Калькулятор корней со степенями онлайн: Калькулятор корней онлайн

Опубликовано

Калькулятор корней

Что такое корень числа?

Корень n-й степени из числа x — это такое число r, которое в степени n равняется x. Или другими словами: rn= x.

Эта запись с математическим корнем из числа х в n-ой степени имеет собственное название в каждом символе:

  • n — здесь является степенью или показателем корня, n всегда является натуральным числом, таким, как — 1, 2, 3 и так далее.
  • х — здесь является выражением или подкоренным числом. Выражается, как вещественное или любое комплексное число.
  • √ — здесь является символом корня или знаком, имеющим еще другое название — радикал.

Например:

Такое выражение читается, как корень третьей степени от числа 8. Это корень равняется двум. Число 3 здесь является степенью корня, а число 8 – подкоренным числом.

В математике нахождение корня называется «извлечение корня».

Причём важно разделять понятия арифметического и алгебраического корня.

Арифметический или алгебраический (общий)

Арифметический корень n-й степени из неотрицательного вещественного числа a — это неотрицательное число b, для которого bn=a. Обозначается арифметический корень знаком радикала (про который мы уже сказали выше).

Арифметический корень второй степени из числа a (√a) — это неотрицательное число b (b ≥ 0), при котором выполняется равенство b2 = a. К примеру, корнями второй степени из числа 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

Таким образом, арифметический корень, в отличие от корня общего вида (или алгебраического), определяется только для неотрицательных вещественных чисел, а его значение всегда существует, однозначно и неотрицательно.

Далее мы будем говорить именно про арифметические корни.

Наиболее часто используемые корни — это корни второй степени и корни третьей степени.

Они даже имеют собственные названия:

  • Квадратный корень
  • Кубический корень

Квадратный корень

Квадратный корень – это корень со степенью два. Чаще всего, в значении радикала степень «два» не прописывается, а просто используется символ √.

Арифметический квадратный корень всегда является положительным числом, и кроме того подкоренное значение также всегда положительно.

Почему все происходит именно так, нам расскажет простой пример с решением:

  • Ищем квадратный корень из -16.
  • Логично предположить в ответе — 4.
  • Но если проверить таким образом: 4*4 = 16 — то нет, не сходится.
  • Если — 4, то -4 * -4 = 16, нужно отметить, что минус на минус всегда в итоге дает плюс.

Ни одно число при возведении его в квадрат не дает отрицательного результата.

Вывод: все числа, которые стоят под знаком корня, всегда должны быть положительными.

Кубический корень

Кубический корень – это такое число, которое для получения подроренного числа нужно умножить само на себя три раза.

К примеру, кубический корень из 64 будет равен «4».

Решение будет выглядеть так: 4х4х4 = 64.

Как появились математические корни?

Впервые задачи, в которых извлекался квадратный корень, обнаружили у вавилонских математиков. Именно в них применялись теоремы Пифагора для того, чтобы определить треугольник с прямыми углами по двум другим известным сторонам.

Также в них находили стороны квадрата с заданной площадью и решали квадратные уравнения.

Для извлечения квадратного корня древние математики разработали специальный численный метод. Для квадратного корня из «a» они рассчитывали натуральные числа n в меньшую сторону из ближайшего к корню. Если выражение «a = n2 + r» представить в таком виде, то можно получить

И далее шел уточняющий процесс, который соответствовал методу Ньютона:

Как произошла символика значений? У корня очень сложная и долгая история. Его извлекали еще древние греки и подходили к этому очень ответственно: они находили стороны квадрата по его площади. Математики средневековья сокращали корень от «radix» и обозначали его Rx.

В современном понятии черта над подкоренным выражением сначала отсутствовала, но в 1637 году ее ввел Декарт вместо скобок. Сейчас она так и осталась со знаком корня.

Рене Декарт (1596–1650) — французский математик и философ. Декарт является одним из основателей философии Нового времени и аналитической геометрии, а ещё он – одна из ключевых фигур научной революции.

Главные свойства корней

Корень нечетной степени, состоящий из положительного числа — есть положительное число, определенное однозначно.

Корень нечетной степени, состоящий из отрицательного числа — есть отрицательное число, определенное однозначно.

Корень чётной степени, состоящий из положительного числа, имеет 2 значения со знаками противоположности, но равными по модулю.

Корень чётной степени, состоящий из отрицательного числа в области вещественных чисел, не существует, так как при возведении любого вещественного числа в степень с четными показателями в результате получится неотрицательное число.

Ниже показано, как извлекать данные корни в множестве комплексных чисел, когда значениями корня будут n комплексных чисел.

Корень любой натуральной степени из нуля — ноль.

Алгоритм нахождения корня n-степени

Корень n-ой степени n√A действительного положительного числа А есть действительное положительное решение уравнений xn = A.

Как найти быстро сходящийся алгоритм корня в n-ой степени? Для этого нужно:

1. Вычислить начальное предположение x0

2. Определить

3. Далее повторять пункт № 2 до момента, пока необходимая точность не будет достигнута.

Для нахождения квадратного корня итерационной формулы Герона служит частный случай, с подстановкой выглядит так:

n = 2 в шаг 2: xk+1 = (xk + A/xk) / 2

Имеется несколько вариантов данного алгоритма. Один — как касательный метод Ньютона для нахождения нулей функций f(x). Сходится такой метод достаточно быстро, несмотря на то что является итерационным.

У этого метода скорость сходимости является квадратичной. Это указывает на то, что числа с верными разрядами в ответе будут удваиваться с каждой итерацией — другими словами, будет увеличиваться точность нахождения ответа с 1-го до 64-х разрядов, и будет требоваться только шесть итераций. Но следует помнить и о машинной точности.

Из всего этого можно сделать заключение, что в компьютерах данный алгоритм используется, как самый быстрый метод нахождения корней в квадрате.

Что касается больших значений n, то алгоритм здесь будет менее эффективным, поскольку потребует на каждом шагу таких вычислений:

Но такое вычисление выполняется при помощи алгоритма быстрого возведения в степень.

❓Вопросы и ответы

А также обратите внимание на ответы на некоторые часто задаваемые вопросы.

Для чего на практике надо найти корень?

Если в науке что-то существует — то это обязательно для чего-то нужно, даже если нет обычного понимания для чего. Квадратный корень используется повсюду, но в основном там, где имеется какая-нибудь геометрия.

К примеру, компьютерная графика. Для значительного достижения и улучшения в свое время применялись специальные алгоритмы быстрого обратного квадратного корня в играх. Сегодня без квадратных корней невозможно поиграть в такие игры, как «танчики», Скайрим, Киберпанк.

Можно ли корень записать в виде степени?

Да, корень от x в степени n – это x в степени 1/n.

Как связаны между собой степень в виде десятичной дроби и корни?

Переход от степени с выражениями и дробными показателями в основании выполняется на области всех допустимых значений в основании степени при исходных выражениях.

К примеру:

представляется, как квадратный корень

А запись

выражается для всех x, y, z, как

Как пользоваться калькулятором корней?

org/Answer»>Для того, чтобы вычислить квадратный корень с пошаговым объяснением, достаточно воспользоваться калькулятором на этом сайте ecalc.ru.

Наш сайт позволяет быстро и точно вычислить корень из числа онлайн. И не нужно высчитывать все самостоятельно в уме, искать готовые решения задач или проверять ответы.

Нужно просто вписать все необходимые данные. Если нужно просто найти корень, следует указать число под √. Если понадобится, то ввести степень. Обычно вычисляется корень во второй степени, но здесь ее можно и не указывать.

Поделитесь в соцсетях

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Комплексные корни и степени чисел онлайн

  • Полином Чебышева с свободным членом
  • Создать вектор(диофант) по матрице
  • Египетские дроби. Часть вторая
  • Египетские (аликвотные) дроби
  • По сегменту определить радиус окружности
  • Круг и площадь, отсекаемая перпендикулярами
  • Деление треугольника на равные площади параллельными
  • Определение основных параметров целого числа
  • Свойства обратных тригонометрических функций
  • Разделить шар на равные объемы параллельными плоскостями
  • Взаимосвязь между организмами с различными типами обмена веществ
  • Аутотрофные и миксотрофные организмы
  • Рассечение круга прямыми на равные площади
  • Период нечетной дроби онлайн. Первые полторы тысяч разложений.
  • Представить дробь, как сумму её множителей
  • Решение системы из двух однородных диофантовых уравнений
  • Расчет основных параметров четырехполюсника
  • Цепочка остатков от деления в кольце целого числа
  • Система счисления на базе ряда Фибоначчи онлайн
  • Уравнение пятой степени. Частное решение.
  • Рассчитать площадь треугольника по трем сторонам онлайн
  • Общее решение линейного диофантового неоднородного уравнения
  • Частное решение диофантового уравнения с несколькими неизвестными
  • Онлайн разложение дробно рациональной функции
  • Корни характеристического уравнения
Основание степени. Произвольное число
Значение степени. В том числе комплексное число
Точность вычисления. Количество знаков после запятой
Вы ввели следующее выражение
Результат вычисления степени
Результат выражения (альтернативный вывод) со всеми корнями

Этот онлайн калькулятор  рассчитывает любые степени действительных или комплексных чисел.

Поможет Вам рассчитать корень комплексного числа, возвести в степень действительное или комплексное выражение.

Рассчитывает степень любого числа

Хотелось бы заметить, что возведение любого действительного числа в дробную степень, не так сложно как может показаться на первый взгляд.

то есть, если мы хотим возвести число 3 в степень 

то  решение такое

Итого

Если речь идет о комплексных числах,  то  возведение степень и извлечени корня осуществляется по уравнению Муавра.

Формулы следующие:

Для возведения в степень

— модуль комплексного числа

— аргумент комплексного числа

Для извлечения корня

 

где p = 0, 1, …, k—1.

Есть еще третий возможный вариант, когда  не только основание является комплексным числом, но и степень этого числа также число комплексное.

Конечно возникает желание использовать формулу Муавра и преобразовать её, для наших нужд, но мы воспользуемся первым вариантом вычисления степеней.

то есть вот этой формулой 

Формула  расчета логарифа комплексного числа известна

здесь k — может принимать любые целые  значения, поэтому говорят, что логарифм комплексного числа многозначен.

 

Для практических целей используется главное значение(k=0)

Формула расчета экспоненты комплексного числа тоже

Таким образом у нас есть всё, что бы рассчитать на практике комплексную степень комплексного  числа.

Синтаксис 

Если используете XMPP клиент:  step_i <запрос>

Если используете этот сайт:  <запрос>

где запрос  — состоит  из двух чисел. Сначала идет основание потом  в другом окне степень.

Основание может быть как действительным числом так и комплексным, положительным или отрицательным

Комплексное значение пишется как x:y  где х- действительная часть числа, а y- мнимая часть, но можно написать и в нормальном виде через символ i

Степень может  быть быть целым числом,как положительным так и отрицательным.

Степень может быть выражена также степенью двух целых чисел например 1/2 или -5/7. В таком случае альтернативный вывод покажет Вам, все 2 или все 7 корней соответственно.

Степень может быть комплексным числом записанным как в нормальной форме через символ i, так  и через сокращенную запись x:y, где x- действительная часть числа, y — мнимая часть числа

Замечание: В поле можно вводить только числа и никак не выражение, если у Вас есть желание посчитать вот такое выражение 

то эта страница вам не поможет, Вам надо  использовать универсальный калькулятор комплексных чисел

где x- это основание, а y-степень

Примеры

Например: взять степень 2/5 от комплексного числа 1-2.5i

Пишем 1:-2.5 2/5 или если делаете запрос через Jabber  step_i 1:-2.5 2/5

Ответ получим

Комплексное число 1:-2. 5 в степени 2/5 равно

Действительная часть: 1.3209 Комплексная часть: -0.6812
Действительная часть: 1.0560 Комплексная часть: 1.0457
Действительная часть: -0.6682 Комплексная часть: 1.3275
Действительная часть: -1.4690 Комплексная часть: -0.2253

Действительная часть: -0.2396 Комплексная часть: -1.4667


Интересно, а чему будет равна мнимая единица в степени мнимой единицы?

пишем i i

и получаем что 


возведем еще одно число в комплексную степень.

число 1+i в комплексную степень 1-i

результат вот такой 

  • Конвертер и калькулятор в разные системы счисления онлайн >>
Поиск по сайту
  • Русский и английский алфавит в одну строку
  • Часовая и минутная стрелка онлайн. Угол между ними.
  • Массовая доля химического вещества онлайн
  • Декoдировать текст \u0xxx онлайн
  • Универсальный калькулятор комплексных чисел онлайн
  • Перемешать буквы в тексте онлайн
  • Частотный анализ текста онлайн
  • Поворот точек на произвольный угол онлайн
  • Обратный и дополнительный код числа онлайн
  • Площадь многоугольника по координатам онлайн
  • Остаток числа в степени по модулю
  • Расчет пропорций и соотношений
  • Как перевести градусы в минуты и секунды
  • Расчет процентов онлайн
  • Поиск объекта по географическим координатам
  • Растворимость металлов в различных жидкостях
  • DameWare Mini Control. Настройка.
  • Время восхода и захода Солнца и Луны для местности
  • Калькулятор географических координат
  • Расчет значения функции Эйлера
  • Перевод числа в код Грея и обратно
  • Теория графов. Матрица смежности онлайн
  • Произвольный треугольник по заданным параметрам
  • НОД двух многочленов. Greatest Common Factor (GCF)
  • Географические координаты любых городов мира
  • Площадь пересечения окружностей на плоскости
  • Онлайн определение эквивалентного сопротивления
  • Непрерывные, цепные дроби онлайн
  • Сообщество животных. Кто как называется?
  • Проекция точки на плоскость онлайн
  • Калькулятор онлайн расчета количества рабочих дней
  • Из показательной в алгебраическую. Подробно
  • Расчет заряда и разряда конденсатора через сопротивление
  • Система комплексных линейных уравнений
  • Расчет понижающего конденсатора
  • Построить ненаправленный граф по матрице
  • Месторождения золота и его спутники
  • Определение формулы касательной к окружности
  • Дата выхода на работу из отпуска, декрета онлайн
  • Каноническое уравнение гиперболы по двум точкам
Онлайн расчеты
Подписаться письмом

Калькулятор степеней и корней степеней



Этот калькулятор требует использования браузеров с поддержкой Javascript и поддержкой . Этот калькулятор предназначен для вычисления степеней (также известных как экспоненты или индексы) и корней степени любого числа. В некоторых случаях, как в случае с мэйнфреймами и мини-компьютерами, наши расчеты корней мощностей являются очень близкими приближениями. Введите целевое число и нажмите «Рассчитать». И степени, и значения степенных корней вычисляются до 18 цифр. Вы можете нажать «Очистить значения», чтобы сделать другое.

Отрицательная мощность обратна множеству. Например, если набор равен 5 в степени 2 (или 5 в квадрате, или 5², или 5 * 5), обратная величина равна 1 / (5 * 5).

Силы и корни власти
Требуемый ввод данных
Введите значение
Введите значение мощности
Результаты расчетов
Расчетный корень мощности
Расчетная мощность



Версия 1. 1.9

Оставьте нам вопрос или комментарий на Facebook

Поиск или просмотр нашего сайта

Калькулятор квадратного корня с переменными и показателями

 

 

Вот несколько ключевых слов, которые недавно вводили наши пользователи для посещения наших справочных страниц по математике.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *