Общий контур заземления: Контур заземления

Опубликовано

Содержание

Контур заземления

Контур заземления классически представляет собой группу соединенных горизонтальным проводником вертикальных электродов небольшой глубины, смонтированных около объекта на относительно небольшом взаимном расстоянии друг от друга.

В качестве заземляющих электродов в таком заземляющем устройстве традиционно использовали стальной уголок либо арматура длинами 3 метра, которые забивали в грунт с помощью кувалды.

В качестве соединительного проводника использовали стальную полосу 4х40 мм, которая укладывалась в заранее подготовленную канаву глубиной 0,5 — 0,7 метра. Проводник присоединялся к смонтированным заземлителям электро- или газосваркой.

Контур заземления для экономии места обычно «сворачивают» вокруг здания вдоль стен (по периметру). Если взглянуть на этот заземлитель сверху, можно сказать, что электроды смонтированы по контуру здания (отсюда и название).

Таким образом контур заземления — это заземлитель, состоящий из нескольких электродов (группы электродов), соединенных друг с другом и смонтированных вокруг здания по его контуру.

Контур заземления: классический или современный?

Классический контур заземления

Современный контур (модульное заземление)

Большая площадь установки Крайне малая площадь установки (вплоть до монтажа в подвале дома)
Необходимы сварные работы Все элементы заземлителя легко соединяются резьбовыми соединениями (не влияет на механические и электрические свойства заземлителя)
Требуется резка материала Все детали изготовлены промышленным способом с гарантировано высоким качеством
Требуется транспортировка грузовым автомобилем Полутораметровая упаковка штырей и коробка с дополнительными элементами умещается в обычный легковой автомобиль
Длительный и физически тяжелый процесс установки, требующий привлечения сварщика Быстрая установка своими силами. Для установки заземлителя требуется только один человек.
Элементы конструкции имеют вес не более 2х килограмм.

Классический контур заземления

Классический контур заземления из стального уголка и арматуры имеет один большой плюс — его цена. Использование дешевого стального проката (уголок и полоса) удешевляет стоимость деталей до минимума. Но с другой стороны у классической схемы есть масса минусов:

  • большая площадь заземлителя (часто необходимо более 10 электродов)
  • необходимость резки материала на куски нужного размера (по 2-6 метра)
  • необходимость транспортировки материала до места установки грузовым автомобилем
  • трудоемкий и длительный процесс установки, требующий забивания уголков-электродов и проведения сварочных работ, требующих квалифицированных специалистов и специального оборудования
  • недолгий срок службы такого заземления
  • необходимость получения множества разрешений при строительстве заземления в городской черте (особенно при плотной застройке)

Современный контур заземления

Преодолеть недостатки классического контура заземления помогли технологии и промышленное производство компонентов. Заложив в основу системы нового типа идею обычного «конструктора», разработчики создали набор унифицированных элементов. С помощью этих элементов / модулей можно легко и быстро самостоятельно построить контур заземления из очень глубоких (до 30 метров) электродов без необходимости применения специальной техники, оборудования и навыков.

Система нового типа получила название — «Модульное заземление ZANDZ».

Заземлитель современного контура заземления представляет собой одиночный составной электрод глубиной до 30 метров, состоящий из легко соединяемых между собой полутораметровых отрезков — стержней / штырей.

Монтаж заземления из такого электрода осуществляется обыкновенным бытовым строительным электрическим отбойным молотком.

Строительство современного контура заземления не требует специальных навыков и может осуществляться силами одного человека.

Объединение заземления для молниезащиты с заземлением для электрических установок

Необходимость электрически соединять контур заземления молниезащиты, установленной непосредственно на здании, с контуром заземления для электрических установок, прописана в действующих нормативных документах (ПУЭ). Цитируем дословно: «Заземляющие устройства защитного заземления электроустановок зданий и сооружений и молниезащиты 2-й и 3-й категорий этих зданий и сооружений, как правило, должны быть общими». Как раз 2-я и 3-я категории являются наиболее распространёнными, в 1-ю категорию входят взрывоопасные объекты к молниезащите которых предъявляются повышенные требования. Тем не менее, наличие оборота «как правило» подразумевает возможность наличия исключений.

Современные офисные, а теперь и жилые здания содержат множество инженерных систем жизнеобеспечения. Сложно представить отсутствие систем вентиляции, пожаротушения, видеонаблюдения, контроля доступа и т.д. Естественно, у проектировщиков таких систем есть опасения, что в результате действия молнии “нежная” электроника выйдет из строя. При этом некоторые сомнения у специалистов-практиков вызывает целесообразность соединения контуров двух видов заземлений и возникает желание «в рамках закона» запроектировать электрически не связанные заземления. Возможен ли такой подход и повысит ли он на самом деле безопасность эксплуатации электронных устройств?

Зачем нужно объединение контуров заземления?

При попадании молнии в молниеотвод в последнем возникает короткий электрический импульс напряжением до сотен киловольт. При столь высоком напряжении может произойти пробой промежутка между молниеотводом и металлическими конструкциями дома, в том числе и электрическими кабелями. Последствием этого станет возникновение неконтролируемых токов, которые могут привести к пожару, выходу электроники из строя и даже разрушению элементов инфраструктуры (например, пластиковых водопроводных труб). Опытные электрики говорят: «Дайте молнии дорогу, иначе она найдёт её сама». Вот почему электрическое объединение заземлений обязательно.

По этой же причине ПУЭ рекомендует электрически объединять не только заземления, находящиеся в одном здании, но и заземления территориально сближенных объектов. Под данным понятием подразумеваются объекты, заземления которых настолько сближены, что между ними нет зоны нулевого потенциала. Объединение нескольких заземлений в одно осуществляется, согласно нормам ПУЭ-7, п. 1.7.55, путём соединения заземлителей электрическими проводниками в количестве не менее двух штук. Причем проводники могут быть как естественными (например, металлические элементы конструкции здания), так и искусственными (провода, жёсткие шины и т.п.).

Одно общее или отдельные заземляющие устройства?

К заземлителям для электрических установок и молниезащиты предъявляются разные требования, и это обстоятельство может стать источником некоторых проблем. Заземлитель для молниезащиты должен отвести в землю за короткое время большой электрический заряд. При этом согласно «Инструкции по молниезащите РД 34.21.122-87» нормируется конструктив заземлителя. Для молниеотвода, согласно этой инструкции, требуется не менее двух вертикальных, или лучевых горизонтальных, заземлителей, за исключением 1 категории молниезащиты, когда таких штырей нужно три. Вот почему наиболее распространённый вариант  заземления для молниеотвода — два или три штыря длиной около 3 м каждый, соединённых металлической полосой, заглублённой не менее чем на 50 см в землю. При использовании деталей производства ZANDZ такой заземлитель получается долговечным и простым в монтаже.

Совсем другое дело — заземление для электрических установок. В обычном случае оно не должно превышать 30 Ом, а для ряда применений, описанных в ведомственных инструкциях, например, для аппаратуры сотовой связи — 4 Ом или ещё меньше. Такие заземлители представляют собой штыри длиной более 10 м или даже металлические пластины, помещённые на большую глубину (до 40 м), где даже зимой нет промерзания грунта. Создать такой молниеотвод с заглублением двух и более элементов на десятки метров слишком затратно.

Если параметры грунта и предъявляемые к сопротивлению требования позволяют выполнить единое заземление в здании для молниеотвода и заземления электрических установок, нет никаких препятствий его сделать. В остальных случаях делают различные контуры заземления для молниеотвода и электрических установок, но обязательно соединяют их электрически, желательно, в земле. Исключением является использование некоторого специального оборудования особенно чувствительного к помехам. Например, звукозаписывающая аппаратура. Такое оборудование требует отдельного, так называемого, технологического заземляющего устройства, что прямым образом указывается в инструкциях. В таком случае выполняется отдельное заземляющее устройство, которое соединяется с системой уравнивания потенциалов здания через главную заземляющую шину. А, если такое соединение не предусматривается руководством по эксплуатации аппаратуры, то применяются специальные меры по исключению одновременного прикосновения людей к указанной аппаратуре и металлическим частям здания.

Электрическое соединение заземлений

Схема с несколькими заземлениями, соединёнными электрически, обеспечивает выполнение разных, подчас противоречивых, требований к заземляющим устройствам. Согласно ПУЭ, заземления, как и многие другие металлические элементы здания, а также аппаратуры, установленной в нем, должны быть соединены системой уравнивания потенциалов. Под уравниванием потенциалов подразумевается электрическое соединение проводящих частей для достижения равенства потенциалов. Различают основную и дополнительную системы уравнивания потенциалов. Заземления подключаются к основной системе уравнивания потенциалов, то есть соединяются между собой через главную заземляющую шину. Провода, соединяющие заземления с этой шиной, должны подключаться по радиальному принципу, то есть одно ответвление от указанной шины идет только к одному заземлению.

Для того, чтобы обеспечивалась безопасная работа всей системы, очень важно использовать максимально надежное соединение между заземлениями и главной заземляющей шиной, которое не разрушится под действием молнии. Для этого нужно соблюдать нормы ПУЭ и ГОСТ Р 50571.5.54-2013 “Электроустановки низковольтные. Часть 5-54. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов” относительно сечения проводов системы уравнивания потенциалов и их соединения между собой.

Тем не менее, даже очень качественная система уравнивания потенциалов не может гарантировать отсутствие всплесков напряжения в сети при ударе молнии в здание. Поэтому, наряду с грамотно спроектированными контурами заземлений, от проблем спасут устройства защиты от импульсных помех (УЗИП). Такая защита является многоступенчатой и носит селективный характер. То есть на объект должен быть установлен комплект УЗИП, подборка элементов которого — непростая задача даже для опытного специалиста. К счастью, выпускаются готовые комплекты УЗИП для типовых случаев применения. 

Выводы

Рекомендация ПУЭ об электрическом соединении всех контуров заземлений в здании является обоснованной и при правильной реализации не только не создает опасность для сложной электронной аппаратуры, а, наоборот, защищает её. В том случае, если аппаратура чувствительна к помехам от молний и требует собственного отдельного заземлителя, можно установить отдельное технологическое заземление в соответствии с прилагаемому к аппаратуре руководству. Система уравнивания потенциалов, объединяющая разрозненные контура заземлений, должна обеспечить надёжное электрическое соединение и во многом определяет общий уровень электробезопасности на объекте, поэтому ей должно быть уделено особое внимание.

Смотрите также:


WTF — это контуры заземления? | Хакадей

  • по:
  • Боб Баддели

Эти волшебные существа появляются из ниоткуда и поджаривают вашу электронику или раздражают ваши уши. Понимание их, несомненно, сэкономит вам деньги и нервы. В двух словах, контур заземления — это то, что происходит, когда два отдельных устройства (A и B) подключаются к земле отдельно, а затем также соединяются друг с другом через какой-либо кабель связи с землей, создавая петлю. Это обеспечивает два отдельных пути к земле (B может проходить через свое собственное соединение с землей или может проходить через землю кабеля к A, а затем к земле A), а это означает, что ток может начать течь непредвиденным образом. Это особенно заметно в аналоговых AV-установках, где результатом является звуковой шум или видимые полосы на изображении, но иногда это также является причиной необъяснимых отказов оборудования.

Сможете найти петлю?

Одним из примеров является ваше кабельное телевидение. Это аналоговый сигнал, который приходит в ваш дом и заземляется в одном месте, обычно за пределами вашего дома. Кабель протягивается к вашему развлекательному центру, где он подключается к ресиверу, заземленному в другом месте. Это создает петлю и из-за электромагнитной индукции, связанной со всеми видами сигналов переменного тока вокруг, блуждающий ток , который затем просачивается через различные цепи. Другой способ представить это как половину трансформатора; это один цикл, и большая часть этого цикла составляет

рядом с  на провод под напряжением здания с постоянно меняющимся током. Нередки случаи, когда в звуковом оборудовании слышен гул частотой 50 или 60 Гц из-за влияния контуров заземления.

Теперь, когда вы стали экспертом, решить проблему (или полностью избежать ее) довольно просто. Самый верный способ — разрезать петлю, что означает удаление кабеля или замену его чем-то, что не является проводом. Вы можете переключиться на беспроводную связь, такую ​​как Bluetooth или WiFi. Некоторые проводные протоколы используют дифференциальные сигналы вместо несимметричной, поэтому нет необходимости в общем заземлении для эталона. Переместите вилки так, чтобы они были подключены к одной и той же розетке, чтобы ваша петля была как можно меньше. Другой вариант — использовать изолятор, который вы можете приобрести для выбранного кабеля или внедрить в свой проект с помощью оптоизолятора или изолирующего трансформатора. Не используйте мошенническую вилку и не удаляйте заземляющий контакт, так как это просто устраняет функцию безопасности и может создать опасную ситуацию с корпусом под напряжением.

Когда дело доходит до вашего осциллографа, вполне вероятно, что в какой-то момент вы захотите проверить что-то, что питается от сети, и тогда вы получите совершенно другой контур заземления. Если ваша вещь на батарейках, здесь нет никакой опасности; сойти с ума, потому что нет возможности создать контур заземления. Если он подключен к стене, но через изолированный источник питания (что-то с двумя контактами и изолирующим трансформатором), все еще в порядке, потому что все еще нет пути для контура заземления, но вы можете увидеть некоторый шум от грязного питания. .

Но если он подключен к сети и имеет контакт заземления (даже косвенно, например, устройство, питаемое от USB через блок питания компьютера), существует вероятность создания контура заземления, поскольку вы подключаете свой заземленный прицел к другому заземленное устройство через пробник. Зажим заземления на зонде подключается прямо к контакту заземления, а заземление всех зондов соединено друг с другом, а эти контакты заземления подключены к заземлению на вашем устройстве. Если это неясно, лучше резюмировать так: «все ваши заземления уже подключены друг к другу и относятся к одному и тому же проводу — заземляющему контакту». Когда вы подключаете зажим заземления к тестируемому устройству, вы создаете контур заземления, который добавит шум к вашим измерениям и, возможно, повредит осциллограф.

Заземление зонда осциллографа подключено. Технически вам нужно подключить только один зажим заземления к тестовому устройству. Заземление зонда подключается непосредственно к земле. Они не плавающие.

Если вы сделаете это неправильно и прикрепите зажим заземления к чему-то, что на самом деле не заземлено, у вас возникнут всевозможные проблемы, так как устройство теперь замкнуто на землю через ваш пробник, который быстро самоуничтожится. Тестирование устройств с заземляющим контактом требует особой осторожности, чтобы не допустить подключения элементов с разными потенциалами. Разрыв контура заземления возможен, если просто не подключить зажим заземления, хотя это имеет и другие последствия. Здесь рекомендуется использовать дифференциальные пробники или подключать тестируемое устройство к изолирующему трансформатору. Сделай , а не , снимите заземление с вашего прицела, потому что вы будете часто прикасаться к нему, и лучше вас не бить током.

Подводя итог: земля — это не просто земля. Для целей измерения шума лучше всего, чтобы каждое устройство имело один и только один путь к одной точке заземления. Когда есть два или более пути к земле, они могут образовывать петлю, которая улавливает все виды внешних электрических и магнитных помех. Починить заземляющий контур так же просто, как разорвать его, но для этого вы должны хорошо представлять себе все заземляющие пути в игре. Какой самый сложный контур заземления вы когда-либо видели? Мы упускаем какие-то хорошие решения?

Опубликовано в Инженерное дело, Колонки Hackaday, SliderTagged Изоляция заземления, заземление l, Контур заземления, заземление, осциллограф, пробник осциллографа

Что такое контур заземления? | Блог Advanced PCB Design

Ключевые выводы

  • Благодаря заземлению можно обеспечить безопасность пользователя и оборудования или цепи.

  • Контуры заземления могут вызывать множество проблем.

  • Контур заземления действует как антенна, которая улавливает электромагнитную энергию, вызывая шумовые помехи, ухудшающие качество сигнала.

Когда два электрических устройства заземляются с помощью одного и того же кабеля, а конструкция также заземляется путем прямого соединения с землей, образуются два пути, образующие контур заземления.

Вы когда-нибудь слышали раздражающий гул, исходящий от звуковой системы? В большинстве случаев этот шум исходит от линий электропередач переменного тока, входящих в аудиооборудование. Контур заземления образуется, когда все части оборудования подключены к общему заземлению через разные пути в звуковой системе. Контур заземления создает путь для протекания тока между различными заземлениями оборудования и обратно. Ток, протекающий через землю аудиооборудования, вызывает гудение.

В этой статье мы рассмотрим, что такое контур заземления и как его устранить.

Необходимость заземления

Незаземленные устройства или цепи вызывают большие статические заряды. В незаземленной системе из-за утечки изоляции могут накапливаться большие статические заряды. При прикосновении к этим цепям существует довольно высокая вероятность получить удар током. При наличии проводника с более низким потенциалом высока вероятность разряда высоких статических зарядов, вызывающих протекание токов силой в тысячи ампер, которые могут повредить систему. Благодаря заземлению можно обеспечить безопасность пользователя и оборудования.

Идеальное заземление

В электрических цепях ток протекает только при наличии замкнутого пути. Обратный путь должен существовать, чтобы ток мог течь обратно к источнику. Обратный путь обеспечивается общей точкой в ​​цепях, называемой землей.

В идеальном случае в заземлении не должно быть сопротивления или паразитной емкости. Компоненты цепи соединены с землей и, как предполагается, имеют одинаковый потенциал. В идеальных случаях отсутствие разности потенциалов в земле предотвращает протекание тока. Однако в действительности это не так.

Обычно потенциал общего заземления верен только в книгах или моделях. Практически существуют неидеальности, такие как сопротивление и паразитные свойства проводов, которые приводят к разнице потенциалов земли. Неидеальности вызывают разницу потенциалов земли и циркулирующего тока.

Что такое контур заземления?

Когда две или более точек избирательной системы, обычно имеющих потенциал земли, имеют чередующиеся соединения через токопроводящие дорожки, они образуют контур заземления. Наличие разных потенциалов заземления таких взаимосвязанных заземлений вредно, поскольку это условие связано с разностью потенциалов, которая позволяет току течь между заземлениями цепи через контур.

Формирование контура заземления в цепях

Существует множество способов образования контуров заземления в цепях:

  1. Рассмотрим экранированный кабель, в котором заземляющий провод соединен с местным заземлением на обоих концах. Заземление уже выполнено проводником внутри кабеля. В этом экранированном кабеле два провода соединены с землей, проходя два соединительных пути и образуя контур заземления. В зависимости от параметров провода в контуре протекают блуждающие токи.

  2. При установке электроприборов обеспечиваем заземление прибора и заземление конструкции или фундамента, на котором хранится прибор. Когда два электрических устройства заземляются с помощью одного и того же кабеля, а конструкция также заземляется, соединяя ее непосредственно с землей, образуются два пути, которые образуют контур заземления.

  3. При регистрации данных такие проводники, как кабели датчиков, линии электропередач или устройства связи, подключаются к земле. Если какой-либо из этих кабелей подключается к одной и той же конечной точке, они образуют контур заземления.

Влияние контуров заземления

Контуры заземления могут вызвать множество проблем, в том числе:

  1. Контур заземления действует как антенна, улавливая электромагнитную энергию и вызывая шум и помехи, нарушая качество сигнала.

  2. Антенный эффект контура заземления может создавать скачки напряжения, повреждающие электронные компоненты или схемы.

  3. Токи утечки, протекающие между устройствами, имеющими общую землю, оказывают вредное воздействие на компоненты и измерительные системы.

  4. Уменьшение динамического диапазона цифровых сигналов из-за смещения напряжения заземления. Восприимчивость цифровых сигналов к помехам выше при этом условии и неблагоприятно влияет на цифровую связь.

Набор инструментов Cadence для проектирования и анализа поможет вам проектировать схемы без вредного воздействия контуров заземления. С программным обеспечением Cadence легко разрабатывать схемы, свободные от конструктивных уязвимостей, таких как контуры заземления, помехи и паразитные помехи.

Ведущие поставщики электроники полагаются на продукты Cadence, чтобы оптимизировать потребности в мощности, пространстве и энергии для широкого спектра рыночных приложений. Если вы хотите узнать больше о наших инновационных решениях, поговорите с нашей командой экспертов или подпишитесь на наш канал YouTube.

Запросить оценку

Решения Cadence PCB — это комплексный инструмент для проектирования от начала до конца, позволяющий быстро и эффективно создавать продукты. Cadence позволяет пользователям точно сократить циклы проектирования и передать их в производство с помощью современного отраслевого стандарта IPC-2581.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *