. Изоляция должна быть целой, без трещин и разрывов. Острие щупа должно отделяться от держателя диэлектрической шайбой, для защиты от случайных прикосновений.

Корпус измерительного устройства должен быть целым. Перед замером штекеры вставляются в гнезда прибора, которые соответствует измерению переменного напряжения. Убедившись в исправности устройства, нужно перевести его в режим измерения переменного напряжения со шкалой 750 V. Это необходимо на случай измерения линейного напряжения, когда по ошибке на розетку завели две фазы.

Этот способ проверки розетки годится, если проверяющий уверен, что заземляющий контакт действительно земля. Тогда стоит задача найти ноль. Один щуп касается заземляющего контакта, а второй вставляется в любое гнездо розетки. Могут быть следующие варианты:

  • прибор показывает 220 V, значит контакт фазовый;
  • если 0 или единицы вольт, то это нулевой провод.

Если мультиметр относительно заземляющего показывает 0 вольт на гнездовых контактах, значит все они где-то замкнуты между собой.

Показания в несколько вольт говорят, что это ноль. Но как определить ноль, когда дом снабжается электричеством по системе энергоснабжения TN — C и повторным заземлением рядом со зданием? Ведь и в этом случае будут нулевые показания прибора.

Чтобы убедиться, что данный проводник нулевой, нужно отключить заземление в подъездном электрическом щите. Затем замерить напряжение между гнездовыми контактами розетки. Прибор показывает 220 V – найден ноль розетки. Мультиметр ничего не показывает – найдено заземление.

При показаниях прибора 220 V на каждом контакте относительно заземляющего, нужно произвести дополнительное измерение между двумя гнездами розетки. Прибор показывает 0, значит, одна фаза заведена на оба гнезда. В противном случае прибор покажет 380 V, что означает присутствие на розетке двух фаз.

Определение назначения проводников

При работе с электропроводкой обязательно нужно перепроверять назначения проводников розетки. Нет никакой гарантии, что электрик или предыдущий владелец помещения не перепутал провода. Поэтому, если тестер показывает напряжение 220 V относительно клеммы по внешнему виду являющейся заземляющей, это не значит, что она таковой и является.

Это значит, что один из контактов является фазой, а второй нулем или землей. Если тестер покажет 0, то здесь присутствуют нулевой и заземляющий проводник. Точно понять, что есть что, невозможно.

При отсутствии стопроцентной уверенности в назначении заземляющей клеммы розетки действуют иначе. Сначала нужно исключить наличие двух фаз. Проверяем напряжение между всеми контактами. Если прибор 380 V нигде не показывает, а только 220, значит, к розетке подведен один фазный проводник. Теперь нужно приступить к поиску заземления.

Сначала надо отключить заземляющий проводник в этажном щитке. Он присоединен через болтовое соединение к специальной шине, приваренной к корпусу электрического щита.

После этого замеряется напряжение между гнездовыми коннекторами.

Если прибор показывает 220 V, значит гнездовые контакты – это фазный и нулевой провод, а заземляющая клемма действительно таковой является. Теперь зная точно, где находится земля, можно определить остальные коннекторы, но предварительно нужно обратно присоединить «землю» к шине заземления.

Проводим измерение напряжения относительно земляной клеммы. Одно гнездо показывает 220 V – это фаза, второе – 0, то это нулевой контакт.

Если мультиметр показывает 0, значит, земля была присоединена к одному из гнездовых контактов, а второй является нулевым или фазным. Теперь измерения проводим между гнездовым и заземляющим контактом розетки. Если напряжение отсутствует, значит, это гнездо и есть настоящее заземление.

Показания в 220 V говорят сами за себя.

Проверка электропроводки

Проверка заземления электропроводки происходит примерно так же, как с розеткой. Для измерения параметров сети понадобятся мультиметр трехфазный или однофазный, а также индикаторная отвертка.

При ремонте электропроводки и подключении стиральной машины, электрического обогревателя, плиты, духовки и других приборов приходится менять кабели и соединения в распределительных коробках. В этом случае нужно выяснить назначение каждого проводника, необходимо проверить наличие заземления в нужных местах.

Вначале нужно отключить входной автомат на этажном щите. Затем вскрыть распределительную коробку. Развести провода в разные стороны, чтобы они не соприкасались между собой, и снять изоляцию в местах соединения.

После этого входной автомат включается. Индикаторной отверткой находятся фазные провода. Они могут принадлежать одной, двум или трем фазам.

При наличии трехфазного мультиметра, можно сразу проверить состояние сети. Однофазным мультиметром определение количества фаз происходит дольше. К примеру, если напряжения между тремя проводами составляют по 0 вольт, то это фазные провода от одной фазы.

Если прибор показывает напряжение между двумя проводами 380 V, а между двумя другими 0, то две фазы. При напряжении 380 V между всеми проводниками можно говорить о наличии трех фаз.

Определение заземления происходит, как и в случае с розеткой, только здесь проводов будет больше. Сначала отключается заземляющий провод в этажном щитке. Затем один щуп мультиметра цепляется за фазовый провод, а второй за проводник пока неизвестного назначения.

Если прибор покажет напряжение 220 V – этот провод нулевой, если ноль, то это и есть земля.

Дальше отключают входной автомат. Присоединяется заземляющий провод. Когда проверка закончена, выполняется правильное подсоединение всех элементов электросети, места соединений изолируются, коробка закрывается. Автомат защиты включается.

Основы фазовых переходов — Chemistry LibreTexts

Фазовый переход — это переход вещества из твердого, жидкого или газообразного состояния в другое состояние. Каждый элемент и вещество могут переходить из одной фазы в другую при определенной комбинации температуры и давления.

Изменения фаз

У каждого вещества есть три фазы, в которые оно может превращаться; твердое, жидкое или газообразное (1) . Каждое вещество при определенных температурах находится в одной из этих трех фаз.Температура и давление, при которых вещество будет изменяться, очень зависят от межмолекулярных сил, действующих на молекулы и атомы вещества (2) . В одном контейнере одновременно могут сосуществовать две фазы. Обычно это происходит, когда вещество переходит из одной фазы в другую. Это называется двухфазным состоянием (4) . В примере с таянием льда, когда лед тает, в чашке есть как твердая вода, так и жидкая вода.

Существует шесть способов изменения вещества между этими тремя фазами; плавление, замораживание, испарение, конденсация, сублимация и осаждение (2) . Эти процессы обратимы, и каждый переносится между фазами по-разному:

  • Плавление: переход от твердой фазы к жидкой
  • Замораживание: переход из жидкой фазы в твердую
  • Испарение: переход из жидкой фазы в газовую
  • Конденсация: переход из газовой фазы в жидкую
  • Сублимация: переход из твердой фазы в газовую
  • Осаждение: переход из газовой фазы в твердую

Как работает фазовый переход

При рассмотрении фазового перехода следует учитывать две переменные: давление (P) и температуру (T).2} \ right) \ left (V-nb \ right) = nRT \]

Где V — объем, R — газовая постоянная, а n — количество молей газа.

Закон идеального газа предполагает, что никакие межмолекулярные силы никак не влияют на газ, в то время как уравнение Ван-дер-Ваальса включает две константы, a и b, которые учитывают любые межмолекулярные силы, действующие на молекулы газа.

Температура

Температура может изменять фазу вещества. Один из распространенных примеров — положить воду в морозильную камеру, чтобы превратить ее в лед.На картинке выше у нас есть твердое вещество в контейнере. Когда мы помещаем его на источник тепла, например на горелку, тепло передается веществу, увеличивая кинетическую энергию молекул вещества. Температура повышается до тех пор, пока вещество не достигнет точки плавления (2) . По мере того, как все больше и больше тепла передается за пределы точки плавления, вещество начинает плавиться и превращаться в жидкость (3) . Этот тип фазового перехода называется изобарическим процессом, потому что давление в системе остается на постоянном уровне.

Температура плавления (T
f )

У каждого вещества есть точка плавления. Точка плавления — это температура, при которой твердое вещество становится жидкостью. При разном давлении требуется разная температура для плавления вещества. Каждый чистый элемент в периодической таблице имеет нормальную точку плавления, температуру, при которой элемент станет жидким при давлении 1 атмосфера (2) .

Точка кипения (T
b )

У каждого вещества также есть точка кипения.Точка кипения — это температура, при которой жидкость превратится в газ. Точка кипения будет меняться в зависимости от температуры и давления. Как и точка плавления, каждый чистый элемент имеет нормальную точку кипения, равную 1 атмосфере (2) .

Давление

Давление также можно использовать для изменения фазы вещества. На картинке выше у нас есть контейнер, снабженный поршнем, который герметично закрывает газ. Когда поршень сжимает газ, давление увеличивается. По достижении точки кипения газ конденсируется в жидкость.По мере того как поршень продолжает сжимать жидкость, давление будет увеличиваться до тех пор, пока не будет достигнута точка плавления. Затем жидкость замерзнет и превратится в твердое вещество. Этот пример относится к изотермическому процессу, в котором температура постоянна, а изменяется только давление.

Краткое объяснение фазовой диаграммы

Фазовый переход можно представить в виде фазовой диаграммы. Фазовая диаграмма — это визуальное представление того, как вещество меняет фазы.

Это пример фазовой диаграммы.Часто, когда вас спрашивают о фазовом переходе, вам нужно будет обратиться к фазовой диаграмме, чтобы ответить на него. На этих диаграммах обычно отмечены нормальная точка кипения и нормальная точка плавления, а по оси ординат — значения давления, а по оси абсцисс — температуры. Нижняя кривая отмечает комбинации температуры и давления, при которых вещество будет сублимировать (1) . Слева слева отмечены комбинации температуры и давления, при которых вещество будет плавиться (1) .Наконец, правая линия отмечает условия, при которых вещество будет испаряться (1) .

Список литературы

  1. Оландер, Дональд Р. Общая термодинамика . Бока-Ратон: CRC, 2008.
  2. Окстоби, Дэвид У., Х. П. Гиллис и Алан Кэмпион. «Фаза перехода.» Основы современной химии . 6-е изд. Сингапур: Томсон / Брукс / Коул, 2008. 428-30.
  3. Шмидт, Филип С. Термодинамика: интегрированная система обучения .Хобокен, Нью-Джерси: Уайли, 2006.
  4. Шервин, Кит. Введение в термодинамику . Лондон: Chapman & Hall, 1994.
  5. .

Проблемы

1. Используя приведенную ниже диаграмму состояния диоксида углерода, объясните, в какой фазе диоксид углерода обычно находится при стандартной температуре и давлении, 1 атм и 273,15 К.

Фазовая диаграмма для CO2. Из Википедии.

2: Глядя на ту же диаграмму, мы видим, что диоксид углерода не имеет нормальной температуры плавления или нормальной температуры кипения.Объясните, какое изменение вызывает углекислый газ при давлении 1 атм, и оцените температуру в этой точке.

Решения

1: Прежде чем мы сможем полностью ответить на вопрос, нам нужно преобразовать данную информацию, чтобы она соответствовала единицам на диаграмме. Сначала мы конвертируем 25 градусов Кельвина в Цельсия: \ (K = 273,15 + C \) \ [298.15-273.25C \] Теперь мы можем посмотреть на диаграмму и определить ее фазу. При 25 градусах Цельсия и 1 атм углекислый газ находится в газовой фазе.

2: Углекислый газ сублимируется при давлении 1 атм, потому что он переходит из твердой фазы непосредственно в газовую фазу.Температура сублимации при 1 атм составляет около -80 градусов по Цельсию.

Авторы и авторство

  • Кирстен Амдал (Калифорнийский университет в Дэвисе)

10.4 Фазовые диаграммы — Химия

Цели обучения

К концу этого раздела вы сможете:

  • Объясните устройство и использование типовой фазовой диаграммы
  • Используйте фазовые диаграммы для определения стабильных фаз при заданных температурах и давлениях и для описания фазовых переходов, возникающих в результате изменения этих свойств
  • Опишите сверхкритическую жидкую фазу вещества

В предыдущем модуле было описано изменение равновесного давления пара жидкости в зависимости от температуры.Учитывая определение точки кипения, графики зависимости давления пара от температуры показывают, как точка кипения жидкости изменяется с давлением. Также было описано использование кривых нагрева и охлаждения для определения точки плавления (или замерзания) вещества. Выполнение таких измерений в широком диапазоне давлений дает данные, которые могут быть представлены графически в виде фазовой диаграммы. Фазовая диаграмма объединяет графики зависимости давления от температуры для равновесия фазового перехода жидкость-газ, твердое тело-жидкость и твердое тело-газ для вещества.Эти диаграммы показывают физические состояния, которые существуют при определенных условиях давления и температуры, а также обеспечивают зависимость от давления температур фазовых переходов (точки плавления, точки сублимации, точки кипения). Типичная фазовая диаграмма чистого вещества показана на рисунке 1.

Рис. 1. Физическое состояние вещества и температуры его фазовых переходов графически представлены на фазовой диаграмме.

Чтобы проиллюстрировать полезность этих графиков, рассмотрим фазовую диаграмму для воды, показанную на рисунке 2.

Рис. 2. Оси давления и температуры на этой фазовой диаграмме воды нанесены не в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Мы можем использовать фазовую диаграмму для определения физического состояния образца воды при заданных условиях давления и температуры. Например, давление 50 кПа и температура -10 ° C соответствуют области диаграммы, обозначенной «лед». В этих условиях вода существует только в твердом виде (лед).Области «воды» соответствуют давление 50 кПа и температура 50 ° C — здесь вода существует только в виде жидкости. При 25 кПа и 200 ° C вода существует только в газообразном состоянии. Обратите внимание, что на фазовой диаграмме H 2 O оси давления и температуры не приведены в постоянном масштабе, чтобы можно было проиллюстрировать некоторые важные особенности, как описано здесь.

Кривая BC на рисунке 2 представляет собой график зависимости давления пара от температуры, как описано в предыдущем модуле этой главы.Эта кривая «жидкость-пар» разделяет жидкую и газообразную области на фазовой диаграмме и обеспечивает точку кипения воды при любом давлении. Например, при 1 атм температура кипения составляет 100 ° C. Обратите внимание, что кривая жидкость-пар заканчивается при температуре 374 ° C и давлении 218 атм, что указывает на то, что вода не может существовать как жидкость выше этой температуры, независимо от давления. По физическим свойствам вода в этих условиях занимает промежуточное положение между ее жидкой и газообразной фазами.Это уникальное состояние вещества называется сверхкритической жидкостью, и эта тема будет описана в следующем разделе этого модуля.

Кривая твердое тело-пар, обозначенная AB на рисунке 2, показывает температуры и давления, при которых лед и водяной пар находятся в равновесии. Эти пары данных температура-давление соответствуют точкам сублимации или осаждения воды. Если бы мы могли увеличить масштаб линии твердое тело — газ на рисунке 2, мы бы увидели, что лед имеет давление пара около 0,20 кПа при -10 ° C.Таким образом, если мы поместим замороженный образец в вакуум с давлением менее 0,20 кПа, лед возгонится. Это основа для процесса «сублимационной сушки», который часто используется для консервирования пищевых продуктов, таких как мороженое, показанное на Рисунке 3.

Рис. 3. Лиофилизированные продукты, такие как это мороженое, обезвоживаются путем сублимации при давлениях ниже тройной точки для воды. (кредит: ʺlwaoʺ / Flickr)

Кривая твердого вещества-жидкости, обозначенная BD, показывает температуру и давление, при которых лед и жидкая вода находятся в равновесии, представляя точки плавления / замерзания воды.Обратите внимание, что эта кривая имеет небольшой отрицательный наклон (сильно преувеличенный для ясности), что указывает на то, что точка плавления воды немного снижается с увеличением давления. Вода — необычное вещество в этом отношении, так как большинство веществ демонстрируют повышение температуры плавления с увеличением давления. Такое поведение частично отвечает за движение ледников, как показано на рисунке 4. Дно ледника испытывает огромное давление из-за своего веса, который может растопить часть льда, образуя слой жидкой воды, на котором ледник может легче скользить.

Рис. 4. Огромное давление под ледниками приводит к частичному таянию, в результате чего образуется слой воды, обеспечивающий смазку, способствующую движению ледников. На этом спутниковом снимке показан приближающийся край ледника Перито-Морено в Аргентине. (предоставлено NASA)

Точка пересечения всех трех кривых обозначена буквой B на рисунке 2. При давлении и температуре, представленных этой точкой, все три фазы воды сосуществуют в равновесии. Эта пара данных температура-давление называется тройной точкой .При давлениях ниже тройной точки вода не может существовать в виде жидкости независимо от температуры.

Пример 1

Определение состояния воды
Используя фазовую диаграмму для воды, приведенную на рисунке 2, определите состояние воды при следующих температурах и давлениях:

(а) −10 ° C и 50 кПа

(б) 25 ° C и 90 кПа

(c) 50 ° C и 40 кПа

(d) 80 ° C и 5 кПа

(e) −10 ° C и 0,3 кПа

(f) 50 ° C и 0.3 кПа

Раствор
Используя фазовую диаграмму для воды, мы можем определить, что состояние воды при каждой заданной температуре и давлении следующее: (а) твердое; (б) жидкость; (c) жидкость; (г) газ; (д) твердые; (е) газ.

Проверьте свои знания
Какие фазовые изменения могут претерпевать вода при изменении температуры, если давление поддерживается на уровне 0,3 кПа? Если давление удерживается на уровне 50 кПа?

Ответ:

При 0,3 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {g} [/ latex] при –58 ° C.При 50 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {l} [/ latex] при 0 ° C, [латекс] \ text {l} \; {\ longrightarrow} \; \ text {g} [/ latex] при 78 ° C

Рассмотрим фазовую диаграмму для диоксида углерода, показанную на рисунке 5, в качестве другого примера. Кривая твердое тело-жидкость имеет положительный наклон, что указывает на то, что температура плавления CO 2 увеличивается с давлением, как и для большинства веществ (вода является заметным исключением, как описано ранее). Обратите внимание, что тройная точка намного выше 1 атм, что указывает на то, что диоксид углерода не может существовать в виде жидкости в условиях атмосферного давления.Вместо этого охлаждение газообразного диоксида углерода до 1 атм приводит к его осаждению в твердом состоянии. Точно так же твердый диоксид углерода не плавится при давлении 1 атм, а вместо этого сублимируется с образованием газообразного CO 2 . Наконец, обратите внимание, что критическая точка для углекислого газа наблюдается при относительно умеренных температуре и давлении по сравнению с водой.

Рис. 5. Оси давления и температуры на этой фазовой диаграмме диоксида углерода не приведены в постоянном масштабе, чтобы проиллюстрировать несколько важных свойств.

Пример 2

Определение состояния диоксида углерода
Используя фазовую диаграмму для диоксида углерода, показанную на рисунке 5, определите состояние CO 2 при следующих температурах и давлениях:

(а) −30 ° C и 2000 кПа

(б) −60 ° C и 1000 кПа

(c) −60 ° C и 100 кПа

(d) 20 ° C и 1500 кПа

(e) 0 ° C и 100 кПа

(f) 20 ° C и 100 кПа

Раствор
Используя приведенную фазовую диаграмму для диоксида углерода, мы можем определить, что состояние CO 2 при каждой заданной температуре и давлении следующее: (a) жидкость; (б) твердые; (c) газ; (г) жидкость; е) газ; (е) газ.

Проверьте свои знания
Определите фазовые изменения, которым углекислый газ претерпевает при изменении его температуры, таким образом поддерживая его давление постоянным на уровне 1500 кПа? При 500 кПа? При каких примерных температурах происходят эти фазовые переходы?

Ответ:

при 1500 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {l} [/ latex] при -45 ° C, [латекс] \ text {l} \; {\ longrightarrow} \; \ text {g} [/ latex] при –10 ° C;

при 500 кПа: [латекс] \ text {s} \; {\ longrightarrow} \; \ text {g} [/ latex] при –58 ° C

Если мы поместим образец воды в герметичный контейнер при температуре 25 ° C, удалим воздух и позволим установиться равновесию испарения и конденсации, у нас останется смесь жидкой воды и водяного пара с давлением 0.03 атм. Четко прослеживается четкая граница между более плотной жидкостью и менее плотным газом. По мере увеличения температуры давление водяного пара увеличивается, как это описано кривой жидкость-газ на фазовой диаграмме для воды (рис. 2), и сохраняется двухфазное равновесие жидкой и газообразной фаз. При температуре 374 ° C давление пара повысилось до 218 атм, и любое дальнейшее повышение температуры приводит к исчезновению границы между жидкой и паровой фазами.Вся вода в контейнере теперь находится в одной фазе, физические свойства которой являются промежуточными между газообразным и жидким состояниями. Эта фаза вещества называется сверхкритической жидкостью , а температура и давление, выше которых существует эта фаза, являются критической точкой (рис. 6). Выше критической температуры газ не может быть сжижен независимо от того, какое давление приложено. Давление, необходимое для сжижения газа при его критической температуре, называется критическим давлением.Критические температуры и критические давления некоторых распространенных веществ приведены в таблице 6.

Вещество Критическая температура (K) Критическое давление (атм.)
водород 33,2 12,8
азот 126,0 33,5
кислород 154,3 49,7
диоксид углерода 304.2 73,0
аммиак 405,5 111,5
диоксид серы 430,3 77,7
вода 647,1 217,7
Таблица 6.
Рис. 6. (a) Герметичный контейнер с жидким диоксидом углерода немного ниже его критической точки нагревается, что приводит к (b) образованию сверхкритической жидкой фазы.Охлаждение сверхкритической жидкости снижает ее температуру и давление ниже критической точки, что приводит к восстановлению отдельных жидких и газообразных фаз (c и d). Цветные поплавки показывают разницу в плотности между жидким, газообразным и сверхкритическим состояниями текучей среды. (кредит: модификация работы «mrmrobin» / YouTube)

Наблюдайте за переходом из жидкости в сверхкритическую для диоксида углерода.

Подобно газу, сверхкритическая жидкость будет расширяться и заполнять контейнер, но ее плотность намного больше, чем типичная плотность газа, обычно близкая к плотности жидкости.Подобно жидкостям, эти жидкости способны растворять нелетучие растворенные вещества. Однако они практически не проявляют поверхностного натяжения и обладают очень низкой вязкостью, поэтому они могут более эффективно проникать в очень маленькие отверстия в твердой смеси и удалять растворимые компоненты. Эти свойства делают сверхкритические жидкости чрезвычайно полезными растворителями для широкого спектра применений. Например, сверхкритический диоксид углерода стал очень популярным растворителем в пищевой промышленности, который используется для удаления кофеина из кофе, удаления жиров из картофельных чипсов и экстракции вкусовых и ароматических соединений из цитрусовых масел.Это нетоксично, относительно недорого и не считается загрязняющим веществом. После использования CO 2 можно легко восстановить, снизив давление и собрав образовавшийся газ.

Пример 3

Критическая температура углекислого газа
Если мы встряхнем углекислый огнетушитель в прохладный день (18 ° C), мы услышим, как внутри цилиндра плещется жидкий CO 2 . Однако в жаркий летний день (35 ° C) в этом же цилиндре нет жидкости.Объясните эти наблюдения.

Раствор
В прохладный день температура CO 2 ниже критической температуры CO 2 , 304 K или 31 ° C (Таблица 6), поэтому жидкий CO 2 присутствует в цилиндр. В жаркий день температура CO 2 превышает его критическую температуру 31 ° C. Выше этой температуры никакое давление не может привести к сжижению CO 2 , поэтому в огнетушителе нет жидкого CO 2 .

Проверьте свои знания
Аммиак можно сжижить путем сжатия при комнатной температуре; кислород не может быть сжижен в этих условиях. Почему два газа ведут себя по-разному?

Ответ:

Критическая температура аммиака составляет 405,5 К, что выше комнатной температуры. Критическая температура кислорода ниже комнатной; таким образом кислород нельзя сжижать при комнатной температуре.

Кофе без кофеина с использованием сверхкритического CO

2

Кофе — второй по популярности товар в мире после нефти.Во всем мире люди любят кофе за аромат и вкус. Многие из нас также зависят от одного компонента кофе — кофеина — который помогает нам двигаться утром или оставаться бодрым днем. Но в конце дня стимулирующий эффект кофе может помешать вам уснуть, поэтому вы можете пить кофе без кофеина вечером.

С начала 1900-х годов для обеззараживания кофе использовалось множество методов. У всех есть свои преимущества и недостатки, и все они зависят от физических и химических свойств кофеина.Поскольку кофеин представляет собой несколько полярную молекулу, он хорошо растворяется в воде, полярной жидкости. Однако, поскольку многие из более чем 400 соединений, которые влияют на вкус и аромат кофе, также растворяются в H 2 O, процессы декофеинизации горячей водой также могут удалять некоторые из этих соединений, что отрицательно сказывается на запахе и вкусе кофе без кофеина. Дихлорметан (CH 2 Cl 2 ) и этилацетат (CH 3 CO 2 C 2 H 5 ) имеют сходную полярность с кофеином и поэтому являются очень эффективными растворителями для экстракции кофеина, но оба также удаляют некоторые компоненты вкуса и аромата, а их использование требует длительного времени экстракции и очистки.Поскольку оба эти растворителя токсичны, высказывались опасения по поводу воздействия остаточного растворителя, остающегося в кофе без кофеина.

Сверхкритическая флюидная экстракция с использованием диоксида углерода в настоящее время широко используется как более эффективный и экологически безопасный метод удаления кофеина (рис. 7). При температурах выше 304,2 К и давлениях выше 7376 кПа CO 2 представляет собой сверхкритическую жидкость, обладающую свойствами как газа, так и жидкости. Как газ, он проникает глубоко в кофейные зерна; как жидкость, он эффективно растворяет определенные вещества.Сверхкритическая экстракция углекислым газом из пропаренных кофейных зерен удаляет 97-99% кофеина, оставляя неизменными вкусовые и ароматические соединения кофе. Поскольку CO 2 представляет собой газ в стандартных условиях, его удаление из экстрагированных кофейных зерен легко осуществляется, как и извлечение кофеина из экстракта. Кофеин, полученный из кофейных зерен с помощью этого процесса, является ценным продуктом, который впоследствии можно использовать в качестве добавки к другим продуктам питания или лекарствам.

Рисунок 7. (a) Молекулы кофеина имеют как полярные, так и неполярные области, что делает его растворимым в растворителях различной полярности. (b) На схеме показан типичный процесс удаления кофеина с участием сверхкритического диоксида углерода.

Условия температуры и давления, при которых вещество находится в твердом, жидком и газообразном состояниях, суммированы на фазовой диаграмме для этого вещества. Фазовые диаграммы представляют собой комбинированные графики трех кривых равновесия давления-температуры: твердое тело-жидкость, жидкость-газ и твердое тело-газ.Эти кривые представляют отношения между температурами фазовых переходов и давлениями. Точка пересечения всех трех кривых представляет тройную точку вещества — температуру и давление, при которых все три фазы находятся в равновесии. При давлениях ниже тройной точки вещество не может существовать в жидком состоянии независимо от его температуры. Конец кривой жидкость-газ представляет собой критическую точку вещества, давление и температуру, выше которых жидкая фаза не может существовать.

Упражнения по химии в конце главы

  1. По фазовой диаграмме воды (рисунок 2) определите состояние воды при:

    (а) 35 ° C и 85 кПа

    (б) −15 ° C и 40 кПа

    (c) −15 ° C и 0,1 кПа

    (d) 75 ° C и 3 кПа

    (e) 40 ° C и 0,1 кПа

    (f) 60 ° C и 50 кПа

  2. Какие фазовые изменения произойдут, когда вода подвергнется воздействию переменного давления при постоянной температуре 0,005 ° C? При 40 ° C? При -40 ° С?
  3. Скороварки позволяют готовить пищу быстрее, поскольку более высокое давление внутри скороварки увеличивает температуру кипения воды.В конкретной скороварке есть предохранительный клапан, который настроен на выпуск пара, если давление превышает 3,4 атм. Какая приблизительная максимальная температура может быть достигнута внутри этой скороварки? Объясните свои рассуждения.
  4. По фазовой диаграмме диоксида углерода на рисунке 5 определите состояние CO 2 при:

    (a) 20 ° C и 1000 кПа

    (б) 10 ° C и 2000 кПа

    (c) 10 ° C и 100 кПа

    (г) −40 ° C и 500 кПа

    (e) −80 ° C и 1500 кПа

    (f) −80 ° C и 10 кПа

  5. Определить фазовые изменения, которым подвергается углекислый газ при изменении давления, если температура поддерживается на уровне –50 ° C? Если поддерживать температуру -40 ° C? При 20 ° C? (См. Фазовую диаграмму на рисунке 5.)
  6. Рассмотрим баллон, содержащий смесь жидкого диоксида углерода, находящегося в равновесии с газообразным диоксидом углерода, при начальном давлении 65 атм и температуре 20 ° C. Нарисуйте график, изображающий изменение давления в цилиндре со временем, когда газообразный диоксид углерода выделяется при постоянной температуре.
  7. Сухой лед, CO 2 ( s ), не тает при атмосферном давлении. Он сублимируется при температуре −78 ° C. При каком минимальном давлении CO 2 ( s ) расплавится с образованием CO 2 ( l )? Примерно при какой температуре это произойдет? (См. Диаграмму фазы на рисунке 5.)
  8. Если сильный шторм приводит к отключению электричества, возможно, потребуется использовать веревку для белья для сушки белья. Во многих частях страны в разгар зимы одежда быстро замерзает, если ее повесить на веревке. Если не пойдет снег, они все равно высохнут? Поясните свой ответ.
  9. Можно ли сжижать азот при комнатной температуре (около 25 ° C)? Можно ли сжижать диоксид серы при комнатной температуре? Объясни свои ответы.
  10. Элементарный углерод имеет одну газовую фазу, одну жидкую фазу и две разные твердые фазы, как показано на фазовой диаграмме:

    (a) На фазовой диаграмме отметьте газовую и жидкую области.

    (б) Графит — наиболее стабильная фаза углерода при нормальных условиях. На фазовой диаграмме обозначьте графитовую фазу.

    (c) Если графит при нормальных условиях нагревается до 2500 K, а давление повышается до 10 10 Па, он превращается в алмаз. Обозначьте алмазную фазу.

    (d) Обведите каждую тройную точку на фазовой диаграмме.

    (e) В какой фазе находится углерод при 5000 К и 10 8 Па?

    (f) Если температура образца углерода повышается с 3000 K до 5000 K при постоянном давлении 10 6 Па, какой фазовый переход происходит, если он есть?

Глоссарий

критическая точка
температура и давление, выше которых газ не может конденсироваться в жидкость
фазовая диаграмма
График давление-температура, обобщающий условия, при которых могут существовать фазы вещества
сверхкритическая жидкость
вещество при температуре и давлении выше его критической точки; обладает промежуточными свойствами между газообразным и жидким состояниями
тройная точка
температура и давление, при которых паровая, жидкая и твердая фазы вещества находятся в равновесии

Решения

Ответы на упражнения в конце главы по химии

2.При низком давлении и 0,005 ° C вода представляет собой газ. Когда давление увеличивается до 4,6 торр, вода становится твердой; по мере увеличения давления он становится жидкостью. При 40 ° C вода при низком давлении представляет собой пар; при давлениях выше примерно 75 торр он превращается в жидкость. При -40 ° C вода переходит из газа в твердое тело, когда давление увеличивается выше очень низких значений.

4. (а) жидкость; (б) твердые; (c) газ; (г) газ; е) газ; (е) газ

6.

8.Да, лед будет возвышенным, хотя на это может потребоваться несколько дней. Лед имеет небольшое давление пара, и некоторые молекулы льда образуют газ и выходят из кристаллов льда. Со временем все больше и больше твердого вещества превращается в газ, пока в конце концов одежда не высохнет.

10. (а)

(б)

(в)

(г)

(д) жидкая фаза (е) сублимация

фаза | Определение и факты

Фаза , в термодинамике, химически и физически однородное или гомогенное количество вещества, которое может быть механически отделено от неоднородной смеси и которое может состоять из одного вещества или смеси веществ.Три основных фазы материи — это твердая, жидкая и газовая (пар), но существуют и другие, включая кристаллическую, коллоидную, стеклообразную, аморфную и плазменную фазы. Когда фаза в одной форме изменяется на другую, считается, что фазовое изменение произошло.

Британская викторина

Подводки к химии

Возможно, вы знаете, что элементы составляют воздух, которым мы дышим, и воду, которую мы пьем, но знаете ли вы о них больше? Какой элемент почти такой же легкий, как водород? Что вы называете смесью двух химических элементов? Узнайте ответы в этой викторине.

Общие соображения

Система — это часть вселенной, которая была выбрана для изучения изменений, которые происходят в ней в ответ на меняющиеся условия. Система может быть сложной, такой как планета, или относительно простой, как жидкость в стакане. Те части системы, которые физически отличны и механически отделимы от других частей системы, называются фазами.

изменение фазы

Сублимация, осаждение, конденсация, испарение, замерзание и плавление представляют собой фазовые изменения вещества.

Британская энциклопедия, Inc.

Фазы в системе существуют в газообразном, жидком или твердом состоянии. Твердые вещества характеризуются прочной атомной связью и высокой вязкостью, что приводит к жесткой форме. Большинство твердых тел являются кристаллическими, поскольку они имеют трехмерное периодическое атомное расположение; некоторые твердые тела (например, стекло) не имеют этой периодической структуры и являются некристаллическими или аморфными. Газы состоят из слабо связанных атомов без длительной периодичности; газы расширяются, заполняя все доступное пространство.Жидкости обладают промежуточными свойствами между твердыми телами и газами. Молекулы жидкости конденсируются, как и молекулы твердого тела. Жидкости имеют определенный объем, но их низкая вязкость позволяет им изменять форму со временем. Вещество внутри системы может состоять более чем из одной твердой или жидкой фазы, но система может содержать только одну газовую фазу, которая должна иметь гомогенный состав, поскольку молекулы газов полностью смешиваются во всех пропорциях.

состояния вещества

Три состояния вещества: твердое, жидкое и газообразное.

Encyclopædia Britannica, Inc.

Системные переменные

Системы реагируют на изменения давления, температуры и химического состава, и, когда это происходит, фазы могут образовываться, удаляться или изменяться по составу. Например, повышение давления может вызвать превращение жидкости с низкой плотностью в более плотное твердое вещество, в то время как повышение температуры может вызвать плавление твердого вещества. Изменение состава может привести к изменению состава ранее существовавшей фазы или к усилению или потере фазы.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчас

Классификация и ограничения фазовых превращений описываются правилом фаз, предложенным американским химиком Дж. Уиллардом Гиббсом в 1876 году и основанным на строгом термодинамическом соотношении. Правило фаз обычно дается в форме P + F = C + 2. Термин P относится к количеству фаз, которые присутствуют в системе, а C — минимальное количество независимые химические компоненты, необходимые для описания состава всех фаз в системе.Термин F , называемый дисперсией или степенями свободы, описывает минимальное количество переменных, которые должны быть зафиксированы для определения конкретного состояния системы.

Унарные системы

Фазовые отношения обычно описываются графически с помощью фазовых диаграмм ( см. Рисунок 1). Каждая точка на диаграмме указывает конкретную комбинацию давления и температуры, а также фазу или фазы, которые стабильно существуют при этом давлении и температуре.Все фазы на рисунке 1 имеют одинаковый состав — диоксид кремния SiO 2 . Диаграмма представляет собой представление однокомпонентной (унарной) системы в отличие от двухкомпонентной (бинарной), трехкомпонентной (тройной) или четырехкомпонентной (четвертичной) системы. Фазы коэсит, низкий кварц, высокий кварц, тридимит и кристобалит представляют собой твердые фазы, состоящие из диоксида кремния; каждый из них имеет собственное атомное расположение и отличительный набор физических и химических свойств. Самая распространенная форма кварца (встречается в пляжных песках и гранитах) — низкокварц.Область, обозначенная безводным расплавом, состоит из жидкого диоксида кремния.

Различные части системы диоксида кремния могут быть исследованы с точки зрения правила фаз. В точке A существует единственная твердая фаза — низкий кварц. Подстановка соответствующих значений в правило фаз P + F = C + 2 дает 1 + F = 1 + 2, поэтому F = 2. Для точки A (или любой точки, в которой стабильна только одна фаза) система дивариантна — i.е., существуют две степени свободы. Таким образом, две переменные (давление и температура) могут быть изменены независимо, и та же самая фазовая совокупность продолжает существовать.

Точка B расположена на граничной кривой между полями устойчивости низкого и высокого кварца. Во всех точках этой кривой эти две фазы сосуществуют. Подстановка значений в правило фаз (2 + F = 1 + 2) приведет к получению дисперсии 1. Это указывает на то, что одна независимая переменная может быть изменена таким образом, что будет сохранена одна и та же пара фаз.Вторую переменную необходимо изменить, чтобы она соответствовала первой, чтобы фазовый комплекс оставался на границе между низким и высоким содержанием кварца. Тот же результат справедлив и для других граничных кривых в этой системе.

Точка C расположена в тройной точке, состоянии, при котором три поля устойчивости пересекаются. Правило фазы (3 + F = 1 + 2) указывает, что дисперсия равна 0. Следовательно, точка C является инвариантной точкой; изменение давления или температуры приводит к потере одной или нескольких фаз.Правило фаз также показывает, что не более трех фаз могут стабильно сосуществовать в однокомпонентной системе, потому что дополнительные фазы могут привести к отрицательной дисперсии.

фазовые диаграммы чистых веществ

ФАЗОВЫЕ ДИАГРАММЫ ЧИСТЫХ ВЕЩЕСТВ


 

На этой странице объясняется, как интерпретировать фазовые диаграммы для простых чистых веществ, включая рассмотрение частных случаев фазовых диаграмм воды и углекислого газа. Это будет длинная страница, потому что я постарался сделать все как можно мягче.


 

Основная фазовая диаграмма

Что такое фаза?

В простейшем случае фаза может быть просто другим термином для твердого тела, жидкости или газа. Если у вас есть лед, плавающий в воде, у вас есть твердая фаза и жидкая фаза. Если над смесью находится воздух, то это другая фаза.

Но этот термин можно использовать и в более широком смысле. Например, нефть, плавающая на воде, также состоит из двух фаз — в данном случае двух жидких фаз.Если масло и вода содержатся в ведре, то твердое ведро — это еще одна фаза. Фактически, может быть более одной твердой фазы, если ручка прикреплена к ведру отдельно, а не отформована как часть ведра.

Вы можете распознать наличие различных фаз, потому что между ними существует очевидная граница — например, граница между твердым льдом и жидкой водой или граница между двумя жидкостями.


 

Фазовые диаграммы

Фазовая диаграмма позволяет точно определить, какие фазы присутствуют при любой заданной температуре и давлении.В случаях, которые мы рассмотрим на этой странице, фазы будут просто твердым, жидким или парообразным (газовым) состояниями чистого вещества.

Это фазовая диаграмма для типичного чистого вещества.


 

Эти диаграммы (включая эту) почти всегда сильно искажены, чтобы легче было увидеть, что происходит. Обычно есть два основных искажения. Мы обсудим их, когда они станут актуальными.

Если вы посмотрите на диаграмму, вы увидите, что есть три линии, три области, отмеченные «твердое тело», «жидкость» и «пар», и две специальные точки, отмеченные буквами «C» и «T».

Три области

Это просто! Предположим, у вас есть чистое вещество при трех различных наборах условий температуры и давления, соответствующих 1, 2 и 3 на следующей диаграмме.

В наборе условий 1 на диаграмме вещество будет твердым, потому что оно попадает в эту область фазовой диаграммы. На 2 это будет жидкость; а в точке 3 это будет пар (газ).


Примечание: Я использую термины пар и газ, как если бы они были взаимозаменяемыми.Между ними есть и тонких различий, которые я пока не готов объяснять. Потерпи!


Переход от твердого тела к жидкости путем изменения температуры:

Предположим, у вас есть твердое тело, и вы увеличили температуру, сохраняя постоянное давление, как показано на следующей диаграмме. Когда температура повышается до точки, где она пересекает линию, твердое вещество превращается в жидкость. Другими словами, он тает.

Если вы повторите это при более высоком фиксированном давлении, температура плавления будет выше, потому что линия между твердой и жидкой областями немного наклонена вперед.


Примечание: Это один из случаев, когда мы искажаем эти диаграммы, чтобы облегчить их обсуждение. На практике эта линия гораздо более вертикальна, чем мы обычно ее рисуем. Температура плавления при более высоком давлении будет очень незначительной.Диаграмму было бы очень сложно проследить, если бы мы ее немного не преувеличивали.


Так что же на самом деле представляет собой эта линия, разделяющая твердую и жидкую области диаграммы?

Просто показывает влияние давления на температуру плавления.

В любом месте этой линии существует равновесие между твердым телом и жидкостью.

Вы можете применить принцип Ле Шателье к этому равновесию, как если бы это было химическое равновесие.Если вы увеличите давление, равновесие будет двигаться таким образом, чтобы противодействовать только что сделанному вами изменению.

Если он превратится из жидкости в твердое тело, давление снова будет уменьшаться, потому что твердое тело занимает немного меньше места для большинства веществ.

Это означает, что увеличение давления на равновесную смесь твердого вещества и жидкости при ее исходной температуре плавления снова преобразует смесь обратно в твердое вещество. Другими словами, он больше не будет плавиться при этой температуре.

Чтобы он расплавился при более высоком давлении, вам придется немного повысить температуру. Повышение давления повышает температуру плавления большинства твердых веществ. Вот почему для большинства веществ линия точки плавления наклонена вперед.

Переход от твердого тела к жидкости путем изменения давления:

Вы также можете поэкспериментировать с этим, посмотрев, что произойдет, если вы уменьшите давление на твердое тело при постоянной температуре.


Примечание: Вы должны быть немного осторожны с этим, потому что, что именно произойдет, если вы уменьшите давление, зависит именно от ваших начальных условий.Мы поговорим об этом подробнее, когда посмотрим на линию, отделяющую твердую область от паровой.



 

Переход от жидкости к пару:

Таким же образом вы можете сделать это, изменив температуру или давление.

Жидкость превратится в пар — она ​​закипит — когда пересечет границу между двумя областями.Если вы меняете температуру, вы можете легко определить температуру кипения по фазовой диаграмме. На диаграмме выше это температура, при которой красная стрелка пересекает граничную линию.

Итак, опять же, каково значение этой линии, разделяющей две области?

В любом месте на этой линии будет равновесие между жидкостью и паром. Линию легче всего увидеть как эффект давления на точку кипения жидкости.

Чем выше давление, тем выше температура кипения.


Примечание: Я не хочу придавать большого значения этому, но эта линия на самом деле точно такая же, как график влияния температуры на давление насыщенного пара жидкости. Давление насыщенного пара рассматривается на отдельной странице. Жидкость закипит, когда давление ее насыщенного пара будет равно внешнему давлению.

Предположим, вы измерили давление насыщенного пара жидкости при 50 ° C, и оно оказалось 75 кПа.Вы можете изобразить это как одну точку на кривой давления пара, а затем перейти к измерению давления других насыщенных паров при различных температурах и также построить их.

Теперь предположим, что вы подвергали жидкость общему внешнему давлению 75 кПа и постепенно повышали температуру. Жидкость закипит, когда давление ее насыщенного пара станет равным внешнему давлению — в данном случае при 50 ° C. Если у вас есть полная кривая давления пара, вы также можете найти точку кипения, соответствующую любому другому внешнему давлению.

Это означает, что график зависимости давления насыщенного пара от температуры в точности совпадает с графиком зависимости точки кипения и внешнего давления — это всего лишь два взгляда на одно и то же.

Если все, что вас интересует, это интерпретация одной из этих фазовых диаграмм, вам, вероятно, не стоит особо об этом беспокоиться.



Критическая точка

Как вы могли заметить, эта кривая равновесия жидкость-пар имеет верхний предел, который я обозначил на фазовой диаграмме как C .

Это известно как критическая точка . Температура и давление, соответствующие этому, известны как критическая температура и критическое давление .

Если вы увеличите давление газа (пара) до температуры ниже критической, вы в конечном итоге пересечете линию равновесия жидкость-пар, и пар будет конденсироваться с образованием жидкости.

Это работает нормально, пока температура газа ниже критической.А что, если бы ваша температура была на выше критической температуры ? Не было бы никакой черты пересечь!

Это потому, что выше критической температуры невозможно конденсировать газ в жидкость, просто увеличивая давление. Все, что вы получаете, — это сильно сжатый газ. Частицы обладают слишком большой энергией, чтобы межмолекулярное притяжение удерживало их вместе как жидкость.

Очевидно, что критическая температура варьируется от вещества к веществу и зависит от силы притяжения между частицами.Чем сильнее межмолекулярное притяжение, тем выше критическая температура.


Примечание: Это хороший момент для быстрого комментария об использовании слов «газ» и «пар». В значительной степени вы просто используете термин, который кажется правильным. Обычно вы не говорите о «газообразном этаноле», хотя вы, , скажете, что , «пары этанола». Точно так же нельзя говорить о кислороде как о паре — вы всегда называете его газом.

Существуют различные направляющие линии, которые вы можете использовать, если хотите.Например, если вещество обычно является жидкостью при комнатной температуре или около нее, вы склонны называть то, что исходит от него, паром. Чуть более широкое использование было бы называть его паром, если вещество ниже своей критической точки, и газом, если оно выше нее. Конечно, было бы необычно называть что-либо паром, если он был выше своей критической точки при комнатной температуре — например, кислородом, азотом или водородом. Все это можно назвать газами.

Это абсолютно НЕ то, над чем стоит волноваться!



Переход от твердого тела к пару:

Осталась только одна линия на фазовой диаграмме.Это линия в нижнем левом углу между твердой и паровой областями.

Эта линия представляет собой равновесие твердое тело-пар. Если бы условия температуры и давления попадали точно на эту линию, твердое тело и пар находились бы в равновесии друг с другом — твердое вещество сублимировалось бы. (Сублимация — это переход непосредственно из твердого состояния в пар или наоборот без прохождения жидкой фазы.)

Еще раз, вы можете пересечь эту линию, либо увеличив температуру твердого тела, либо уменьшив давление.

На диаграмме показан эффект увеличения температуры твердого тела при (возможно, очень низком) постоянном давлении. Очевидно, что давление должно быть достаточно низким, чтобы жидкость не могла образоваться — другими словами, оно должно быть ниже точки, обозначенной как T .

Вы можете прочитать температуру сублимации по диаграмме. Это будет температура, при которой линия пересечена.


 

Тройная точка

Точка T на схеме называется тройной точкой .

Если вы думаете о трех линиях, которые встречаются в этой точке, они представляют собой условия:

Там, где встречаются все три линии, у вас должна быть уникальная комбинация температуры и давления, при которой все три фазы находятся в равновесии вместе. Вот почему она называется тройной точкой .

Если вы контролировали условия температуры и давления, чтобы попасть в эту точку, вы бы увидели равновесие, которое включало плавление и сублимацию твердого вещества, а также жидкость в контакте с ним, кипящую с образованием пара — и все происходящие обратные изменения также.

Если вы удерживаете температуру и давление на этих значениях и держите систему закрытой, чтобы ничто не выходило, то она так и останется. Странный набор дел!


 

Нормальные температуры плавления и кипения

Нормальные точки плавления и кипения — это температуры при давлении 1 атмосфера. Их можно найти на фазовой диаграмме, проведя линию поперек при давлении в 1 атмосферу.


 

Фазовая диаграмма для воды

Есть только одно различие между этой и фазовой диаграммой, которую мы рассматривали до сих пор.Линия равновесия твердое тело-жидкость (линия точки плавления) имеет наклон назад, а не вперед.

В случае воды точка плавления понижается при более высоком давлении. Почему?

Если у вас есть это равновесие и вы увеличиваете давление на него, согласно принципу Ле Шателье, равновесие переместится, чтобы снова понизить давление. Это означает, что он переместится в сторону с меньшим объемом. Производится жидкая вода.

Чтобы жидкая вода снова замерзла при более высоком давлении, вам необходимо снизить температуру.Более высокое давление означает более низкие температуры плавления (замерзания).

Теперь давайте поместим числа на диаграмму, чтобы показать точное положение критической точки и тройной точки для воды.

Обратите внимание, что тройная точка для воды возникает при очень низком давлении. Также обратите внимание, что критическая температура составляет 374 ° C. Было бы невозможно превратить воду из газа в жидкость, сжав ее выше этой температуры.

Нормальные точки плавления и кипения воды находятся точно так же, как мы уже обсуждали — наблюдая, где линия давления в 1 атмосферу пересекает линии равновесия твердое тело-жидкость, а затем линии равновесия жидкость-пар.


Примечание: Далее на странице я упомянул два способа искажения этих диаграмм, чтобы облегчить их понимание. Я уже указывал, что линия равновесия твердое тело-жидкость действительно должна быть намного более вертикальной. Эта последняя диаграмма иллюстрирует другое серьезное искажение, которое относится как к давлению, так и к температуре. Посмотрите, например, на промежутки между различными приведенными цифрами давления, а затем представьте, что вам пришлось изобразить их на миллиметровой бумаге! Температурная шкала также случайна.


Еще один последний пример использования этой диаграммы (потому что она мне нравится). Представьте, что давление в жидкой воде снижается по линии на диаграмме ниже.

Фазовая диаграмма показывает, что вода сначала замерзнет, ​​образуя лед, когда она войдет в твердую область. Когда давление упадет достаточно низко, лед возвысится, образуя водяной пар. Другими словами, переход происходит от жидкого состояния к твердому и парообразному. Я нахожу это довольно странным!


 

Фазовая диаграмма диоксида углерода

Единственная особенность этой фазовой диаграммы — это положение тройной точки, которая намного выше атмосферного давления.Невозможно получить жидкую двуокись углерода при давлении ниже 5,11 атмосфер.

Это означает, что при давлении в 1 атмосферу углекислый газ будет возгоняться при температуре -78 ° C.

Это причина того, что твердый диоксид углерода часто называют «сухим льдом». Вы не можете получить жидкий углекислый газ при нормальных условиях — только твердый или парообразный.


 

 

Куда бы вы сейчас хотели пойти?

В меню фазового равновесия.. .

В меню «Физическая химия». . .

В главное меню. . .


 

© Джим Кларк 2004 (изменено в январе 2014 г.)

Что определяет фазы Луны? — Небо и телескоп

Прежде чем описывать фазы Луны, давайте опишем, чем они не являются. Некоторые люди ошибочно полагают, что фазы происходят от земной тени, отбрасываемой на Луну.Другие думают, что Луна меняет форму из-за облаков. Это распространенные заблуждения, но они не соответствуют действительности. Вместо этого фаза Луны зависит только от ее положения относительно Земли и Солнца.

Луна не излучает собственный свет, она просто отражает свет Солнца, как это делают все планеты. Солнце всегда освещает одну половину Луны. Поскольку Луна заблокирована приливом, мы всегда видим одну и ту же сторону от Земли, но не существует постоянной «темной стороны Луны». Солнце освещает разные стороны Луны, когда она вращается вокруг Земли — это та часть Луны, от которой мы видим отраженный солнечный свет, который определяет лунную фазу.

Мы видим, что Луна каждый месяц проходит через цикл смены фаз из-за ее орбитального движения вокруг Земли и изменяющейся геометрии, с которой мы ее видим.
S&T: Ана Асевес

Фазы Луны

новолуние происходит, когда Луна, Земля и Солнце лежат примерно на одной линии. Поскольку Солнце находится позади Луны с точки зрения Земли, сторона Луны, обращенная к Земле, темная.

В полнолуние три тела также лежат примерно на одной линии, но на этот раз Луна находится на противоположной стороне от Земли, поэтому Солнце освещает всю сторону, обращенную к нам.

В первой четверти и последней четверти Луна лежит на перпендикулярно линии между Землей и Солнцем. Мы видим ровно половину Луны, освещенную Солнцем — другая половина находится в тени. «Четверть», используемая для обозначения этих фаз, относится к соответствующей части орбиты, которую Луна завершила с момента новолуния.

Освещенная часть Луны постепенно переходит между этими фазами. Чтобы запомнить промежуточные фазы, вам необходимо понимать следующие термины: полумесяц, полукруглая, растущая, и убывающая, .Полумесяц относится к фазам, когда Луна освещена менее чем наполовину, в то время как полукруглая означает, что освещена более чем наполовину. Вощение означает «рост» или расширение освещения, а ослабление означает «уменьшение» или уменьшение освещенности.

После новолуния часть отраженного солнечного света становится видимой в виде растущего полумесяца . Лунный серп растет до первой четверти Луны. Поскольку освещенная солнцем часть Луны продолжает увеличиваться до более чем половины лица Луны, Луна превращается в растущую луну .Затем, после полнолуния, доля солнечного света снова начинает уменьшаться (хотя она все еще занимает более половины лица Луны), чтобы сделать убывающей луной , а затем Луной в третьей четверти. Доля солнечного света продолжает уменьшаться, пока Луна не превратится в убывающий полумесяц , а затем в новолуние. Весь цикл (от новолуния до новолуния) занимает около 29,5 дней.

Если вам трудно вспомнить, в каком направлении идут фазы луны, просто подумайте: «белый справа, становится ярким!»

Перспектива пинг-понга

Если держать белый шар на расстоянии вытянутой руки в направлении Луны, это показывает, как фазы Луны зависят от того, где находится Луна на небе по отношению к Солнцу. S&T: J. Kelly Beatty

Фазы Луны на самом деле связаны с орбитальным движением, и есть простое и забавное наблюдение, которое показывает, как они связаны. Все, что вам понадобится, это мяч для пинг-понга, чтобы имитировать Луну — на самом деле, подойдет любая маленькая белая сфера. Затем выйдите на улицу примерно за час до заката или примерно во время первой четверти Луны. Найдите Луну в южной части неба, затем держите мяч на расстоянии вытянутой руки прямо рядом с ней.

Вы увидите, что шар показывает точно такую ​​же фазу, что и Луна.Солнце освещает шар и Луну с одного и того же направления, и вы видите их частично освещенными солнцем и частично в тени, их яркие и темные части идеально имитируют друг друга. Если погода остается ясной, вы можете повторить это наблюдение в следующие несколько дней. Каждый день орбитальное движение Луны уносило ее все дальше на восток, и освещенная солнцем часть ее диска увеличивалась. Если вы поднесете мяч к Луне, то увидите, что ее «фаза» тоже сгустилась.

Чтобы предварительно увидеть появление Луны в грядущие дни, просто переместите шар дальше на восток.И если вы переместите его полностью так, чтобы ваша рука указывала низко в восточном небе, сторона шара, обращенная к вам, будет почти полностью освещена — так сказать, почти «полный мяч». И, конечно же, за день или два до полнолуния Луна низко висит в восточном небе незадолго до заката и почти полностью освещена.

Попробуйте!

Чтобы узнать, в какой фазе Луны сегодня вечером, попробуйте наш калькулятор фаз Луны. Обратите внимание, что фаза Луны одинакова для любого места на Земле, но наблюдатели в Южном полушарии будут видеть Луну «вверх ногами» из северного полушария.

Ознакомьтесь с этой таблицей, если вы хотите знать оценку восхода и захода луны для каждой фазы. Имейте в виду, что это всего лишь приближение, предназначенное для руководства случайного наблюдателя, и нет поправки на дневное (или летнее) время. Точное местное время зависит от ряда факторов, включая часовой пояс, время года, форму горизонта, атмосферную рефракцию, среди прочего.

Фаза Луны Восход Луны Заход Луны
Новолуние 6:00 a.м. 18:00
Растущий полумесяц 9:00 21:00
Первый квартал 12:00 12:00
Растущая луна 15:00 3:00 утра
Полнолуние 18:00 6:00 утра
Убывающая луна 9:00 п.м. 9:00
Последняя четверть 12:00 12:00
Убывающий полумесяц 3:00 утра 15:00
Новолуние 6:00 утра 18:00

Сделайте еще один шаг вперед в своих исследованиях Луны с единственной картой, которая вам когда-либо понадобится: Полевая карта Луны.

Определить f, c и p в этих реакциях (правило фаз Гиббса)?

Правило фазы Гиббса :

#f = 2 + c_i — p #

#c_i = c — r — a #

где:

  • # f # — число степени свободы (сколько независимых интенсивных переменных можно изменять, не влияя на другие термодинамические переменные). (0) = c = color (blue) (bb (2)) #.

    Количество фаз # p # легко подсчитать. Вы можете видеть, что есть #color (blue) (p = bb (2)) # фазы: газ и твердое тело.

    Следовательно, #color (blue) (f) = 2 + c_i — p = 2 + 2-2 = color (blue) (bb (2)) #. Это говорит о том, что вы можете изменить две естественные переменные, не отходя от фазового равновесия (# T ​​#, температура, # P #, давление).

    #b) # Это очень сложная система, поэтому мы проверим два сценария.

    Водный раствор # «AlCl» _3 # позволит воде координироваться на пустой орбитали # p # на алюминии (# «AlCl» _3 # — это кислота Льюиса!).Это создаст еще один компонент в растворе, # «AlCl» _3cdot «H» _2 «O» #:

    КОРПУС I

    Если мы предположим, что достаточно разбавленный раствор , мы можем сделать вид, что # «AlCl» _3cdot «H» _2 «O» # по существу нет, но эта реакция должна произойти:

    # «AlCl» _3 (водн.) + 3 «H» _2 «O» (l) -> «Al» («OH») _ 3 (s) + 3 «HCl» (g) #

    Мы включаем следующие независимые компоненты:

    • # «H» _2 «O» (l) #
    • # «ОН» ^ (-) (водн. (+) (водн.) #
    • # «Al» («OH») _ 3 (s) #
    • # «HCl» (г) #

    Я предполагаю, что случай II , который опускает реакцию ассоциации с водой и опускает # «AlCl» _3cdot «H» _2 «O» #, нивелируя разницу между случаем I и случаем II.

    Это дает #color (blue) (c_i) = c — r — a = 5 — 1 — 1 = color (blue) (bb (3)) #, поскольку это наиболее реалистично. Обратите внимание на то, что количество добавляемых независимых компонентов обычно равно количеству вычитаемых нами реакций.

    Вы должны увидеть, что в обоих случаях мы получаем одно и то же число для # c_i #, как и должно быть.

    Если реакция протекает в замкнутой системе, то мы снова имеем три фазы (жидкую, твердую и газовую), поэтому # цвет (синий) (p = 3) #.Следовательно, количество степеней свободы составляет:

    # цвет (синий) (f) = 2 + c_i — p #

    # = 2 + 3 — 3 = цвет (синий) (bb (2)) #

    , что означает, что вы можете немного изменить температуру и давление (две естественные переменные) и не отклониться от установленного вами фазового равновесия, предполагая, что система замкнута.

    Фазовые диаграммы | Безграничная химия

    Основные характеристики фазовой диаграммы

    Фазовые диаграммы полезны, потому что они позволяют нам понять, в каком состоянии материя существует при определенных условиях.

    Цели обучения

    Опишите основные особенности фазовой диаграммы.

    Основные выводы

    Ключевые моменты
    • Основными особенностями фазовой диаграммы являются фазовые границы и тройная точка.
    • Фазовые диаграммы демонстрируют влияние изменений давления и температуры на состояние вещества.
    • На границах фаз сосуществуют две фазы вещества (две из которых зависят от происходящего фазового перехода).
    • Тройная точка — это точка на фазовой диаграмме, в которой три различные фазы материи сосуществуют в равновесии.
    Ключевые термины
    • Тройная точка : Уникальная температура и давление, при которых твердая, жидкая и газовая фазы вещества находятся в равновесии друг с другом.
    • граница фаз : линия на фазовой диаграмме, которая указывает условия, при которых существуют два (переходных) состояния вещества в состоянии равновесия.

    Фазовая диаграмма — это график, который показывает, при каких условиях температуры и давления возникают различные фазы вещества.Простейшие фазовые диаграммы относятся к чистым веществам. На этих диаграммах по оси ординат показано давление, а по оси абсцисс — температура.

    Хотя фазы концептуально просты, их трудно определить точно. Фазу системы обычно определяют как область в пространстве параметров термодинамических переменных системы (для непосредственных целей в пространстве параметров давление-температура), в которой свободная энергия системы является аналитической (то есть ее можно точно рассчитать из известных параметры системы).

    Основными особенностями фазовой диаграммы являются фазовые границы и тройная точка.

    • Фазовые границы или линии равновесия — это границы, которые указывают условия, при которых две фазы вещества могут сосуществовать в равновесии.
    • Тройная точка — это точка на фазовой диаграмме, где пересекаются линии равновесия — точка, в которой сосуществуют все три отдельные фазы вещества (твердое тело, жидкость, газ).

    Фазовая диаграмма : На этой фазовой диаграмме, которая типична для большинства веществ, сплошные линии представляют границы фаз.Зеленая линия отмечает точку замерзания (или переход от жидкости к твердому телу), синяя линия отмечает точку кипения (или переход от жидкости к газу), а красная линия показывает условия, при которых твердое вещество может быть преобразовано непосредственно в газ. (наоборот). Пунктирная зеленая линия заменяет сплошную зеленую линию на соответствующей фазовой диаграмме воды. Он показывает аномальное поведение воды.

    Фазовая диаграмма для воды полезна, чтобы научиться анализировать эти диаграммы.Вдоль голубой границы раздела фаз вода существует как в виде пара, так и в виде жидкости. Вдоль пунктирной зеленой границы раздела фаз мы видим аномальное поведение воды: она существует как твердое тело при достаточно низких температурах и достаточно высоких давлениях. В тройной точке сосуществуют вода в твердом, жидком и газообразном состояниях.

    Интерпретация фазовых диаграмм

    Фазовые диаграммы иллюстрируют влияние выбранных переменных системы на состояние вещества.

    Цели обучения

    Расшифровка фазовой диаграммы и объяснение ее назначения

    Основные выводы

    Ключевые моменты
    • Фазовые диаграммы можно использовать для понимания диапазона термодинамических переменных, в котором чистый образец вещества существует как определенное состояние / фаза.
    • Фазовые диаграммы разделены на три однофазных области, которые охватывают пространство давление-температура, в котором существует оцениваемое вещество: жидкое, газообразное и твердое состояние.
    • Фазовые диаграммы можно использовать, чтобы понять, при каких условиях чистый образец вещества существует в двух или трех состояниях равновесия, путем изучения фазовых границ и тройной точки.
    Ключевые термины
    • критическая точка : температура и давление, при которых плотность пара в газовой и жидкой фазах флюида равны, в этой точке нет разницы между газом и жидкостью.
    • сверхкритическая жидкость : Вещество с температурой и давлением выше его собственной термодинамической критической точки, которое может диффундировать через твердые тела, как газ, и растворять материалы, как жидкость.

    Фазовые диаграммы иллюстрируют влияние выбранных переменных системы на состояние вещества. Фазовые диаграммы разделены на три однофазных области, которые охватывают пространство давление-температура, в котором существует оцениваемое вещество: жидкое, газообразное и твердое состояние.Линии, разделяющие эти однофазные области, называются фазовыми границами. Вдоль фазовых границ оцениваемое вещество одновременно находится в равновесии между двумя состояниями, граничащими с фазовой границей.

    Сосредоточивая внимание на отдельных однофазных областях, фазовые диаграммы помогают нам понять диапазон, в котором конкретный чистый образец вещества существует как конкретная фаза. Изучая фазовые границы и тройную точку, исследователи могут использовать фазовые диаграммы, чтобы понять, при каких условиях чистый образец вещества существует в двух или трех состояниях равновесия.Фазовые диаграммы также можно использовать для объяснения поведения чистого образца вещества в критической точке.

    Типовая фазовая диаграмма : Типовая фазовая диаграмма, иллюстрирующая основные компоненты фазовой диаграммы, а также критическую точку. Пунктирная зеленая линия обозначает границу твердой и жидкой фаз для воды.

    Общие наблюдения на диаграмме показывают, что определенные условия температуры и давления благоприятствуют определенным фазам вещества. Обычно:

    • Условия низкой температуры / высокого давления благоприятствуют твердому состоянию.
    • Условия умеренной температуры / умеренного давления благоприятствуют жидкому состоянию.
    • Условия высокой температуры / низкого давления благоприятствуют газообразному состоянию.

    Критическая точка, которая возникает при критическом давлении (P cr ) и критической температуре (T cr ), является особенностью, которая указывает точку в пространстве термодинамических параметров, в которой оцениваются жидкое и газообразное состояния вещества. неотличимы. В этот момент и за его пределами оцениваемое вещество существует как «сверхкритическая жидкость».При температурах выше критической кинетическая энергия молекул достаточно высока, так что даже при высоких давлениях образец не может конденсироваться в жидкую фазу.

    При оценке фазовой диаграммы следует отметить, что граница раздела фаз твердое и жидкое состояние на фазовой диаграмме большинства веществ имеет положительный наклон. Это связано с тем, что твердая фаза имеет более высокую плотность, чем жидкость, поэтому увеличение давления увеличивает температуру плавления. Однако фазовая граница твердое тело-жидкость для воды является аномальной, поскольку она имеет отрицательный наклон.Это отражает тот факт, что лед имеет меньшую плотность, чем жидкая вода (хорошо известный факт: лед плавает), в отличие от большинства других веществ, которые обычно имеют более плотные твердые фазы.

    Нафталиновые шарики — применение фазовых переходов : Термодинамические свойства нафталиновых шариков, изготовленных из 1,4-дихлорбензола, используются для отпугивания насекомых.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *