Квадрат суммы онлайн: Квадрат суммы | Онлайн калькулятор

Опубликовано

Сумма квадратов всех целых чисел: онлайн калькулятор

Сумма квадратов чисел — математическое выражение, для которого не существует формулы сокращенного умножения. На практике иногда требуется быстро прикинуть сумму нескольких квадратов, однако без математических хитростей такое выражение подсчитать достаточно трудно.

Формулы сокращенного умножения

Для упрощения расчетов в математике используются специальные формулы сокращенного умножения, которые, по сути, представляют собой частные случаи бинома Ньютона. При помощи таких формул легко вручную подсчитать, например, квадрат суммы или разности вида:

(a ± b)2 = a2 ± 2ab + b2

Существует множество формул для решения подобных выражений, и дело не ограничивается квадратами. При помощи формул легко подсчитать куб разности или сумму многочленов n-ной степени. Мы легко можем подсчитать даже выражение (a + b + c)3, однако формулы сокращенного умножения для простого выражения как:

a2 + b2

в учебниках по математике вы не найдете. Естественно, она есть для комплексных чисел, тех самых, с которыми мы знакомимся в университетском курсе математического анализа. Выглядит эта формула достаточно жутко:

a2 + b2 = (a + ib) × (a — ib),

где i – легендарная мнимая единица, которая рассчитывается как квадратный корень из минус единицы.

В школьных примерах продвинутые ребята негласно используют формулу, которая не входит в пантеон формул сокращенного умножения:

a2 + b2 = (a + b)2 − 2ab.

Эта формула идеально подходит только для вычисления суммы квадратов двух целых чисел. Но что делать, если на практике требуется сложить сумму нескольких квадратов или рациональных чисел? Здесь на сцене появляется наша программа.

Наша программа позволяет сложить сколько угодно квадратов целых и рациональных чисел. Для вычислений вам потребуется ввести числа в ячейку, отделив их пробелом. Десятичные дроби записываются и с точкой, и с запятой. Рациональные числа записываются через / (слэш). Итак, вы можете подсчитать сумму нескольких квадратных чисел, но для чего это вообще нужно?

Рассмотрим примеры работы калькулятора

Разложение на квадраты

Зачем складывать квадраты целых чисел? Почему бы не складывать их кубы или 33-е степени? Эти вопросы встают перед каждым математиком, занимающимся теорией чисел. Разложение целых чисел на сумму двух квадратов — классическая задача теории чисел, за которой стоит исследование делимости. В целом задача эта обратна теме данной статьи: вопрос ставится таким образом, что математик должен вычислить, раскладывается ли данное число на сумму двух квадратов. Некоторые ученые идут дальше и пытаются раскладывать числа на суммы квадратов последовательных чисел. Мы же просто попробуем сложить некоторые квадраты и посмотрим, что получится в результате. Итак, введем в калькулятор следующие пары чисел:

  • 5 и 0 = 25;
  • 1 и 4 = 25;
  • 8 и 1 = 64;
  • 4 и 7 = 64.

Как видите, разные пары чисел дают один и тот же результат. Кроме того, сами числа 25 и 64 являются квадратами 5 и 8 соответственно. Магия теории чисел, которую трудно применить в каких-нибудь бытовых расчетах.

Гипотенуза 5-мерного тетраэдра

Представим еще менее реальную задачу. Пятимерный тетраэдр или 5-мерный симплекс — это обобщение треугольника для пятимерного пространства. Такие причудливые идеи используются в квантовой физике, теории относительности и барицентрическом исчислении, но для решения некоторых задач от вас не потребуется глубоких знаний высшей математики. К примеру, гипотенуза пятимерного тетраэдра рассчитывается по достаточно простой формуле:

f2 = a2 + b2 + c2 + d2,

где a, b, c, d – стороны симплекса.

Для решения такой задачки достаточно ввести четыре значения в форму онлайн калькулятора и вычислить квадратный корень из результата. Допустим, стороны симплекса в условных единицах имеют следующие значения: 1, 2.3, 3/5, 0,85. Введем этим данные в ячейку через пробел и получим 7,3725. Теперь вычислим квадратный корень и выясним, что гипотенуза пятимерного симплекса равна 2,715.

Заключение

Сумма квадратов нескольких чисел — нестандартная задача, которая вряд ли встретится в обычных бытовых расчетах, как-то вычисление диаметра дачного ограждения или площади пиццы. Для нетривиальных математических расчетов вам пригодится наша программа, которая быстро вычислит сумму квадратов сколько угодно большого количества целых и рациональных чисел.

Квадрат суммы

Квадрат суммы

Навигация по странице:

  • Квадрат суммы — определение
  • Вывод формулы квадрата суммы
  • Применение формулы квадрата суммы
  • Геометрическая интерпретация квадрата суммы
  • Примеры задач на применение формулы квадрата суммы

Определение.

Квадрат суммы двух выражений равен квадрату первого, плюс удвоенное произведение первого и второго, плюс квадрат второго:

(a + b)2 = a2 + 2ab + b2

Вывод формулы квадрата суммы

Для доказательства справедливости формулы квадрата суммы достаточно перемножить выражения раскрыв скобки:

(a + b)2 = (a + b)·(a + b) = a2 + ab + ba + b2 = a2 + 2ab + b2

Применение формулы квадрата суммы

Формулу квадрата суммы удобно использовать:

  • для раскрытия скобок
  • для упрощения выражений
  • для вычисления квадратов больших чисел, не используя калькулятор или умножение в столбик

Геометрическая интерпретация

Формулу квадрата суммы двух положительных чисел a и b можно изобразить геометрически

Рассмотрим квадрат со стороной (a + b), его площадь равна (a + b)2.

В противоположных углах рассматриваемого квадрата построим квадраты со сторонами a и b.

Тогда большой начальный квадрат, будет разделен на четыре части: два квадрата с площадями a2 и b2, а также два прямоугольника с площадями равными ab. Тогда получаем, что

(a + b)2 = (a + b)·(a + b) = a2 + b2 + ab+ ab = a2 + 2ab + b2

Примеры задач на применение формулы квадрата суммы

Пример 1.

Раскрыть скобки (x + 3)

2.

Решение:

(x + 3)2 = x2 + 2·3·x + 32 = x2 + 6x + 9

Пример 2.

Раскрыть скобки (2x + 3y2)2.

Решение:

(2x + 3y2)2 = (2x)2 + 2·(2x)·(3y2) + (3y2)2 = 4x2 + 12xy2 + 9y4

Пример 3.

Упростить выражение

9x2 + 6x + 1(3x + 1)

.

Решение:

Можно заметить, что выражение в числителе — это разложенный квадрат суммы

9x2 + 6x + 1(3x + 1) = (3x + 1)2(3x + 1) = 3x + 1

Заметим, что с помощью формулы квадрата суммы легко находить квадраты больших чисел, не используя калькулятор или умножение в столбик.

Пример 4.

Вычислить 712.

Решение:

712 = (70 + 1)2 = 702 + 2·70·1 + 12 = 4900 + 140 + 1 = 5041

Фомулы сокращенного умножения Квадрат суммы Квадрат разности Разность квадратов Куб суммы Куб разности Сумма кубов Разность кубов

Калькулятор суммы квадратов с шагами

Онлайн-калькулятор общей суммы квадратов поможет вам рассчитать алгебраическую и статистическую сумму квадратов заданных выборочных значений данных. Другими словами, когда дело доходит до статистических терминов, онлайн-калькулятор суммы квадратов отклонений позволяет найти сумму квадратов отклонений (X-Xbar) 2 для набора данных. Калькулятор покажет вам пошаговые расчеты как для статистических, так и для алгебраических расчетов. Ну и помните, что нахождение суммы квадратов очень полезно в области прикладной математики, физики, электроники и т. д.

Итак, начнем с основ!

Что такое сумма квадратов?

В основном, сумма квадратов для выборки данных обычно относится к сумме квадратов отклонений по отношению к среднему значению. В то время как в алгебре этот термин полезен для вычисления суммы двух или более квадратных членов. Если выражение или уравнение имеют два квадратных члена с оператором сложения, то используется формула суммы квадратов.

Наш калькулятор суммы квадратов отклонений выполняет расчеты и отображает результаты в соответствии со следующими формулами!

Попробуйте этот 100% бесплатный калькулятор ковариации, который обеспечивает оценку ковариации между двумя случайными величинами X и Y в вероятностных и статистических экспериментах.

Что такое формула суммы квадратов?
Для статистического расчета:

Уравнение суммы квадратов для статистических данных выглядит следующим образом: 2 Где,

Xi = статистические данные

X̄ = статистическое среднее

Вы можете использовать этот калькулятор суммы квадратов отклонений для расчета суммы квадратов отклонений от среднего значения.

Для алгебраических вычислений:

Формула для вычисления суммы квадратов для алгебраических вычислений следующая:

Общая сумма квадратов = 1 2 +2 2 +3 2 +…… .+n 2

Где,

n = общее число в выражении

Связь между суммой квадратов и выборочной дисперсией:

Сумма квадратов тесно связана с простой дисперсией. Это можно увидеть по следующей формуле:

S2 = S.S / n-1

Здесь S2 — это дисперсия выборки, S.S — сумма квадратов, а n — размер выборки.

Сумма квадратов является отличным признаком уровня изменчивости выборки. Итак, если вы вычисляете (SS), то деление на один минус размер выборки дает результат простой дисперсии.

Калькулятор суммы квадратов отклонений поможет вам рассчитать выборочную дисперсию, найдя сумму квадратов.

Каковы ограничения использования суммы квадратов?

Аналитику, возможно, придется проделать большой объем работы с огромным объемом данных, чтобы с большей уверенностью узнать, как актив имеет низкую или высокую изменчивость. По мере того, как данные становятся больше, сумма квадратов (SS) становится больше, и данные будут более разбросаны.

Обычно используемыми измерениями вариации являются стандартное отклонение и дисперсия. Поскольку мы обсуждали ниже формулу для дисперсии, сначала необходимо вычислить сумму квадратов, а также при расчете суммы квадратов стандартного отклонения (SS). Формула стандартного отклонения:

σ²   =√ S. S / n-1

Неважно, хотите ли вы ввести ряд положительных или отрицательных целых чисел, этот онлайн-калькулятор суммы квадратов точно найдет сумму групповых данных.

Как найти сумму квадратов в Excel?

Чтобы определить сумму квадратов в Excel, вы должны выполнить следующие шаги:

  • Поместите свои данные в ячейку и пометьте данные как «X».
  • Затем рассчитайте среднее значение для выборки и назовите ячейку «X-bar». 92, чтобы получить сумму квадратов.

Как найти сумму квадратов с помощью калькулятора:

Этот калькулятор на 100% бесплатный, он лучше всего подходит для точного вычисления суммы квадратов. Просто следуйте заданным точкам для расчета суммы квадратов.

Читайте дальше!

Ввод:

  • Прежде всего, вы должны выбрать стандарт, от которого отделяются числа, из выпадающего списка этого инструмента.
  • Затем введите цифры ниже в специальное поле.
  • Наконец, нажмите кнопку расчета.

Выводы:

Когда вы заполните все поля, онлайн-калькулятор покажет вам,

  • Сумма квадратов для стат.
  • Сумма квадратов по алгебраич.
  • Пошаговые статистические расчеты.
  • Пошаговые алгебраические вычисления.

Как рассчитать сумму квадратов вручную (шаг за шагом)?

Формула, используемая для статистических и алгебраических расчетов суммы квадратов, обсуждается ниже. Разберем каждый расчет на примере.

Проведите пальцем по экрану!

Пример:

Если у вас есть числа 6,9,3,17,19,23 то найдите сумму квадратов чисел?

Решение (для статистики):

Статистические данные = (6,9,3,17,19,23)

Всего чисел = 6

Общая сумма = 77

Среднее статистическое = 77 / 6

= 12,833

Суммарная сумма квадрата = 𝚺 (Xi -X̄) 2

= (6-12,833) 2 + (9-12,833) 2 + (3-12,833) 2 + (17-12,833) 2 + (19-12,833) 2 + (23-12,833) 2

= 46,6944 + 14,6944 + 96,6944 + 17,3611 + 38,0277 + 103,3611

= 316,8333

Решение (алгебраическое):

Общая сумма квадрата = (6) 2 + (9) 2 + (3) 90 003 2 + (17) 2 + (19) 2 + (23) 2

= 36 + 81 + 9 + 361 + 529

= 1305

Этот калькулятор суммы квадратов генерирует результаты в соответствии с этими вычислениями.

Часто задаваемые вопросы:

Какова сумма квадратов разностей между каждым значением данных и средним значением?

Формула дисперсии представляет собой сумму квадратов разностей между каждыми данными и их средним значением, деленную на общее число. Таким образом, вы также можете узнать стандартное отклонение точек данных.

Чему равна сумма квадратов разностей? 92 также называют суммой квадратов отклонений или просто СС. Он представляет собой сумму квадратов отличий от среднего.

Какие два квадрата, сумма которых равна 100?

Два квадрата, которые складываются и дают результат 100, это 36 и 64.

Как получить сумму столбца в Excel?

Чтобы получить сумму столбца, выполните указанные шаги!

  • Нажмите на первую ячейку и перетащите, чтобы выбрать диапазон ячеек, которые вы хотите вычислить.
  • Нажмите на автосумму.
  • Затем нажмите Сумма.
  • Коснитесь галочки.

Подводя итог:

Сумма квадратов помогает узнать, насколько сильно различаются данные, а также помогает найти другие статистические показатели, такие как дисперсия, стандартное отклонение, стандартная ошибка и т. д. Кроме того, она учитывается при выполнении ANOVA (или дисперсионный анализ), который учитывается, чтобы определить, есть ли различия между несколькими группами данных. Итак, рассмотрим наш онлайн-калькулятор суммы квадратов, чтобы вычислить сумму квадратов любой группы данных (статистически и алгебраически).

Ссылки:

Из источника Википедии: Сумма квадратов, Статистика, Алгебра и алгебраическая геометрия и многое другое!

Из источника Thoughtco: Сокращение формулы суммы квадратов. Действительно ли это сокращение?

Из источника достоверности: концепция суммы квадратов, регрессионный анализ и ошибки. Калькулятор суммы квадратов:

  • Вычисляет сумму квадратов.
  • Вычисляет статистическую дисперсию. Он используется для вычисления суммы квадратов и статистической дисперсии набора данных. Этот калькулятор можно использовать для проверки расчетов регрессии и других статистических операций. Это также полезно в инженерии и дискретной математике.

    Как пользоваться калькулятором суммы квадратов

    Пользоваться калькулятором суммы квадратов очень просто. Просто введите каждую точку данных как отдельное значение, разделенное запятыми или новыми строками. Затем нажмите рассчитать. Калькулятор сгенерирует сумму квадратов для выборки.

    Калькулятор суммы квадратов предоставляет два варианта расчета. Первая версия является статистической версией, которая представляет собой оценку квадрата отклонения для этой выборки. Эта версия полезна при проверке расчетов регрессии и других статистических операций. Второй вариант — алгебраический — мы берем числа и возводим их в квадрат. Эта версия используется для инженерной и дискретной математики.

    Калькулятор суммы квадратов также позволяет сохранять данные и использовать их позже. Просто нажмите кнопку «Сохранить данные». Он сохранит данные в вашем браузере (не на нашем сервере, он останется для вас приватным). Он появится в списке сохраненных наборов данных под панелью ввода данных. Чтобы получить его, нажмите кнопку «Загрузить данные» рядом с ним.

    Вычисление суммы квадратов

    Сумма квадратов — это математическая концепция, используемая для определения количества вариаций в наборе данных. Он рассчитывается путем взятия разницы между каждой точкой данных и средним значением выборки, возведения этой разницы в квадрат, а затем суммирования всех квадратов разностей вместе.

    Сумма квадратов является важным фактором во многих статистических тестах, включая t-тесты и регрессионный анализ. Он используется для расчета выборочной дисперсии, которая является мерой того, насколько отдельные значения в наборе данных отличаются от среднего значения выборки.

    Общая сумма квадратов также рассчитывается по формуле суммы квадратов. Это сумма квадратов различий между каждым наблюдаемым значением и общим средним значением. Общая сумма квадратов является важным фактором при определении коэффициента детерминации, который является мерой того, насколько хорошо линия регрессии соответствует данным.

    Другие статистические показатели

    Помимо суммы квадратов существуют другие статистические показатели, которые можно рассчитать с помощью статистического калькулятора. Одной из таких мер является стандартное отклонение, которое является мерой того, насколько разбросаны данные. Он рассчитывается путем извлечения квадратного корня из дисперсии.

    Дисперсия — еще один важный статистический показатель, который можно рассчитать с помощью суммы квадратов. Это среднее квадратов отличий от среднего. Дисперсия используется для расчета стандартного отклонения и других статистических показателей.

    Статистический критерий Стьюдента — это еще одна статистическая мера, используемая для определения наличия значимой разницы между двумя группами. Он рассчитывается путем деления разницы между средними значениями двух групп на стандартную ошибку разницы.

    Пример расчета

    Допустим, у нас есть набор данных со следующими значениями:

    5, 7, 8, 10, 12, 15

    Чтобы вычислить сумму квадратов, нам сначала нужно вычислить выборочное среднее:

    92 = 30,25

    Наконец, суммируем все квадраты разностей:

    21,25 + 6,25 + 2,25 + 0,25 + 5,25 + 30,25 = 65,5

    Таким образом, сумма квадратов для этого набора данных равна 65,5.

    Заключение

    Калькулятор суммы квадратов — мощный инструмент для анализа данных. Он позволяет вычислять сумму квадратов, статистическую дисперсию и другие статистические показатели. Его можно использовать для определения количества вариаций в наборе данных, что важно для понимания общей картины данных. Сумма квадратов также используется для расчета выборочной дисперсии, которая является мерой того, насколько отдельные значения в наборе данных отличаются от выборочного среднего.

    Выборочная дисперсия является важным фактором во многих статистических тестах, включая t-тесты и регрессионный анализ.

    В целом, калькулятор суммы квадратов является важным инструментом для специалистов по данным и статистиков. Он упрощает расчет суммы квадратов и других статистических показателей, облегчая анализ и понимание данных. Используя этот калькулятор, исследователи и аналитики могут получать ценную информацию о своих наборах данных и принимать обоснованные решения на основе результатов.

    Хотите провести дополнительный анализ? У нас есть инструменты, которые позволят вам построить распределение и сгенерировать гистограмма. Более того, вы можете сохранить свои данные из этот калькулятор и повторно использовать его на этой веб-странице! Или приезжайте назад и использовать его, чтобы проверить свою работу позже. Просто нажмите на кнопка «сохранить данные». Это сохранит данные в вашем браузере (это не наш сервер, он остается для вас приватным). Он появится в списке сохраненных наборов данных под панелью ввода данных.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *