Калькулятор корней со степенями: Инженерный калькулятор онлайн

Опубликовано

Содержание

Действия со степенями и корнями

1. При умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним:

.

Например, .

2. При делении степеней с одинаковыми основаниями показатели степеней вычитаются, а основание остаётся прежним:

.

Например, .

3. При возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним:

.

Например, .

4. Степень произведения равна произведению степеней множителей:

.

Например, .

5. Степень частного равна частному степеней делимого и делителя:

.

Например, .

Пример 1. Найти значение выражения

.

Решение. В данном случае в явной форме ни одно из свойств степени с натуральным показателем применить нельзя, так как все степени имеют разные основания. Запишем некоторые степени в другом виде:

(степень произведения равна произведению степеней множителей),

(при умножении степеней с одинаковыми основаниями показатели складываются, а основание остаётся прежним, при возведении степени в степень показатели степеней перемножаются, а основание остаётся прежним).

Теперь получим:

В данном примере были использованы первые четыре свойства степени с натуральным показателем.

Свойства степеней и корней интенсивно используются при упрощении выражений в задачах математического анализа, например, для нахождения

производной параметрически заданной функции и производной функции, заданной неявно.

Имеют место следующие тождества:

1) ;

2) ;

3) .

Выполнить действия со степенями самостоятельно, а затем посмотреть решения

Пример 2. Найти значение выражения

.

Пример 3. Найти значение выражения

.

1. Корень k-й степени из произведения неотрицательных чисел равен произведению корней той же степени из сомножителей: , где (правило извлечения корня из произведения).

2. Если , то (правило извлечения корня из дроби).

3. Если , то (правило извлечения корня из корня).

4. Если , то (правило возведения корня в степень).

5. Если , то , где , т. е. показатель корня и показатель подкоренного выражения можно умножить на одно и то же число.

6. Если , то , т. е. большему положительному подкоренному выражению соответствует и большее значение корня.

7. Все указанные выше формулы часто применяются в обратном порядке (т. е. справа налево). Например:

(правило умножения корней),

(правило деления корней),

.

8. Правило вынесения множителя из-под знака корня. При .

9. Обратная задача — внесение множителя под знак корня. Например,

10. Уничтожение иррациональности в знаменателе дроби. Рассмотрим некоторые типичные случаи.

а) , так как .

Например, .

б)

Например,

в)

и т. д.

Другие темы в блоке «Школьная математика»

Корень степени N

Поздравляю: сегодня мы будем разбирать корни — одну из самых мозговыносящих тем 8-го класса.:)

У вас тоже так? Читайте дальше — и всё поймёте

Многие путаются в корнях не потому, что они сложные (чего там сложного-то — пара определений и ещё пара свойств), а потому что в большинстве школьных учебников корни определяются через такие дебри, что разобраться в этой писанине могут разве что сами авторы учебников. Да и то лишь с бутылкой хорошего виски.:)

Поэтому сейчас я дам самое правильное и самое грамотное определение корня — единственное, которое вам действительно следует запомнить. А уже затем объясню: зачем всё это нужно и как это применять на практике.

Но сначала запомните один важный момент, про который многие составители учебников почему-то «забывают»:

Корни бывают чётной степени (наш любимый $\sqrt{a}$, а также всякие $\sqrt[4]{a}$ и даже $\sqrt[116]{a}$ ) и нечётной степени (всякие $\sqrt[3]{a}$, $\sqrt[7]{a}$ и т. {2}}=1$.

Кубические корни тоже часто встречаются — не надо их бояться:

\[\begin{align} & \sqrt[3]{27}=3; \\ & \sqrt[3]{-64}=-4; \\ & \sqrt[3]{343}=7. \\ \end{align}\]

Ну, и парочка «экзотических примеров»:

\[\begin{align} & \sqrt[4]{81}=3; \\ & \sqrt[5]{-32}=-2. \\ \end{align}\]

Если вы не поняли, в чём разница между чётной и нечётной степенью — перечитайте определение ещё раз. Это очень важно!

А мы тем временем рассмотрим одну неприятную особенность корней, из-за которой нам и потребовалось вводить раздельное определение для чётных и нечётных показателей.

Зачем вообще нужны корни?

Прочитав определение, многие ученики спросят: «Что курили математики, когда это придумывали?» И вправду: зачем вообще нужны все эти корни?

Чтобы ответить на этот вопрос, вернёмся на минутку в начальные классы. Вспомните: в те далёкие времена, когда деревья были зеленее, а пельмени вкуснее, основная наша забота была в том, чтобы правильно умножать числа. {n}}=a\]

Не спорю: зачастую эти корни легко считаются — мы видели несколько таких примеров выше. Но всё-таки в большинстве случаев, если вы загадаете произвольное число, а затем попробуете извлечь из него корень произвольной степени, вас ждёт жестокий облом.

Да что там! Даже самый простой и всем знакомый $\sqrt{2}$ нельзя представить в привычном нам виде — как целое число или дробушка. А если вы вобьёте это число в калькулятор, то увидите вот это:

\[\sqrt{2}=1,414213562…\]

Как видите, после запятой идёт бесконечная последовательность цифр, которые не подчиняются никакой логике. Можно, конечно, округлить это число, чтобы быстро сравнить с другими числами. Например:

\[\sqrt{2}=1,4142…\approx 1,4 \lt 1,5\]

Или вот ещё пример:

\[\sqrt{3}=1,73205…\approx 1,7 \gt 1,5\]

Но все эти округления, во-первых, довольно грубые; а во-вторых, работать с примерными значениями тоже надо уметь, иначе можно словить кучу неочевидных ошибок (кстати, навык сравнения и округления в обязательном порядке проверяют на профильном ЕГЭ).

Поэтому в серьёзной математике без корней не обойтись — они являются такими же равноправными представителями множества всех действительных чисел $\mathbb{R}$, как и давно знакомые нам дроби и целые числа.

Невозможность представить корень в виде дроби вида $\frac{p}{q}$ означает, что данный корень не является рациональным числом. Такие числа называются иррациональными, и их нельзя точно представить иначе как с помощью радикала, либо других специально предназначенных для этого конструкций (логарифмов, степеней, пределов и т.д.). Но об этом — в другой раз.

Рассмотрим несколько примеров, где после всех вычислений иррациональные числа всё же останутся в ответе.

Пример.

\[\begin{align} & \sqrt{2+\sqrt[3]{27}}=\sqrt{2+3}=\sqrt{5}\approx 2,236… \\ & \sqrt[3]{\sqrt[5]{-32}}=\sqrt[3]{-2}\approx -1,2599… \\ \end{align}\]

Естественно, по внешнему виду корня практически невозможно догадаться о том, какие числа будут идти после запятой. {2}}=4\]

С первым числом всё понятно — оно положительное, поэтому оно и есть корень:

\[\sqrt{4}=2\]

Но что тогда делать со второй точкой? Типа у четвёрки сразу два корня? Ведь если возвести в квадрат число −2, мы тоже получим 4. Почему бы тогда не записать$\sqrt{4}=-2$? И почему учителя смотрят на подобные записи так, как будто хотят вас сожрать?:)

В том-то и беда, что если не накладывать никаких дополнительных условий, то квадратных корней у четвёрки будет два — положительный и отрицательный. И у любого положительного числа их тоже будет два. А вот у отрицательных чисел корней вообще не будет — это видно всё по тому же графику, поскольку парабола нигде не опускается ниже оси y, т.е. не принимает отрицательных значений.

Подобная проблема возникает у всех корней с чётным показателем:

  1. Строго говоря, корней с чётным показателем $n$ у каждого положительного числа будет сразу две штуки;
  2. Из отрицательных чисел корень с чётным $n$ вообще не извлекается. {3}}$:

    Кубическая парабола принимает любые значения, поэтому кубический корень извлекается из любого числа

    Из этого графика можно сделать два вывода:

    1. Ветви кубической параболы, в отличие от обычной, уходят на бесконечность в обе стороны — и вверх, и вниз. Поэтому на какой бы высоте мы ни проводили горизонтальную прямую, эта прямая обязательно пересечётся с нашим графиком. Следовательно, кубический корень можно извлечь всегда, абсолютно из любого числа;
    2. Кроме того, такое пересечение всегда будет единственным, поэтому не нужно думать, какое число считать «правильным» корнем, а на какое — забить. Именно поэтому определение корней для нечётной степени проще, чем для чётной (отсутствует требование неотрицательности).

    Жаль, что эти простые вещи не объясняют в большинстве учебников. Вместо этого нам начинают парить мозг всякими арифметическими корнями и их свойствами.

    Да, я не спорю: что такое арифметический корень — тоже надо знать. И я подробно расскажу об этом в отдельном уроке. Сегодня мы тоже поговорим о нём, поскольку без него все размышления о корнях $n$-й кратности были бы неполными.

    Но сначала надо чётко усвоить то определение, которое я дал выше. Иначе из-за обилия терминов в голове начнётся такая каша, что в итоге вообще ничего не поймёте.

    А всего-то и нужно понять разницу между чётными и нечётными показателями. Поэтому ещё раз соберём всё, что действительно нужно знать о корнях:

    1. Корень чётной степени существует лишь из неотрицательного числа и сам всегда является неотрицательным числом. Для отрицательных чисел такой корень неопределён.
    2. А вот корень нечётной степени существует из любого числа и сам может быть любым числом: для положительных чисел он положителен, а для отрицательных — как намекает кэп, отрицательный.

    Разве это сложно? Нет, не сложно. Понятно? Да вообще очевидно! Поэтому сейчас мы немного потренируемся с вычислениями.

    Основные свойства и ограничения

    У корней много странных свойств и ограничений — об этом будет отдельный урок. {2}}$, напротив, означает, что мы сначала извлекаем корень из некого числа $a$ и лишь затем возводим результат в квадрат. Поэтому число $a$ ни в коем случае не может быть отрицательным — это обязательное требование, заложенное в определение.

Таким образом, ни в коем случае нельзя бездумно сокращать корни и степени, тем самым якобы «упрощая» исходное выражение. Потому что если под корнем стоит отрицательное число, а его показатель является чётным, мы получим кучу проблем.

Впрочем, все эти проблемы актуальны лишь для чётных показателей.

Вынесение минуса из-под знака корня

Естественно, у корней с нечётными показателями тоже есть своя фишка, которой в принципе не бывает у чётных. А именно:

\[\sqrt[2n+1]{-a}=-\sqrt[2n+1]{a}\]

Короче говоря, можно выносить минус из-под знака корней нечётной степени. Это очень полезное свойство, которое позволяет «вышвырнуть» все минусы наружу:

\[\begin{align} & \sqrt[3]{-8}=-\sqrt[3]{8}=-2; \\ & \sqrt[3]{-27}\cdot \sqrt[5]{-32}=-\sqrt[3]{27}\cdot \left( -\sqrt[5]{32} \right)= \\ & =\sqrt[3]{27}\cdot \sqrt[5]{32}= \\ & =3\cdot 2=6. \end{align}\]

Это простое свойство значительно упрощает многие вычисления. Теперь не нужно переживать: вдруг под корнем затесалось отрицательное выражение, а степень у корня оказалась чётной? Достаточно лишь «вышвырнуть» все минусы за пределы корней, после чего их можно будет умножать друг на друга, делить и вообще делать многие подозрительные вещи, которые в случае с «классическими» корнями гарантированно приведут нас к ошибке.

И вот тут на сцену выходит ещё одно определение — то самое, с которого в большинстве школ и начинают изучение иррациональных выражений. И без которого наши рассуждения были бы неполными. Встречайте!

Арифметический корень

Давайте предположим на минутку, что под знаком корня могут находиться лишь положительные числа или в крайнем случае ноль. Забьём на чётные/нечётные показатели, забьём на все определения, приведённые выше — будем работать только с неотрицательными числами. Что тогда?

А тогда мы получим арифметический корень — он частично пересекается с нашими «стандартными» определениями, но всё же отличается от них. {n}}=a$.

Как видим, нас больше не интересует чётность. Взамен неё появилось новое ограничение: подкоренное выражение теперь всегда неотрицательно, да и сам корень тоже неотрицателен.

Чтобы лучше понять, чем арифметический корень отличается от обычного, взгляните на уже знакомые нам графики квадратной и кубической параболы:

Область поиска арифметического корня — неотрицательные числа

Как видите, отныне нас интересуют лишь те куски графиков, которые расположены в первой координатной четверти — там, где координаты $x$ и $y$ положительны (или хотя бы ноль). Больше не нужно смотреть на показатель, чтобы понять: имеем мы право ставить под корень отрицательное число или нет. Потому что отрицательные числа больше в принципе не рассматриваются.

Возможно, вы спросите: «Ну и зачем нам такое кастрированное определение?» Или: «Почему нельзя обойтись стандартным определением, данным выше?»

Что ж, приведу всего одно свойство, из-за которого новое определение становится целесообразным. {2}}}=\sqrt[6]{4} \gt 0. \\ \end{align}$

Как видите, в первом случае мы вынесли минус из-под радикала (имеем полное право, т.к. показатель нечётный), а во втором — воспользовались указанной выше формулой. Т.е. с точки зрения математики всё сделано по правилам.

WTF?! Как одно и то же число может быть и положительным, и отрицательным? Никак. Просто формула возведения в степень, которая прекрасно работает для положительных чисел и нуля, начинает выдавать полную ересь в случае с отрицательными числами.

Вот для того, чтобы избавиться от подобной неоднозначности, и придумали арифметические корни. Им посвящён отдельный большой урок, где мы подробно рассматриваем все их свойства. Так что сейчас не будем на них останавливаться — урок и так получился слишком затянутым.

Алгебраический корень: для тех, кто хочет знать больше

Долго думал: выносить эту тему в отдельный параграф или нет. В итоге решил оставить здесь. Данный материал предназначен для тех, кто хочет понять корни ещё лучше — уже не на среднем «школьном» уровне, а на приближенном к олимпиадному. {n}}=a \right. \right\}\]

Принципиальное отличие от стандартного определения, приведённого в начале урока, состоит в том, что алгебраический корень — это не конкретное число, а множество. А поскольку мы работаем с действительными числами, это множество бывает лишь трёх типов:

  1. Пустое множество. Возникает в случае, когда требуется найти алгебраический корень чётной степени из отрицательного числа;
  2. Множество, состоящее из одного-единственного элемента. Все корни нечётных степеней, а также корни чётных степеней из нуля попадают в эту категорию;
  3. Наконец, множество может включать два числа — те самые ${{x}_{1}}$ и ${{x}_{2}}=-{{x}_{1}}$, которое мы видели на графике квадратичной функции. Соответственно, такой расклад возможен лишь при извлечении корня чётной степени из положительного числа.

Последний случай заслуживает более подробного рассмотрения. Посчитаем парочку примеров, чтобы понять разницу.

Пример. Вычислите выражения:

\[\overline{\sqrt{4}};\quad \overline{\sqrt[3]{-27}};\quad \overline{\sqrt[4]{-16}}. \]

Решение. С первым выражением всё просто:

\[\overline{\sqrt{4}}=\left\{ 2;-2 \right\}\]

Именно два числа входят в состав множества. Потому что каждое из них в квадрате даёт четвёрку.

\[\overline{\sqrt[3]{-27}}=\left\{ -3 \right\}\]

Тут мы видим множество, состоящее лишь из одного числа. Это вполне логично, поскольку показатель корня — нечётный.

Наконец, последнее выражение:

\[\overline{\sqrt[4]{-16}}=\varnothing \]

Получили пустое множество. Потому что нет ни одного действительного числа, которое при возведении в четвёртую (т.е. чётную!) степень даст нам отрицательное число −16.

Финальное замечание. Обратите внимание: я не случайно везде отмечал, что мы работаем с действительными числами. Потому что есть ещё комплексные числа — там вполне можно посчитать и $\sqrt[4]{-16}$, и многие другие странные вещи.

Однако в современном школьном курсе математики комплексные числа почти не встречаются. Их вычеркнули из большинства учебников, поскольку наши чиновники считают эту тему «слишком сложной для понимания».

На этом всё. В следующем уроке мы рассмотрим все ключевые свойства корней и научимся, наконец, упрощать иррациональные выражения.:)

Смотрите также:

  1. Умножение корней n-й степени
  2. Свойства арифметического квадратного корня
  3. Тест к уроку «Округление с избытком и недостатком» (1 вариант)
  4. Пробный ЕГЭ 2012 от 7 декабря. Вариант 5 (без производной)
  5. Задача B4: случай с неизвестным количеством товара
  6. Задача B2 про комиссию в терминале

Калькулятор степеней онлайн

– Автор: Игорь (Администратор)

С помощью данного бесплатного онлайн калькулятора вы сможете возвести в степень число (в квадрат, в куб, в положительную, в отрицательную, в десятичную, в общем любую). Преимуществом сервиса является то, что расчет осуществляется автоматически. Просто вводите значения в соответствующие поля.

Примечание: Так же вам может быть полезен калькулятор квадратных корней.

Возведение числа в степень

 

Результат возведения 0.0000

 

 

Округлять до знаков после запятой (от 0 до 10)

 

Как пользоваться онлайн калькулятором степеней?

Все очень просто. Рассмотрим на примере вычисления куба числа 10.

1. Укажите степень — это 3, так как это куб.

2. Введите число — это 10.

3. Автоматически отобразится результат в виде 1000.

Примечание: Стоит учитывать, что калькулятор поддерживает десятичные дробные числа как для основания, так и для степени. Например, 1,231 в 4,23 степени будет равно 2.4087 (4 знака после запятой) и 2.4087490917 (если выбрать 10 знаков).

Что такое натуральная степень числа?

Число p называют n-ной степенью числа a, если число p равно числу а, умноженному само на себя n раз.

Как возвести число в натуральную степень?

Рассмотрим пример для понимания. Допустим, вам необходимо возвести число 2 в 6-ю степень. Для этого нужно 2 умножить 6 раз подряд.

2 * 2 * 2 * 2 * 2 * 2 = 64

Что такое натуральная отрицательная степень числа?

Отрицательная степень n числа a равна единице, деленной на число a в степени n.

Как возвести число в натуральную отрицательную степень?

Рассмотрим пример для понимания. Допустим, вам необходимо возвести число 5 в минус 2-ю степень. Для этого нужно единицу поделить на 5 умноженное 2 раза подряд.

1 / (5 * 5) = 1 / (25) = 0,04

В случае с 10 в -3 степени будет 1 / (10 * 10 * 10) = 1 / (1000) = 0,001

Теперь, у вас всегда есть под рукой удобный и легкий калькулято

Калькулятор корня

Калькулятор квадратного корня

Калькулятор кубического корня

Калькулятор общего корня


Калькулятор связанных показателей | Научный калькулятор | Log Calculator

В математике, общий корень или корень n th числа a — это другое число b , которое при умножении на себя n раз равно a . В формате уравнения:

n √a = b
б н = а

Оценка корня

Некоторые общие корни включают квадратный корень, где n = 2, и кубический корень, где n = 3.Вычисление квадратных корней и корней n th довольно сложно. Это требует оценки, проб и ошибок. Существуют более точные и эффективные способы вычисления квадратных корней, но ниже приведен метод, который не требует значительного понимания более сложных математических концепций. Для расчета √a:

  1. Оценить число b
  2. Разделите a на b . Если возвращаемое число c является точным до желаемого десятичного разряда, остановитесь.
  3. Среднее значение b и c и использование результата в качестве нового предположения
  4. Повторите шаг два
EX: Найти √27 до 3 знаков после запятой
Предположение: 5. 125
27 ÷ 5,125 = 5,268
(5,125 + 5,268) / 2 = 5,197
27 ÷ 5,197 = 5,195
(5,195 + 5,197) / 2 = 5,196
27 ÷ 5,196 = 5,196

Оценка n th Корень

Вычисление корней n th может быть выполнено аналогичным методом, но с изменениями для работы с n .Вычисление квадратного корня полностью вручную утомительно. Оценить более высокие корни n th , даже если использовать калькулятор для промежуточных шагов, значительно утомительнее. Для тех, кто разбирается в рядах, см. Здесь более математический алгоритм для вычисления корней n th . Для более простого, но менее эффективного метода перейдите к следующим шагам и примеру. Для расчета n √a:

  1. Оценить число b
  2. Разделите a на b n-1 .Если возвращаемое число c является точным до желаемого десятичного разряда, остановитесь.
  3. Среднее значение: [b × (n-1) + c] / n
  4. Повторите шаг два
EX: Найти 8 √15 до 3 знаков после запятой
Предположение: 1. (3x) `.3 (х).
  • Из приведенной ниже таблицы вы можете заметить, что sech не поддерживается, но вы все равно можете ввести его, используя идентификатор `sech (x) = 1 / cosh (x)`.
  • Если вы получили сообщение об ошибке, дважды проверьте свое выражение, добавьте круглые скобки и знаки умножения там, где это необходимо, и обратитесь к таблице ниже.
  • Все предложения и улучшения приветствуются. Пожалуйста, оставьте их в комментариях.
  • В следующей таблице перечислены поддерживаемые операции и функции:

    9 0067 acsc (x)
    Тип Получить
    Константы
    e e
    pi `pi`
    i i (мнимая единица)
    Операции
    a + b a + b
    ab ab
    a * b `a * b`
    a ^ b, a ** b` a ^ b`
    sqrt (x), x ^ (1/2) `sqrt (x)`
    cbrt (x), x ^ (1/3) `root (3 ) (x) `
    root (x, n), x ^ (1 / n)` root (n) (x) `
    x ^ (a / b)` x ^ (a / b) `
    x ^ a ^ b` x ^ (a ^ b) `
    abs (x)` | x | `
    Функции
    e ^ x `e ^ x`
    ln (x), журнал (x) ln (x)
    ln (x) / ln (a) `log_a (x)`
    Тригонометрические функции
    sin (x) sin (x)
    cos (x) cos (x)
    tan (x) tan (x), tg (x)
    кроватка (x) кроватка (x), ctg ( x)
    sec (x) sec (x)
    csc (x) csc (x), cosec (x)
    Обратные тригонометрические функции
    asin (x) , arcsin (x), sin ^ -1 (x) asin (x)
    acos (x), arccos (x), cos ^ -1 (x) acos (x)
    atan (x), arctan (x), tan ^ -1 (x) atan (x)
    acot (x), arccot ​​(x), cot ^ -1 (x) acot (x)
    asec (x), arcsec (x), sec ^ -1 (x) asec (x)
    acsc (x), arccsc (x), csc ^ -1 (x)
    Гиперболические функции
    sinh (x) sinh (x)
    cosh (x) cosh (x)
    tanh (x) tanh (x)
    coth (x) coth (x)
    1 / cosh (x) sech (x)
    1 / sinh (x) csch (x)
    Обратные гиперболические функции
    asinh (x), arcsinh (x), sinh ^ -1 (x) asinh (x)
    acosh (x), arccosh (x), cosh ^ — 1 (x) acosh (x)
    atanh (x), arctanh (x), tanh ^ -1 (x) atanh (x)
    acoth (x), arccoth (x) , кроватка ^ -1 (x) acoth (x)
    acosh (1 / x) asech (x)
    asinh (1 / x) acsch (x)

    Калькулятор кубического корня

    Использование калькулятора

    Используйте этот калькулятор, чтобы найти кубический корень из положительных или отрицательных чисел. Учитывая число x , кубический корень x — это число a , такое что a 3 = x . Если x положительный , будет положительным, если x отрицательно будет отрицательным. Кубические корни — это особая форма нашего общего Калькулятор радикалов.

    Пример корней куба:

    • Третий корень 64, или 64, радикал 3, или кубический корень из 64 записывается как \ (\ sqrt [3] {64} = 4 \).
    • Корень 3-го числа из -64, или -64, радикал 3, или кубический корень из -64 записывается как \ (\ sqrt [3] {- 64} = -4 \).
    • Кубический корень из 8 записывается как \ (\ sqrt [3] {8} = 2 \).
    • Кубический корень из 10 записывается как \ (\ sqrt [3] {10} = 2,154435 \).

    Кубический корень x такой же, как x в степени 1/3. {\ frac {1} {3}} \).Распространенное определение кубического корня отрицательного числа таково:
    (-x) 1/3
    = — (x 1/3 ) . [1] Например:

    • Кубический корень из -27 записывается как \ (\ sqrt [3] {- 27} = -3 \).
    • Кубический корень из -8 записывается как \ (\ sqrt [3] {- 8} = -2 \).
    • Кубический корень из -64 записывается как \ (\ sqrt [3] {- 64} = -4 \).

    Кубические корни (для целочисленных результатов от 1 до 10)

    • Кубический корень из 1 1
    • Корень кубический из 8 равен 2
    • Корень кубический из 27 равен 3
    • Кубический корень из 64 равен 4
    • Кубический корень из 125 составляет 5
    • Кубический корень из 216 равен 6
    • Корень кубический из 343 равен 7
    • Кубический корень из 512 равен 8
    • Кубический корень из 729 равно 9
    • Кубический корень из 1000 составляет 10

    Для вычисления дробных показателей используйте наш калькулятор для Дробные экспоненты.

    Список литературы

    [1] Вайсштейн, Эрик В. «Кубический корень». Из MathWorld — Интернет-ресурс Wolfram. Кубический корень

    Дополнительная литература о кубических корнях:

    Математический форум 0 — это идеальный квадрат?

    Математика — это забавные кубические корни

    Вычислить любую степень i (квадратный корень из -1)

    Быстрый! Мне нужна помощь с: Выберите пункт справки по математике…Calculus, DerivativesCalculus, IntegrationCalculus, Quotient RuleCoins, CountingCombinations, Find allComplex Numbers, Adding ofComplex Numbers, Calculating withComplex Numbers, MultiplyingComplex Numbers, Powers ofComplex NumberConversion, SubtractingConversion, TemperatureConversion, FindConversion, MassConversion, Mass анализ AverageData, поиск стандартного отклонения, анализ данных, гистограммы, десятичные числа, преобразование в дробь, электричество, стоимость факторинга, целые числа, факторы наибольшего общего, наименьшее число общих фракций, добавление фракций, сравнение фракций, преобразование фракций, преобразование в десятичные дроби, дробление фракций, умножение фракций, уменьшение дробных фракций, умножение фракций , BoxesGeometry, CirclesGeometry, CylindersGeometry, RectanglesGeometry, Right TrianglesGeometry, SpheresGeometry, SquaresGraphing, LinesGraphing, Any functionGraphing, CirclesGraphing, EllipsesGraphing, HyperbolasGraphing, InequalitiesGraphing, Polar PlotGraphing, (x, y) pointInequalities, GraphingInequalities, SolvingInterest, CompoundInterest, SimpleLines, The Equation from point and slopeLines, The Equation from slope and y-intLines, The Equation from two pointsLodsottery Практика полиномов Математика, Практика основ , Факторинг разности квадратов многочленов, разложение на множители трехчленов, многочленов, разложение на множители с GCF Полиномы, умножение многочленов, возведение в степень ns, Решить с помощью факторинга Радикалы, Другие корни Радикалы, Отношения квадратного корня, Что они собой представляют, Вывод на пенсию, Экономия на продажной цене, РасчетНаучная нотация, ПреобразованиеНаучной нотации, ДелениеНаучная нотация, Умножение форм, ПрямоугольникиУпрощение, Все, что угодноУпрощение, Экспоненты, Образцы, Упрощение, Упрощение, Упрощение, Методы Правые треугольники, Ветер, рисунок

    Калькулятор квадратного корня

    онлайн — Упрощение калькулятора сурдов

    Резюме:

    Онлайн калькулятор сурдов, который позволяет производить расчеты в точной форме с квадратными корнями: сумма, произведение, разница, соотношение.

    simpleify_surd онлайн
    Описание:

    Калькулятор сурдсов может упростить квадратный корень ( основание ) алгебраического выражения. Вычисление квадратного корня оформляется онлайн в точном виде. Калькулятор системы счисления позволяет выполнять онлайн-расчет и упростить онлайн квадратный корень (сурды), произведение сурдов (основание), частные сурдов.Помимо предоставления точного результата, вычислитель квадратного корня определит различные этапы вычисления . Обычно обозначение квадратного корня — , при использовании калькулятора необходимо использовать обозначение sqrt .

    Упрощение квадратного корня онлайн

    Чтобы упростить квадратный корень с помощью калькулятора , просто введите термин для упрощения и примените simpleify_surd функция. 2) = abs (a)`.

    Вычисление произведения квадратного корня в режиме онлайн (произведение Surds)

    Калькулятор квадратного корня также вычисляет радикальные произведения онлайн в точной форме.

    Таким образом, для вычисления произведения следующих квадратных корней sqrt (33) * sqrt (6) введите simpleify_surd (`sqrt (33) * sqrt (6)`), возвращается результат `3 * sqrt (22)`.

    Калькулятор долей Surds (частное квадратного корня)

    Онлайн-калькулятор квадратного корня может упрощать частные корня из Surds в точной форме.

    Таким образом, для вычисления частного следующих квадратных корней `sqrt (72) / sqrt (6)`, просто введите simpleify_surd (`sqrt (72) / sqrt (6)`) возвращается результат `2 * sqrt (3)`.

    Таким образом, для вычисления дроби квадратного корня после sqrt (99) / sqrt (6) просто введите simpleify_surd (`sqrt (99) / sqrt (6)`) возвращается результат со строками вычисления.

    Онлайн калькулятор квадратного корня по шагам

    Онлайн-калькулятор квадратного корня возвращает шаги расчета для лучшего понимания.


    Онлайн калькулятор сурдсов, позволяющий производить расчеты в точном виде с квадратными корнями: сумма, произведение, разница, соотношение.
    Синтаксис:
    simpleify_surd (x), где x представляет собой квадратный корень для вычисления
    Примеры:

    Этот пример показывает , как упростить квадратные корни с помощью калькулятора:

    Рассчитайте онлайн с Simpleify_surd (Упрощение калькулятора Surds)

    Calculus II — серия Power

    Онлайн-заметки Павла

    Ноты Быстрая навигация Скачать

    • Перейти к
    • Ноты
    • Проблемы с практикой
    • Проблемы с назначением
    • Показать / Скрыть
    • «> Показать все решения / шаги / и т. Д.
    • Скрыть все решения / шаги / и т. Д.
    • Разделы
    • Оценка стоимости серии
    • Серия
    • Power и функции
    • Разделы
    • Параметрические уравнения и полярные координаты
    • Векторы
    • Классы
    • Алгебра
    • Исчисление I
    • Исчисление II
    • Исчисление III
    • Дифференциальные уравнения
    • Дополнительно
    • Алгебра и триггерный обзор
    • Распространенные математические ошибки
    • Праймер комплексных чисел
    • Как изучать математику
    • Шпаргалки и таблицы
    • Разное
    • Свяжитесь со мной
    • Справка и настройка MathJax
    • Мои студенты
    • Заметки Загрузки
    • Полная книга
    • Текущая глава
    • Текущий раздел
    • Practice Problems Загрузок
    • Полная книга — Только проблемы
    • Полная книга — Решения
    • Текущая глава — Только проблемы
    • Текущая глава — Решения
    • Текущий раздел — Только проблемы
    • Текущий раздел — Решения
    • Проблемы с назначением Загрузок
    • Полная книга
    • Текущая глава
    • Текущий раздел
    • Прочие товары
    • Получить URL для загружаемых элементов
    • Распечатать страницу в текущем виде (по умолчанию)
    • Показать все решения / шаги и распечатать страницу
    • Скрыть все решения / шаги и распечатать страницу
    • Дом
    • Классы
    • Алгебра
    .

    Leave a Reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *