Пример расчета столбчатого фундамента: Расчет столбчатых фундаментов металлического каркаса

Опубликовано

Содержание

Пример расчета столбчатого фундамента — Сваи Мания

Подробный пример расчета столбчатого фундамента

Перед тем как начать строить дом, нужно сначала провести все необходимые расчеты. Есть фундаменты, которые просчитываются достаточно легко — это плитные и ленточные, а есть более сложные варианты — столбчатые. У этих фундаментов есть одно неоспоримое преимущество — их можно дорабатывать (специальные подошвы и расширения), но это скорее исключение, чем правило.

Возвести столбчатый фундамент возможно не применяя грузоподъемную технику и спецтранспорт.

Основываются расчеты столбчатого фундамента сразу на нескольких факторах — масса дома и масса фундамента, а вот масса здания формируется из целого ряда показателей, часть из которых учитывается, а часть (при частном строительстве) можно смело отбросить. Для столбчатого фундамента совершенно не играет роли среднегодовая сила ветра и сейсмическая активность региона, потому что на маленький дом эти силы имеют минимальное воздействие, которое принимается за нуль.

Обратите внимание

Все основные факторы должны быть учтены максимально верно, чтобы в итоге не возникало неожиданностей.

Обычно столбчатый фундамент применяется в крайних случаях, поэтому для примера расчета можно использовать одноэтажный сруб из хвойных деревьев (дуб используется в XXI веке нечасто из-за несоразмерной дороговизны), с периметром 9×10 м и длиной простенков 15 м.
Расчет внешних и внутренних стен

Схема столбчатого фундамента.

У каждого строительного материала есть свои особенности, которые упрощают или усложняют работу. При расчете деревянных домов очень удобным фактором считается, что толщина у простенков и внешних стен разнится в два раза (внешние толще), что в значительной мере упрощает работу.

Разные типы древесины имеют различную массу, но средняя из расчета на 1 м² — 70-100 кг.

Эти числа при малогабаритном строительстве позволяют игнорировать тип древесины, потому что итоговый результат будет различаться крайне незначительно.

Единственный нюанс — это толщина стен, которая превосходит базовую в 2 раза (базовая составляет 15 см), то есть отсчет идет не от 70-100, а от 140-200 кг/м².

Малая масса деревянных стен обусловлена их природной физической легкостью. Такие стены не отвечают самым высоким физическим показателям, но с задачей удержания тепла справляются гораздо лучше бетонных. Единственное, что важно не забыть — это закрыть все отверстия паклей при выполнении работы.

Чтобы масса была идеально точной у сруба, нужно заранее знать точное количество стен и простенков, а также возможность их добавления в ходе эксплуатации. В данном случае добавочные простенки исключаются.
Расчет перекрытий цоколя и между этажами

Схема перекрытия цоколя.

Важно

Перекрытия рассчитываются проще всего, потому что подсчитать площадь дома несложно (длина помноженная на ширину), а дальше дело техники.

Но существует три вида перекрытий — плитные, деревянные и монолитные, причем плиты и дерево имеют свои подпункты.

В расчетах сруба нельзя использовать монолитные перекрытия, нежелательны и пустотные плиты между этажами. Таким образом, остаются всего три варианта:

  1. Перекрытие из дерева с легким утеплителем (200 кг/м³), чья масса у цоколя составляет 100-150 кг/м², а между этажами 70-100 кг/м².
  2. Перекрытие из дерева с тяжелым утеплителем (500 кг/м³), что масса у цоколя составляет 200-300 кг/м², а между этажами 150-200 кг/м².
  3. Железобетонные плиты, которые используются исключительно для организации цокольной части здания. Масса их много больше — 400 кг/м², но это оправдывается их выработкой.

При строительстве дома на столбчатом фундаменте оптимальным решением служат железобетонные плиты для цоколя — они идеально удерживают нагрузки, с которыми не справится даже ростверк.

У дерева в свою очередь есть свои преимущества — оно достаточно недорогое, а вместе с этим идеально защищает от температур снаружи дома.

Единственный серьезный минус — это недолговечность. Если для основания используется не дуб, то даже столбчатый фундамент не спасет дерево от гниения (дерево приподнято над грунтом, что значительно оберегает его от влаги).
Какая кровля лучше?

Пример возведения кровли.

На этот вопрос нет однозначного ответа, но чаще всего на срубах можно углядеть натуральную кровлю, битумную черепицу, шифер и металл. Исключения встречаются, но не так уж часто, чтобы заострять на них внимание.

Массы можно распределить следующим образом в порядке возрастания:

  1. Битумная черепица легче всех своих собратьев, так как выделяется не только среди всех вариантов черепицы, но и среди синтетических аналогов — всего 8 кг/м². Интереснейший внешний вид и простота монтажа добавляют ей привлекательности. Есть у нее и два минуса — неустойчивость к резким перепадам температур, а также высокая цена. Именно цена обычно удерживает людей от ее приобретения.
  2. Натуральная кровля весит всего 15-20 кг/м². Это практически бесплатный кровельный материал, который надо регулярно заменять. Визуальный эффект зависит от рук мастера, но кровля почти всегда хорошо смотрится. Единственный минус — короткий срок эксплуатации.
  3. Металл. Непривычно видеть металл достаточно легким материалом, но 30 кг/м² доказывают, что такое возможно (для сравнения керамическая черепица в 4 раза тяжелее). Металл легко монтируется, долго служит и не пропускает воду, но есть и серьезный минус — никакой теплоизоляции, а звук при малейших ошибках монтажа только усиливается.
  4. Шифер из легких материалов оказался тяжелее всех — 50 кг/м². Его дешевизна и доступность в любом уголке планеты обязывает включить его в общий список. В советское время он получил широкое распространение, и технология его изготовления была отточена до высочайшего уровня.

При расчете к каждой стене прибавляется 1 м, поскольку кровля с каждой стороны дома выходит на 50 см.

На этом же этапе рассчитывается количество осадков, воздействующих на дом в связи с тем, что за площадь воздействия принимается площадь кровли. На юге показатели небольшие — 50 кг/м², на севере 200 кг/м², а в средней полосе России 100 кг/м². Эти данные можно использовать, как аксиому при строительстве зданий до 5 этажей.
Пример расчета столбчатого фундамента

Варианты столбчатого фундамента на пучинистом и непучинистом грунтах.

Перед тем, как проводить расчет диаметра столбчатого фундамента, нужно найти массу дома, массу ростверка, фундамента, а потом и площадь соприкосновения фундамента с почвой.

Первым делом высчитываются все внутренние и наружные стены дома, а также площадь соприкосновения их и столбчатого фундамента.

При подсчете внешних стен нужно помнить, что их толщина в 2 раза больше стандартной, а простенки равны ей. Т.о. выводится формула:

S=P×2×h+l×h, где P — это периметр дома, l — суммарная длина всех простенков дома, коэффициент 2 — отношение периметра к стандарту, h — высота стен. S=((9+10)×2)×2×2,7+15×2,7=205,2+40,5=245,7 м².

Есть и другие способы подсчета, но этот самый простой, к тому же погрешность с ним равноценна всем остальным вариантам.

Далее нужно вычислить площадь основания стен, что значительно проще.

Sосн=(P×2+l)×y, где за y принимается толщина стены.

Совет

Sосн=(38×2+15)×0,15=13,65 м² (лучше принять за 13, чтобы обеспечить в итоге более качественный столбчатый фундамент).

Для того чтобы найти массу деревянных стен, достаточно просто перемножить площадь на показатели массы на 1 м² (средние в данный момент). M=S×85=245,7×85=20884,5 кг.

Пример гидроизоляции и армирования столбов фундамента.

Перекрытия подсчитать гораздо проще. Для этого в качестве цоколя в пример пойдут железобетонные плиты, а под крышу деревянное межэтажное перекрытие с тяжелым утеплителем.

  • M=S×Mпер, где S — это площадь дома, а Mпер — масса перекрытия на 1 м²;
  • M1=S×Mплиты=9×10×400=36000 кг;
  • M2=S×Mдерева=9×10×175=15750 кг;
  • Mсум=M1+M2=36000+15750=51750 кг.

Подсчитать массу кровли тоже не составит труда, главное, не забывать про осадки с учетом холодного региона. Кровля будет указана из битумной черепицы:

  • Mкров=S×m=10×11×8=880 кг;
  • Mос=10×11×100=11000 кг;
  • Mсум=Mкров+Mос=11880 кг.

Для наглядности можно воспользоваться таблицей:

Вид стенМасса стенМасса перекрытийМасса кровлиСумма, кг
Кругляк20884,551750
11880
84514,5

Важно хорошо закрепить ростверок на столбах фундамента, чтобы избежать вытек бетона.

Теперь можно начинать считать ростверк и фундамент
Ростверк высчитывается по суммарной длине стен без коэффициентов (ширина 0,5 м), а толщина его стандартная — 0,4 м. Масса раствора бетона у ростверка и фундамента принимается за 2400 кг/м³.

M=(P+l)×y×h×2400, где y — ширина фундамента, а h — его высота. M=(38+15)×0,5×0,4×2400=10,6×2400=25440 кг/м³.

Перед тем как проводить расчет диаметра столбчатого фундамента, нужно испробовать стандартный вариант в 0,3 м. Столбы ставятся с частотой 1 шт. на 1 м стены (ростверка). Глубина их залегания доходит до 1,6 м (глубина промерзания + 50 см), а высота над землей 0,4, что в сумме дает ровно 2 м.

При этом важно помнить, что самой меньшей устойчивостью к нагрузкам обладает песчаная поверхность — 20000 кг/м².

Пример расчета диаметра колонны выглядит следующим образом:

Опорная часть колонны составляет S=3,14×0,15×0,15=0,07 м², объем колонны V=S×h=0,07×2=0,14 м³.

Количество столбов lсум=P+l=38+15=53 м = 53 шт. Sсум=53×0,07=3,71 м².

Mсум=53×0,14×2400=17808 кг.

Итоговая масса = 17808+25440+84514,5=127762,5 кг.

Чтобы узнать, подходят ли выбранные параметры колонн к дому, нужно разделить массу дома на площадь опоры: 127762,5/3,71=34437,33.

Обратите внимание

Данные показатели почти в 1,5 раза превосходят положенную норму, из-за чего пример расчета диаметра особенно удачен, потому что придется увеличить объем столбов на 50% и одновременно на 25% увеличить их концентрацию.

При увеличении только объема увеличится вместе с этим и масса, а для компенсации массы можно использовать повышение количества столбов в процентном соотношении вдвое меньше увеличенного объема.

На этом этапе возможно использование подошвы, что избавит от необходимости увеличивать площадь и количество, но добавит необходимость полного выкапывания грунта для ее установки.

С учетом всех вышеизложенных формул и расчетов можно подсчитать не только сруб, но и любой другой дом, в который идут более сложные или простые материалы. Единственная разница, которая может возникнуть в вычислениях — вид фундамента.

Источник: https://moifundament.ru/raschet/primer-dlya-stolbchatogo-fundamenta.html

Расчет столбчатого фундамента. Как расчитать параметры столбчатого фундамента. Прочитав эту статью, вы сможете выполнить расчет столбчатого фундамента для своего дома

Прочное основание дома- залог того, что он простоит долго. Столбчатый фундамент хоть и является самым дешевым, но в случае его правильного проектирования он также будет надежной опорой. Как выполняется расчет столбчатого фундамента, изложено ниже.

Кратко о столбчатом фундаменте, его видах и особенностях

Столбчатый фундамент отличается от ленточного тем, что:

  • подходит для построек, относящихся к облегченному типу. К ним относятся деревянные  дома без подвального помещения, колонны и т.д.;
  • представляет собой ряд опор, находящихся в наиболее нагруженных точках.

Изготавливают столбчатый фундамент в основном 2 видов:

  1. Монолитный. Он имеет большую прочность, т.к. изготовлен из армированного бетона.
  2. Сборный – состоит из отдельных элементов, поэтому имеет слабые места там, где находятся швы. Преимущество его в скорости возведения.

Исходя из расчетных параметров фундамента этого вида, таких как глубина залегания подземных вод, уровень промерзания и тип грунта, существуют две разновидности столбчатого основания:

  1. Заглубленный ниже уровня промерзания, он так и называется – заглубленный. На глинистых почвах необходим только такой.
  2. Выполненный на глубине до 700 мм. Называется он малозаглубленным. Целесообразен на песчаных или скалистых грунтах.

Исходные данные для расчета

Для того чтобы приступить к выполнению расчета, вам потребуется следующая информация:

  • на какой глубине находятся грунтовые воды. При этом учитывается колебание этого параметра в разные периоды;
  • зимний температурный режим и сведения о том, насколько промерзает земля. Эти данные есть в справочниках;
  • к какому типу относится почва;
  • сколько приблизительно будет весить дом и все, что в нем находится;
  • масса самого столбчатого фундамента;
  • ветровые и снежные нагрузки.

Глубину промерзания земли в разных регионах страны можно увидеть на рисунке:

Самостоятельное определение типа грунта

Вряд ли кто-то захочет пойти в лабораторию и платить деньги за исследования, но такой параметр, как сопротивление почвы в зависимости от ее типа очень важен, поэтому определить его необходимо хотя бы самостоятельно. Руководствуемся следующим:

  1. Выкапываем яму глубиной ниже слоя промерзания.
  2. Берем оттуда немного земли, стараемся скатать ее в шар и смотрим, что получается:
  • из песчаного грунта скатать шар невозможно. То, что он действительно песчаный, определяется и визуально, но фракция может быть очень мелкой. Сопротивляемость такой почвы — R=2. Для песка средней и крупной фракций данный показатель составит 3 и 4,5 единиц соответственно;
  • если вам удалось сформировать шар, но при надавливании он тут же рассыпался – грунт супесчаный, а для него наименьшая сопротивляемость — R=3;
  • скатанная земля плотная. Сдавив шар, вы не увидите на нем трещин. Вывод: у вас в руках глина, значит, R=3-5;
  • в случае суглинка, шар также не распадется, но трещины при нажатии появятся. Для этого типа грунта R=2-4.

Расчет нагрузки на столбчатый фундамент в зависимости от веса надземной части дома

Расчет возможно выполнить тогда, когда вы уже определились:

  • с материалом, из которого будут возводиться стены;
  • с типом кровли;
  • с тем, какую мебель и бытовую технику разместите в доме.

Чтобы получить этот важный параметр, выполняем следующие действия:

  • суммируем нагрузки, создаваемые стенами, перегородками, элементами кровли и предметами внутри дома;
  • плюсуем к полученному результату нагрузку от веса снежного покрова. В разных местах этот показатель существенно отличается. Так, если на юге России он составляет всего 0,05 т на квадратный метр, то на севере удельный вес снега почти в 4 раза больше (0,190 т на 1 кв. м).

Расчет столбчатого фундамента, пример которого приведен ниже, выполнен для железобетонного монолитного типа. Возьмем такие исходные данные:

  • дом одноэтажный. Стены выполнены из конструкционно-теплоизоляционного газобетона блочного. Толщина стены 400 мм. Плотность D=600;
  • пол – сухой насыпной;
  • фундамент будет устраиваться на пластичном глинистом грунте;
  • крыша из черепицы керамической. Скат под углом в 45 градусов. Для устройства крыши использованы лаги деревянные;
  • наибольшая нагрузка придется на части здания большей длины, т.к. на них будут опираться лаги.

Столбчатый фундамент представляет собой стойку со следующими размерами:

  • верх имеет сечение 35х35 см;
  • основание или подошва – 75х75 см;
  • столбы расположены с интервалом в 2 м.

Нагрузка от снега

В расчете участвуют 2 параметра:

  • нормативная нагрузка, которую мы определяем по карте. Так как дом расположен в Подмосковье, то она равняется 126 кг на 1 кВ. м;
  • грузовая площадь крыши, приходящаяся на 1 м фундамента. При этом берем не весь фундамент, а только ту его часть, которая нагружена. Как видно из плана, длина этих участков в сумме составит 24 м. Для определения площади крыши нам потребуется вычислить результат от умножения 2 длин скатов на длину конька.

Итак, рассчитываем длину ската и площадь крыши:

  • 6:2 х cos450 = 3 х 0,707 = 4,3 м;
  • 2 х 4,3 х 12 = 103,2 м;
  • на 1 м фундамента будет давить вес кровли 103,2 : 24 = 4,3 кв. м.

Теперь мы сможем определить снеговую нагрузку:

4,3 х 126 = 541,8 кгс.

Нагрузка, создаваемая крышей

Порядок таков:

  • проекция кровли и площадь дома равнозначны, значит, площадь проекции равна 12 х 6 = 72 кв. м;
  • нагружены у нас только стороны по 12 м, поэтому нагрузка на фундамент от кровли распределена на длине 12 х 2 = 24 или на плоскости 24 х 0,4 = 9,6 кв. м;
  • из таблицы выше берем расчетную нагрузку для керамической черепицы, расположенной под углом в 45 градусов. Она равна 80 кгс на 1 кв. м;
  • итак, нагрузка на фундамент от кровли составит 72 : 9,6 х 80 = 600 кг на 1 кв. м.

 Как нагружают фундамент перекрытия

Эта нагрузка определяется просто:

  • вычисляем площадь перекрытия, а она идентична площади дома. 12 х 6 = 72 кв. м;
  • умножаем на удельный вес материала перекрытия. Данные для расчета возьмем из таблицы:
ПерекрытиеПлотность Кг/куб. мкПаКгс/кВ. м
Дерево по деревянным балкам2001100
-«-          -«-    -«-                  -«-3001,5150
Дерево по балкам из стали3002200
Железобетонные плиты серии ПК5100
  • нагрузка от кровли распределена на 2 стороны фундамента. Поэтому на 1 м основания дома приходится 72 : 24 = 3 кв. м;
  • теперь определяем нагрузку 3 х 300 = 900 кгс.

Нагрузка от стен

Чтобы рассчитать нагрузку, которую создают на фундамент стены дома, нам потребуются данные следующей таблицы:

умножаем:

  •  высоту стены на ее толщину и на нагрузку, создаваемую 1 кв. м;
  •  получаем значение, выражающее с какой силой стена давит на столбчатый фундамент 4 х 0,4 х 600 = 960 кгс.

Суммируем нагрузки

У нас уже есть все данные для расчета суммарной нагрузки на фундамент:

541,8 + 600 + 900 + 960 = 3001,8 кгс = 30 кН.

Определение предельных нагрузок фундамента на грунт

Выполняем следующие действия:

  • полученный результат умножаем на дистанцию между столбами 3002 х 2 = 6004 кгс;
  • так как плотность для железобетона составляет 2500 кг на 1 кв. м, то при объеме нашего столба 0,25 куб. м вес составит 0,25 х 2500 = 625 кгс;
  • один столб фундамента создает нагрузку на землю 6004 + 625 = 6629 кгс;
  • наш пластичный глинистый грунт имеет несущую способность 1,5 – 3,5 кгс на 1 кв. см. Берем минимальную. Значит, фундамент создаст максимальную нагрузку 1,5 х 6400 = 9600 кгс, где 6400 кв. см — площадь подошвы фундамента;
  • нагрузка, которую мы получили расчетным путем составляет 6629 кгс, следовательно, у выбранной нами основы дома большой запас прочности, позволяющий, если потребуется, добавить еще 1 этаж.

 Расчет столбчатого фундамента под колонну

При расчете фундамента под колонну, мы должны получить следующие данные:

  • какой высоты будет основание фундамента;
  • высота ступеней и их количество;
  • площадь поперечного сечения подколонника и стакана;
  • какого сечения арматура необходима;
  • все параметры анкерных болтов или закладных деталей.

Расчет этот сложный и ответственный, так что лучше, если его сделает профессионал. Для подсчета можно воспользоваться программой Project StudioCS Фундаменты. Эта программа, которую можно приобрести в Москве в Бизнес Центре «Гипромез»или заказать через интернет, позволяет:

  • при минимуме данных получить максимальное количество расчетных параметров;
  • рассчитать фундамент монолитный и сборный под колонны как одиночные, так и сдвоенные;
  • итоговая информация, содержащая характеристики и основные параметры, отображается в диалоговом окне.

Ее преимущества:

  • она сертифицирована;
  • функциональна и по качеству не уступает разработанным за рубежом;
  • значительно дешевле зарубежных аналогов;
  • при покупке программы к ней прилагается обучающее видео бесплатно.

Возможен расчет фундамента под колонну и в системе APM Civil Engineering.

На выходе выдает:

  • сведения о требуемом количестве арматуры;
  • о числе ступеней фундамента;
  • отображает геометрические размеры столбов;
  • учитывая нагрузку на основание, определит толщину продавливания грунта и т.д.

Ее достоинства:

  • полностью учитывает требования государственных строительных стандартов;
  • создает модели конструкций;
  • визуализирует, полученные путем вычисления, результаты;
  • благодаря наличию расчетных и графических инструментов, позволяет решать большой перечень задач, в том числе и расчет столбчатого фундамента под колонну.

А вот здесь видно наглядно, как выполняется расчет в системе APM Civil Engineering:

Расчет бетона для столбчатого фундамента

Допустим, что  известны такие параметры круглого столба как:

  • диаметр;
  • высота;
  • их количество.

Расчет бетона для столбчатого фундамента выполним так:

  • определим площадь его поперечного сечения, используя формулу S = 3.14 х R;
  • умножим площадь на высоту и получим объем бетона для одного столба;
  • умножим объем на общее число столбов и будем знать сколько всего бетона потребуется для устройства столбчатого фундамента.

Последовательность расчета фундамента популярно изложена в этом видео:

Источник: http://gid-str.ru/raschet-stolbchatogo-fundamenta

Пример расчета столбчатого фундамента

Возведение любого фундамента для жилого дома или другого строительного объекта требует точности, и поэтому необходимо проводить предварительный расчет столбчатого фундамента или основания другого типа.

Но, если с основными параметрами бетонной ленты или плиты все более или менее понятно, то как делать расчеты столбовых опор, многие строители не знают.

Поэтому рассмотрим расчет габаритов, несущей способности, материалов и других параметров именно для основания дома на столбах-опорах. Для этого необходим чертеж и/или проект фундамента:

Чертеж столбчатого основания

Калькулятор

Требования к фундаменту на столбах

Как строительная конструкция столбчатый фундамент выглядит как группа столбов из определенных стройматериалов, связанных между собой ростверком.

Ростверк — это горизонтальная обвязочная конструкция, предназначенная для усиления основания и объединяющая разрозненные конструкции, в данном случае – столбы фундамента.

Устойчивость столбовых опор обеспечивается погружением их в грунт на расчетную глубину, которая зависит от массы здания и свойств грунта.

Нагрузочные характеристики тем выше, чем больше точек опирания на почву, и чем выше поверхностное трение опор. Проще говоря, диаметр опор должен быть достаточно большим, глубина погружения столбов и количество опор должно обеспечивать достижение оптимальной нагрузки на каждую опору при распределении нагрузок при помощи ростверка.

Неглубокое заложение столбчатых опор разрешается для каркасного дома, для малоэтажных, легких и небольших по площади зданий из пиломатериалов, ячеистых бетонов, а также для модульных конструкций.

Кирпичные, бетонные или панельные дома на столбчатом фундаменте построить невозможно, так как удельный вес стен строения должен быть ≤ 1000 кг/м3.

Важно

Столбчатые опоры делают из различных стройматериалов – они могут быть металлические из полых труб, кирпичные, блочные, бетонные или железобетонные, бутобетонные, из асбоцементных или бетонных труб, залитых бетоном, и т.д.

Незаглубленное столбчатое основание

Незаглубленное столбчатое основание рекомендуется строить на участках с глубоким прохождением грунтовых вод – подошва опор должна находиться выше как минимум на 0,5 м.

Достоинства и недостатки столбчатого основания

Преимущества:

  1. Небольшой объем землеройных работ, которые можно провести без привлечения спецтехники;
  2. Экономия на строительных материалах;
  3. Возможность строительства дома на участках со сложным рельефом, с переувлажненным или слабым грунтом.

Недостатки:

  1. Нарушение технологии строительства может привести к наклону или деформациям столбчатых опор;
  2. Узкая сфера применения из-за низкой нагрузочной способности столбов.

Подготовка к расчету
Перед началом расчетов определяются исходные параметры для вычислений:

  1. Размеры строения;
  2. Нагрузочная способность грунта – определяется геологическими и геодезическими изысканиями;
  3. Несущая способность фундамента, включая вес самого основания и вес дома.

Эти данные необходимы в любом случае – и при ручных вычислениях параметров столбчатого фундамента с ростверком, и при расчетах при помощи программы-калькулятора:

Программа-калькулятор для расчетов любых типов фундаментов

Так как заказ исследования грунта обойдется недешево, можно сделать это самостоятельно — визуально. Нужно пробурить или выкопать скважину глубиной на 0,5 м ниже заглубления столбов, и убедиться в наличии/отсутствии грунтовых вод. Также визуально (по срезу) можно определить и тип грунта. На сложных участках такое исследование проводят в трех-четырех высотных точках.

Определение нагрузок

Нагрузки делятся на постоянные и временные. Постоянные нагрузки – это вес дома, нагрузки временные бывают кратковременными или длительными. Длительные — вес предметов интерьера и бытовой техники, кратковременные — вес жильцов и осадочные нагрузки с учетом действия атмосферных влияний. Для фундамента это – снеговые нагрузки.

Для определения постоянной нагрузки при оперировании расчётами понадобится узнать:

  1. Вес перекрытий, перегородок и стен;
  2. Вес стропильной системы и кровельных материалов;
  3. Массу основания дома.

Определение нагрузок

В таблице ниже представлены данные по массе основных конструкций дома:

Строительная конструкцияМасса
Утепленные каркасно-щитовые стены ≤ 15 см толщиной35-55 кг/м2
Утепленные деревянные перекрытия, плотность утеплителя ≤ 200 кг/м390-170 кг/м2
Вес ж/б основания2600 кг/м3
Кровля
Крыши стальные из листового металла40-65 кг/м2
Керамическая плитка для кровли70-150 кг/м2
Битумная черепица40-80 кг/м2

Это нормативно-справочные данные, и при расчетах с их применением необходимо пользоваться коэффициентом надежности (прочности), который указан в СП 20. 13330.2011. Для каркасно-щитовых строений дома эти данные приведены в таблице ниже:

Строительная конструкцияКоэффициент прочности
Из древесины1,10
Из армированного бетона плотностью ≥ 1700 кг/м31,30
Заводская тепло-, гидро- и шумоизоляция1,20
Тепло-, гидро- и шумоизоляция, сделанная на месте1,30

Карта районирования

Регламент СП 20.13330.2011 предписывает соблюдение полезной длительной временной нагрузки не выше 150-170 кг/м2 при использовании коэффициента надежности 1,2. Таким образом, расчетное значение будет равно 180-204 кг/м2 поверхности пола.

Чтобы найти значение нагрузки от слоя снега, снова используются данные СП. Снеговой регион виден на картах в СП 131. 13330.2012. При расчетах используется коэффициент 1,4.

Как делать расчет

Сначала рассчитывается минимальная площадь фундамента по сумме площадей всех опор: Smin = P / Rо; где:

  • Р — вес здания, кг;
  • Rо — расчетное сопротивление грунта под основанием, кг/см2.
Почва под фундаментомРасчетное сопротивление Rо на глубине ≥ 1,5 м, кг/см2Расчетное сопротивление Rо на поверхности грунта, кг/см2
Галька, глина4,63,0
Гравий, глина4,12,75
Песок крупных фракций6,14,1
Песок средних фракций5,13,3
Песок мелких фракций4,12,75
Пылевидный песок2,11,3
Супесчаные или суглинистые почвы3,62,3
Глинистая почва6,14,1
Слой насыпного уплотненного грунта1,61,1
Слой насыпного рыхлого грунта1,10,68

Правильный и неправильный расчет фундамента

Зная общую площадь опор фундамента, можно вычислить сечение подошвы для столба и их общее количество.

Для наглядности рассмотрим пример расчета столбчатого фундамента для каркасного дома в два этажа. Исходные данные:

  1. Толщина деревянных стен — 15 см, площадь дома — 120 м2;
  2. Листовая стальная кровля с деревянной стропильной системой, уклон стропил – 200, площадь кровли — 50 м2;
  3. Площадь деревянных балочных перекрытий — 80 м2;
  4. Снеговой регион — IV;
  5. Грунт под фундаментом – глинистый гравий.

Нагрузка с применением коэффициента надежности:

  1. Нагрузка от веса стен = 120 м2 х 50 кг/м2 х 1,1 = 6600 кг;
  2. Нагрузка от веса перекрытий = 80м2 х 150 кг х 1,1 = 13200 кг;
  3. Нагрузка от веса кровли = 50м2 х 60 кг/м2 х 1,1 = 3300 кг.

Расчет кирпичных столбов и стоек

[ads-mob-1] Для расчета массы основания со стороной опоры 40 см нужно знать шаг их размещения. Для примера возьмем одну колонну на 2 м, в результате получим 24 / 2 = 12 опор.

Для IV снегового района глубина промерзания почвы равна 1,8 м. Опора заглубляется на 20 см ниже этой точки, и поднимается над поверхностью грунта на 50 см – для обвязки ростверком.

То есть, общая высота опоры — 2,5 м.

  1. Вес опор равен 1,3 х 2,5 м х 0,4 м х 0,4 м х 12шт х 3300кг/м3 = 2230,8 кг;
  2. Долговременная полезная нагрузка равна 150 кг/м2 х 80 м2 х 1,2 = 1440 кг;
  3. Нагрузка от снегового слоя равна 240 кг/м2 х 1,4 х 50 м2 = 16800 кг.

Забирка столбчатого основания

  1. Сумма всех значений массы конструкций составляет 43570 кг;
  2. Smin = 43570 / 4 кг/см2 = 10892,5 см2 для всех опор;
  3. Площадь одной опоры = 40 см х 40 см = 1600 см2;
  4. Общее количество опор = 10892,5 / 1600 = 6,8 единиц (7 шт).

В нашем примере четыре опоры возводятся по углам здания, а оставшиеся — по периметру. Строительные конструкции дома с разным весом рассчитываются по отдельности и обустраиваются на отдельных и независимых основаниях. Например, веранда, терраса, павильон или гараж.

Климатическое районирование и вес несущих строительных конструкций учитывается в обязательном порядке, так как эти данные виляют на надежность, прочность и долговечность столбчатого фундамента.

Источник: http://rfund.ru/raschet/stolbchatogo-fundamenta.html

Расчет столбчатых фундаментов металлического каркаса

Уважаемые коллеги, продолжаем рассматривать небольшие примеры использования ФОК Комплекс для расчета фундаментов. Сегодня мы рассмотрим примеры расчета столбчатых фундаментов металлического каркаса. В начале произведем ручной расчет 2-х фундаментов с дальнейшим сравнением с полученными результатами по ФОК Комплекс.

Пример расчета столбчатых фундаментов. Исходные данные

Площадка строительства характеризуется следующими атмосферно-климатическими воздействиями и нагрузками:

  • вес снегового покрова (расчетное значение) – 240 кг/м2;
  • давление ветра — 38 кг/м2;

Геология

Схема маркировки фундаментов

Относительная разность осадок (Δs/L)u = 0,004;

Максимальная Sumax или средняя Su осадка = 15 см;

Нагрузки на столбчатые фундаменты получены из ПК ЛИРА.

Для ручного расчета рассмотрим фундаменты Фм3 и Фм4

1. Ручной расчет

Определение размеров подошвы фундамента

Основные размеры подошвы фундаментов определяем исходя из расчета оснований по деформациям. Площадь подошвы предварительно определим из условия:

P ≤ R,

где P- среднее давление по подошве фундамента, определяем по формуле:

P = ( N0 / A )

N0 = P · A

A – площадь подошвы фундамента.

N0 = N +G

N – вертикальная нагрузка на обрезе фундамента

G – вес фундамента с грунтом на уступах

G = A · γ · d

где γ – среднее значение удельного веса фундамента и грунта на его обрезах, принимаемое равным 2 т/м3;

d – глубина заложения;

P · A = N + A · γ · d

A · (P – γ · d ) = N

A = N / (P – γ · d )

Для предварительного определения размеров фундаментов, P определяем по таблице В.3 [СП 22.13330.2011]

Р = 250 кПа = 25,48 т/м2.

Для фундамента Фм3, N = 35,049 т

A = 35,049 т / (25,48 т/м2 – 2,00 т/м3 · 3,300 м) = 35,049 т/18,88 т/м2 = 1,856 м2.

A = b2

Принимаем габариты фундамента b = 1,5 м

Для фундамента Фм4, N = 57,880 т

A = 57,880 т / (25,48 т/м2 – 2,00 т/м3 · 3,300 м ) = 57,880 т / 18,88 т/м2 = 3,065 м2.

A = b2

Принимаем габариты фундамента b = 1,8 м

1. Определение расчетного сопротивления грунта основания

5.6.7 При расчете деформаций основания фундаментов с использованием расчетных схем, указанных в 5.6.6, среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, определяемого по формуле

где γс1 и γс2 коэффициенты условий работы, принимаемые по таблице 5.4[1];

k- коэффициент, принимаемый равным единице, если прочностные характеристики грунта (φп и сп) определены непосредственными испытаниями, и k=1,1, если они приняты по таблицам приложения Б[1];

Mγ, Мq, Mc- коэффициенты, принимаемые по таблице 5.5[1];

Совет

kz- коэффициент, принимаемый равным единице при bd (d- глубина заложения фундамента от уровня планировки), в формуле (5.7)[1] принимают d1 = d и db = 0.

6 Расчетное сопротивления грунтов основания R, определяемое по формулам (В.1)[1] и (В.2)[1] с учетом значений R0 таблиц B.1-В.10[1] приложения B[1], допускается применять для предварительного назначения размеров фундаментов в соответствии с указаниями разделов 5-6[1].

Исходные данные:

Основание фундаментом являются – суглинком лессовидным непросадочным полутвёрдой консистенции, желто-бурого цвета, с включением прослоев супеси, ожелезненный. (ИГЭ 2)

γс1= 1,10;

γс2= 1,00;

k= 1,00;

kz= 1,00;

Для фундамента Фм3 : b = 1,50 м;

Для фундамента Фм4 : b = 1,80 м;

γII = 1,780 т/м3;

γ’II = 1,691 т/м3;

сII= 1,100 т/м2;

d1 = 3,30 м;

db = 0,0 м;

Mγ = 0,72;

Мq= 3,87;

Mc= 6,45;

Для фундамента Фм3:

R = (1,10 ·1,00) / 1,00· [0,72 · 1,00 · 1,50 м · 1,780 т/м3 + 3,87· 3,30 м· 1,691 т/м3 +

+ (3,87 – 1,00) · 0,0· 1,691 т/м3 + 6,45·1,1 т/м2] = 1,10· (1,922 т/м2 +21,596 т/м2 +

+ 0,0 + 7,095 т/м2) = 33,674 т/м2.

Для фундамента Фм4:

R = (1,10 ·1,00) / 1,00 · [0,72 · 1,00 · 1,80 м·1,780 т/м3 + 3,87 · 3,30 м·1,691 т/м3 +

+ (3,87 – 1,00) ·0,0·1,691 т/м3 + 6,45·1,1 т/м2] = 1,10 · (2,307 т/м2 + 21,596 т/м2 +

+ 0,0 + 7,095 т/м2) = 34,098 т/м2.

2. Определение осадки

5.6.31 Осадку основания фундамента s, см, с использованием расчетной схемы в виде линейно деформируемого полупространства (см. 5.6.6[1]) определяют методом послойного суммирования по формуле

где b – безразмерный коэффициент, равный 0,8;

Источник: https://blog.infars.ru/primery-rascheta-stolbchatyh-fundamentov-metallicheskogo-karkasa

Монолитный столбчатый фундамент: разновидности и типы

Оглавление:

Прежде чем приступить к строительству фундамента, нужно произвести его расчёт.Столбчатый фундамент тоже требует подобной процедуры.

Устройство мелкозаглубленного столбчатого фундамента

Расчёт столбчатого монолитного фундамента заключается в нахождении давления, которое он оказывает на единицу площади грунта. Можно проводить и другие расчёты, например, расчёт количества строительного материала, который нужно затратить для возведения фундамента с заданными параметрами.

Расчёт на давление состоит из нескольких основных этапов:

  • Установления коэффициента сопротивления грунта;
  • Расчёт общей массы постройки, включая массу самого фундамента;
  • Расчёт давления, оказываемого постройкой на единицу площади грунта;
  • Сравнение коэффициента сопротивления грунта и давления на единицу площади грунта, и формулировка соответствующих выводов, а также при необходимости принятие мер.

Установление коэффициента сопротивления грунта

Для того, чтобы уточнить этот показатель, который характеризует степень прочности грунта при оказываемом на него давлении, нужно обратиться в геологическую службу вашего города. Если такой службы нет, то есть более простой вариант самостоятельного определения коэффициента сопротивления грунта.

Для этого нужно вырыть яму глубиной порядка 2 метров. Вообще копать нужно на ту глубину, на какой будет закладываться фундамент. После это берем со дна вырытой ямы немного грунта и скатываем его в шар или цилиндр. Если скатали в шар, то этот шар нужно попытаться раздавить.

Теперь может получиться несколько разных ситуаций, которые характеризуют грунт:

Когда тип грунта определён, то не останется труда определит его несущую способность сделать это можно, воспользовавшись справочником. Например, супесь сухая имеет коэффициент сопротивления 2,5, а крупнозернистый гравелистый песок порядка 5 и даже выше.

Определение общей массы постройки

Чтобы определить общую массу постройки, нужно определить массу составных её частей:

  • Фундамент с ростверком;
  • Стены и перегородки;
  • Потолочное перекрытие и пол;
  • Крыша.

Масса фундамента определяется из расчёта того, что использовалось в качестве строительного материала. Если столбы являются монолитными, то необходимо рассчитать объём столбов и умножить его на плотность бетона. Средняя плотность бетона составляет порядка 2,5 тонн на метр кубический.

Объём прямоугольного столба считается, как произведение его длины, ширины и высоты. Таким образом, высчитываются все объёмы всех столбов, хотя они должны быть все одинаковыми, так как сами столбы должны иметь одинаковые размеры.

Дальше следует высчитать массу арматуры, которая была затрачена в ходе устройства железобетонных столбов. Если столбы были чисто бетонными, то на этом их расчёт закончен.

Обратите внимание

После этого необходимо высчитать массу ростверка. Так как ростверк является прямоугольником, то его объём будет являться произведением всех его сторон, то есть всю длину ростверка нужно умножить на его высоту, и умножить на ширину. Вся длина ростверка называется периметром.

Она определяется, как сумма длин всех сторон. После того, как объём найден, нужно его умножить на плотность бетона, то есть на 2500. Если ростверк был армирован, то нужно вычислить объём арматуры и вычесть его из объёма бетона. Дальше этот объём арматуры нужно умножить на плотность железа, которая приблизительно равна 13000 килограммам на метр кубический.

После этого остаётся к массе ростверка прибавить массу столбов, и получим массу всего фундамента.

На втором этапе подсчётов найдём массу стен и перегородок. При этом один расчёт и способ его проведения может отличаться от другого. Это зависит от материала, из которого сделана стена. Если из дерева, то следует рассчитать кубатуру древесины и умножить на плотность той породы, которая использовалась при строительстве дома.

Гидроизоляция фундамента

Например, плотность сосны равна 800 килограммам на метр кубический, а вот плотность берёзы равна 900 килограммам на метр кубический.

Если при строительстве использовался кирпич, то нужно рассчитать либо количество кирпичин, а затем умножить их на вес одного, либо рассчитать объём стен и умножить на массу одного метра кубического. Один кубический метр красного кирпича весит порядка 1800 килограмм. Одна красная кирпичина весит порядка 3,2 килограмм.

В случае, когда стены изготовлены из пеноблоков, можно воспользоваться одним из двух вышеописанных способов. При этом следует брать за массу одного блока 30 килограмм.

Если при устройстве стен использовался цемент, то нужно учитывать и его вес. Цемент, как правило, используется при изготовлении стен из кирпича, камня пеноблоков и так далее. В деревянных домах цементный раствор если и используется, то его вес незначителен.

Важно

Массу использованного цемента рассчитать не сложно. Средний размер одного шва между рядами кирпича равен порядка 0,7-1,2 сантиметра, в крайнем случае, его можно замерять. После замера устанавливаем ширину слоя цемента. Если использовалась кладка в один кирпич, то соответственно, ширина слоя цемента будет равна 12 сантиметрам.

Дальше высчитываем длину каждого слоя, то есть фактически измеряем длины всех сторон. Теперь все эти три показателя нужно перемножить между собой. Получившееся число нужно умножить на количество швов. Следует отметить, что такой расчёт нужно производить только при цели достичь максимально точного значения массы дома, но, как правило, массу цементного раствора никто не считает.

Теперь находим массу перекрытия. Если оно выполнено из дерева, то нужно найти кубатуру древесины и умножить на плотность породы. Если настил и пол выполнены из бетона, то нужно найти объём потраченного бетона и умножить на плотность бетона.

Армирование столбчатого фундамента

Существует такое перекрытие, которое имеет собственный фундамент, то есть на основной фундамент оно не оказывает никакого давления. Следовательно, массу такого настила не стоит учитывать при расчётах. Такая же ситуация бывает и с полом. Половые лаги могут находиться на собственных столбах, и не оказывать давления на фундамент.

Теперь нужно определить массу крыши. Сделать это тоже не сложно. Так как крыша состоит из двух частей, то и расчёт массы будет тоже состоять из двух этапов.

На первом определим вес каркаса крыши, то есть стропил и обрешётки, посчитав кубатуру дерева и умножив её на плотность древесины. Вес таких элементов, как гвозди, уголки, малые куски арматуры и так далее, можно не учитывать, так как он слишком мал в сравнении со всеми остальными элементами.

После этого можно найти вес покрытия. Если оно выполнено из металлических профилей, то нужно высчитать кубатуру всего профиля и умножить на вес одного метра кубического. Вес метра кубического можно найти на упаковке продукции.

Совет

Если же покрытие выполнено из шифера, то нужно высчитать количество листов и умножить их на массу одного листа.

На последнем этапе расчёта массы постройки необходимо установить общую массу. Она состоит из масс всех элементов входящих в постройку. Поэтому для того, чтобы вычислить общую массу, нужно сложить все получившиеся массы в результате поэтапных расчётов.

Расчёт давления, оказываемого постройкой на единицу площади грунта

Теперь зная массу постройки, можно без труда вычислить оказываемое ею давление. Для этого не достаёт одного числа – площади опоры фундамента.

Чтобы высчитать общую площадь опоры фундамента, нужно ширину одного столба умножить на длину этого столба. Так мы найдём площадь одного столба. Поскольку все столбы должны быть одинаковыми, то для нахождения общей площади, нужно площадь опоры одного стола умножить на количество столбов. Так получим полную площадь опоры всего фундамента.

В том случае, если столбы не равны по размерам между собой, то нужно высчитать площадь опоры каждого столба, а потом просуммировать их между собой.

Устройство столбчатого фундамента

Если столб имеет не прямоугольное, а круглое сечение, то нужно высчитать площадь опоры круглой основы. Сделать это можно по простой геометрической формуле, как число П=3,14, умноженное на радиус, возведенный в квадрат.

На этом площадь опоры вычислена.

Теперь для нахождения давления на грунт нужно всю массу разделить на общую площадь опоры. При этом следует учесть, что массу лучше всего выражать в килограммах, а площадь опоры в сантиметрах квадратных. Таким образом, давление будет иметь единицу измерения килограмм на сантиметр квадратный.

Сравнение коэффициента сопротивления грунта и давления на единицу площади грунта

На этом этапе нужно сравнить между собой результаты, которые получились в первом пункте и в третьем.

Если коэффициент сопротивления грунта оказался больше оказываемого давления хотя бы на 0,5, то это значит, что и тип фундамента, и количество столбов, и сечение каждого столба выбраны верно.

Обратите внимание

Никаких больше переработок фундамента не требуется. Возведения расчетного фундамента будет безопасно.

Если же коэффициент сопротивления грунта оказался меньше оказываемого давления, то следует принять одну из двух возможных мер:

  • Увеличение площади опоры каждого столба. Это достигается увеличением подошвы столбов. Можно под каждый столб подложить бетонную плиту, которая по площади будет больше площади основания столба. Можно просто сделать длиннее и шире сам столб;
  • Увеличение количества столбов. Дополнительные опоры в виде столбов нужно располагать на прямых участках. Однако этот способ тяжело реализуем, так как столбы нужно стараться располагать симметрично по всему строящемуся дому, если этого не соблюдать, то появляется возможность неравномерной просадки дома.

После принятия таких мер следует заново произвести расчёт, и опять по его результатам делать соответствующие выводы.

Пример расчёта

Строится дом прямоугольной формы. Сторона большей стены равна 5 метров, сторона меньшей стены равна 3 метра. Высота равна 3 метра.

Фундамент делается монолитным железобетонным. При этом столбы изготавливаются с квадратным сечением и длиной стороны в 50 сантиметров. Высота столба равна 1 метр. Ростверк выполнен из армированного бетона с шириной ленты в 30 сантиметров. Высота отливной части равна 0,2 метра.

Стены выполнены из блоков, при этом блок укладывался на ребро.

Крыша выполнена из деревянного каркаса и шиферного настила. Пол и чердачное перекрытие выполнено тоже из дерева.

При этом затрачено 5 кубических метров древесины. Все деревянные элементы сделаны из сосны. На крышу затрачено 23 листов шифера.

Сопротивление грунта установлено и равно 3.

Непосредственный расчёт

Армирование столбчатого фундамента стаканного типа

Так как установлено сопротивление грунта, то можно сразу приступать к расчётам массы постройки.

Сначала будем считать сам фундамент. У нас не указано количество столбов. При строительстве на стадии проектирования эта цифра выбирается самостоятельно исходя из трёх основных правил устройства столбчатого фундамента. Если следовать этим правилам, которые были описаны немного выше, то получим, что у нас должно быть:

4+4 =8 столбов. Первые четыре столба это угловые столбы. Вторые 4 столба это по одному столбу посередине каждой стены, так как расстояние между столбами не должно быть больше 2,5-3 метров.

Важно

Известно, что высота один метр, а длина и ширина равны 50 сантиметрам, отсюда можно высчитать объём одного столба:

0,5*0,5*1=0,25 метра кубического. Так как всего у нас 8 столбов, то общий объём столбов равен 2 кубическим метрам. Зная, что средняя плотность бетона равна 2500 килограмм на метр кубический, получим общий вес всех столбов, как:

2500*2=5000 килограмм.

Теперь рассчитаем массу ростверка. Длина ростверка составляет:

5*2+3*2=16 метров, то есть 2 стены по 5 метров и две по 3 метра. Дальше вычислим объём:

0,2*0,3*16=0,96 метра кубического. Тогда его масса равна:

0,96*2500= 2400 килограмм.

Теперь вычислим массу стен. Так как известно, что блок укладывался на ребро, можно посчитать его площадь:

0,3*0,6=0,18 метра квадратного. Такую площадь покрывает один блок. Теперь найдём общую площадь стен:

5*2*3+3*2*3=48 метров квадратных.

Теперь эту цифру разделим на площадь одного блока, получим:

48/0,18= 267 блоков. Такое количество блоков нужно затратить, чтобы возвести стены. Зная, что масса одно блока равна 30 килограммам, можно посчитать общую массу стен:

267*30=8010 килограмм.

Теперь осталось посчитать массу всех деревянных частей и массу шифера. Масса дерева высчитывается, как общий объём, умноженный на плотность породы. Так как сказано, что всего затрачено 5 кубических метров сосны, получим:

5*800=4000 килограмм.

Теперь рассчитаем массу шифера, как количество листов, умноженное на массу одно листа:

23*26=598 килограмм.

Теперь осталось вычислить вес всей постройки, как сумма всех масс:

5000+2400+8010+4000+598=20000 килограмм.

Совет

К этой массе стоит так же прибавить массу внутренних перегородок. Иногда также рассчитывают и массу снега, которая ложится на крышу зимой, при этом толщину снега принимают равной 15-20 сантиметрам.

Теперь с массой разобрались, осталось высчитать площадь опоры фундамента. Так как один столб у нас имеет квадратное сечение со стороной 0,5 метра, получим:

50*50=2500 квадратных сантиметров – площадь опоры одного столба.

Теперь найдём площадь опоры всех столбов:

2500*8=20000 сантиметров квадратных.

Теперь, зная и общую площадь опоры, и массу можно найти давление:

20000/20000=1 килограмм на сантиметр квадратный.

Сравниваем эту цифру с сопротивлением грунта:

1

Источник: https://domnuzhen.ru/stolbchatyj/raschet-stolbchatogo-monolitnogo-osnovaniya.html

условия применения конструкции, необходимые данные для расчета


Строительство здания начинается с устройства фундамента. Важнейшим для застройщика вопросом является определение типа фундамента, правильный расчёт технических характеристик, позволяющий разрабатывать конструктивные решения. Современное строительство является сферой активного приложения достижений высоких технологий. Сегодня уже немыслимо выполнение проектных работ без использования компьютерной техники и специализированного программного обеспечения.

Пример расчёта фундамента в компьютерной программе

Программа для расчёта фундамента позволяет достаточно быстро и надёжно выполнить комплексную оценку характеристик различных вариантов основания для здания или сооружения, учесть свойства подстилающего несущего грунта, характер его работы в условиях предполагаемой эксплуатации и соотнести полученные характеристики с нагрузками от проектируемого здания.

Программа для проектирования фундамента выбирается в зависимости от потребностей и возможностей пользователя.

Профессиональные проектные организации или специалисты, разрабатывающие ответственные сооружения, конечно же, используют дорогостоящие программные комплексы с широкими возможностями, позволяющие рассчитывать, конструировать, проектировать самые различные фундаменты с учётом всех формальных требований и предоставлением итоговой документации.


Программа «Фундамент» — одна из лучших программ для расчёта фундамента

В качестве примера можно привести программы «Фундамент», «Base», «ПЛИТА».

Более простые программы для расчёта фундамента

Однако частному застройщику едва ли посильно как применение такого профессионального программного обеспечения, так и его приобретение. Но для предварительной оценки параметров возможного фундамента, существуют более простые и доступные программные средства, позволяющие сформировать несколько более усреднённую, но достоверную картину будущего основания здания и более уверенно сделать выбор в пользу того или иного варианта.

Следует учитывать тот факт, что совершенство программных средств не может компенсировать недостатка или низкой достоверности исходной информации о состоянии несущего слоя грунта под подошвой фундамента.


Проект фундамента в программе Плита

Достоверные расчёты могут быть выполнены только тогда, когда застройщик имеет на руках полноценные данные о геологии участка.

Программа для расчёта ленточного фундамента, например «Ленточный фундамент 1.0.1», поможет собрать данные о нагрузках на погонный метр основания и понять необходимую ширину фундаментной подушки. Программа для расчёта столбчатого фундамента позволит получить площадь опорной части отдельного элемента, воспринимающего нагрузки от определённой части здания.

Для расчёта свайного фундамента следует использовать соответствующее программное обеспечение, которое поможет определить количество, диаметр и глубину заложения свайного основания для конкретного здания и грунтовых условий. Можно упомянуть программу StatPile, позволяющую выполнять такие расчёты.

Тип почвы


Изучая почву, пробурите отверстие ниже глубины промерзания
Столбчатый фундамент и его расчет определаются по геологическим условиям. При выполнении частных строительных работ определение типа грунта в лабораторных условиях не производятся. Чаще всего это определяется подручными средствами.

Для этого необходимо подготовить отверстие, которое будет обустроено на глубину ниже уровня промерзания грунта. Для каждого региона данные показатели отличаются. Это значение можно узнать из справочных материалов. К примеру, если уровень промерзания грунта около 1 м, то отверстие обустраивается глубиной 1,3 м. Затем отбираем образцы почвы и скатываем её в небольшой шарик.


Глинистые почвы легко формируются в комок и пачкают руку

Далее, по данному образцу делаем выводы:

  1. Если шарик сформировать не получается, то на участке преобладает песчаный тип грунта. По фракции крупинок определяем сопротивление почвы: для мелкого – 2, для среднего – 3, для крупного – 4,5.
  2. Если шарик сформировался, а при малейшем надавливании рассыпается, то тип почвы – супесь. Его сопротивление равно 3.
  3. Если при надавливании шарик превращается в лепёшку, причём на краях не образуются трещины, то имеем глинистую почву. В этом случае степень сопротивления варьируется от 3 до 6.
  4. При раздавливании шарика в лепёшку на краях образуются трещинки, то тип почвы – суглинок. Показатели сопротивления 2 – 4.

Следует помнить, что значение сопротивления грунта зависит от её уровня влажности и пористости. Правильно определиться с данным значением помогут данные, представленные в таблице:

Обращаем внимание на то, что данные значения подходят только для заглублённого фундамента.

Если же планируется обустройство мелкозаглублённого основания, то сопротивление следует рассчитывать по такой формуле: R=0,005хR0(100+h/3), где R0-табличная величина, h – планируемая глубина закладки опор в сантиметрах.

Программа для расчёта основания фундамента

«Расчёт оснований фундаментов» (версия 7.6.0) тоже достаточно простая, но программа вполне пригодна для бытового использования.

Понятный русскоязычный интерфейс имеет минимум настроек. С помощью этой программы можно проверить собственный расчёт или полностью подобрать подходящий фундамент.

В зависимости от потребностей окно расчёта попросит внести следующую информацию:

  1. Какой фундамент предпочтительнее: неглубокого заложения или свайный.
  2. Тип фундамента: столбчатый или ленточный, на забивных или буронабивных сваях.

  3. Расчёт основания по предельному состоянию: по несущей способности и деформации. Есть возможность выбрать сразу два параметра.
  4. Расчёт армирования фундамента.

Для предоставления необходимых данных программа предложит ввести имеющуюся информацию, а именно: указать грунтовые условия и предполагаемые или планируемые размеры основания дома. В случае обустройства свайного фундамента, программа просчитает тип и размер ростверка, а также объёмы армирования.

На выходе пользователь получает не только фундамент с рекомендованными характеристиками, но и полную рабочую документацию, подтверждающую расчёты. Она будет содержать ссылки на действующие нормативные документы, СНиПы и ГОСТы.

Рассчитываем число опор

Число опор напрямую зависит от того, какая будет площадь её основания. Приведём пример, как рассчитать количество столбов в случае обустройства бурозабивных свай с диаметральным сечением 300 мм, с последующим обустройством башмака габаритами в 50 см. Используем формулу вычисления площади круга S=3,14*r2. Подставив все значения, получим площадь равную 1960 см2. Подробнее о расчете столбов основания смотрите в этом видео:

Предполагаемую нагрузку берём равную 100 т (F), сопротивление почвы – 4 (R). Воспользовавшись формулой R=F/(S*n) и поставив все известные значения, получим уравнение, решив которое, получим значение n (количество свай). В данном примере, получаем 13 опор.


К нагрузке дома прибавляйте вес самой опоры

Не забываем, что сами опоры также имеют определённый вес, поэтому их также учитываем в общей нагрузке. Для этого производим дополнительные вычисления. Например, если длина столба равна 2 м, то объём опоры вычисляем умножением площади основания на длину столба. В итоге получаем значение – 0,14 м3. Умножаем данное число на объёмный вес железобетона 2400 кг/м3 и определяем вес одной опоры, приблизительно 340 кг. А вес 13 таких опор бет равным около 4,5 т.

Прибавив вес опор в общую нагрузку и произведя повторные, более точные вычисления, получаем, что необходимо закладывать 14 опор.

В принципе, представленные вычисления не так уж и сложны, и выполнить их самостоятельно вполне реально. Для облегчения выполнения расчета свайного фундамента можно воспользоваться онлайн калькулятором. В данном случае просто вводятся исходные данные, а затем используем полученные результаты.

Программа для расчёта ленточных и столбчатых фундаментов

Еще одна любительская, но действенная разработка – это программа расчёта ленточных и столбчатых фундаментов. Минимум бесполезных слов и максимум информативности.

В основе лежит информация СНиПов, которые отвечают за проектирование фундаментов зданий. Тем, кто хорошо разбирается в технической литературе и дружит с вычислениями, можно обойтись и без этой программы. Фундамент можно рассчитать вручную или в Excel.

Однако здесь всё достаточно наглядно. Можно подобрать один из двух типов фундаментов – ленточный или столбчатый. Для ленточного предусмотрено две разновидности – монолитный или сборный. Программа укажет минимальную глубину заложения фундамента, а также просчитает величину осадки и просадки основания.


Пример расчёта столбчатого фундамента

Отдельную информацию о фундаменте можно получить, указав данные о грунтах.

Программа в своё время была очень популярна и востребована, ею пользовались не только индивидуальные строители, но и целые проектные институты.

Именно поэтому простыми расчётами дело не ограничивается.

Желающие могут экспортировать в файл данные для построения модели ленточного фундамента дома с помощью Автокада.

Нюансы столбчатого основания


Столбы подойдут для легкой постройки
Первоначально разберёмся, какие существуют отличия столбчатого основания от ленточного:

  • чаще всего использовать для зданий, которые возводятся из облегчённого строительного материала и не имеют больших габаритов. Примером может служить дом из бруса без обустройства подвала;
  • состоит из нескольких опор, размещённых в тех местах, в которых предполагается наибольшая нагрузка.


Устройство сборного основания
Различают столбчатый фундамент двух видов:

  1. Монолит. Он обустраивается в виде столбов с обеспечением армирующих элементов залитых бетоном.
  2. Сборный. Закладывается из отдельных столбов, которые впоследствии соединяются ростверком. Материалом для его установки являются металлические элементы, которые скрепляются между собой посредством сварки. Такой фундамент имеет слабые места, особенно в точках соединения.

По уровню заглубления столбчатые основания можно подразделить на заглублённые и мелкозаглублённые. Заглублённый обустраивается ниже уровня промерзания грунта, а мелкозаглублённый на глубину не более 7 см.

Для каждого из видов необходимо производить свои расчёты, учитывая факторы различного направления.

Программа для расчёта свайного фундамента

Если предыдущие программы больше предназначались для расчёта и проектирования ленточных фундаментов, то это ПО подходит исключительно для подбора свайного основания дома. «OporaTv2» полностью русскоязычная программа, которая не требует от пользователя специального образования или особых знаний в области компьютерных технологий и проектирования.


Основа программы – методика расчёта свайного фундамента по технологии ТИСЭ. Те, кто не доверяет утилитам, могут просчитать все нагрузки на фундамент вручную. Однако времени на это уйдёт больше, а результаты совпадут, так как алгоритм программы использует те же формулы и данные.

Учет сейсмических воздействий при расчете фундаментов

Параметры, принимаемые в расчет для учета сейсмических воздействий (рис. 23):

  • балльность района строительства;
  • категория грунта по сейсмическим свойствам;
  • вероятность превышения сейсмической интенсивности;
  • класс ответственности здания по СНиП 2. 01.07−85.

Введение параметров сейсмической опасности объекта обуславливает введение особых сочетаний усилий на обрезе фундамента.

Дополнительная информация о калькуляторе

Онлайн калькулятор монолитного буронабивного (свайного и столбчатого) ростверкового фундамента предназначен для расчетов размеров, опалубки, диаметра арматуры, ее количества и объема расходуемого бетона. Для определения подходящего типа конструкции фундамента обязательно проконсультируйтесь со специалистами.

Обратите внимание!
В расчётах используются нормативы, приведенные в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».

Данный тип фундамента основывается на сваях или столбах, поэтому его также часто называют столбчатым либо свайным. Глубина установки и несущая способность отличает сваи от столбов.

Вершины столбов или свай связывают между собой сплошной железобетонной лентой, так называемым ростверком. Между ростверком и поверхностью земли остаётся воздушная прослойка некоторой высоты.

Основная причина для выбора ростверкового фундамента – глубокое промерзание или слабость грунта. Этот тип фундамента востребован в местах, где из-за погодных условий другие виды фундамента создавать проблематично. Забивка свай не зависит от климата, что является несомненным преимуществом ростверковой технологии. Другой её плюс – высокая скорость возведения сооружений, поскольку сваи можно подготовить заранее, а их вбивание – ускорить, пробурив в земле отверстия.

На тип ростверкового фундамента влияет материал и форма свай, характер действия на грунт, способы установки и виды непосредственно ростверка. Трудно давать типовые рекомендации, не зная самого сооружения и специфики местности, где оно строится. Перед началом проектирования следует учесть климат местности, свойства грунта, расчётные нагрузки. Безусловно, лучше всего обратиться к специалистам и последовать их рекомендациям, так как есть риск «доэкономиться» до деформации или разрушения будущего строения. Чтобы этого избежать, советуем внимательно ознакомиться с данным калькулятором. Он поможет вам рассчитать расходы при возведении стандартных конструкций и обдумать составляющие будущего фундамента.

Вы можете или предложить идею по улучшению данного калькулятора. Будем рады вашим комментариям!

Проектирование и расчет фундаментов — НТЦ «АПМ»

Особенности расчёта фундаментов

Подобно проектированию стальных и железобетонных конструкций в APM Civil Engineering, расчёт фундаментов предполагает выполнение либо проектировочного, либо проверочного расчёта, на основании имеющихся исходных данных об инженерно-геологических условиях строительной площадки и внешних термосиловых воздействиях на сооружение.

Выполнение проектировочного расчёта фундаментов в программе APM Civil Engineering предполагает получение в качестве результатов габаритов фундаментов (геометрических размеров), требуемое армирование, значения осадок и давления под подошвой фундамента.

Проверочный расчёт позволяет сформулировать выводы о соответствии применяемого фундамента и его конструктивных особенностей требованиям нормативных документов по прочности, трещиностойкости, деформациям и пр.

Независимо от выполняемого расчёта и типа фундамента, предполагается на начальном этапе построение адекватной расчётной модели, учитывающей только существенные особенности рассчитываемого объекта, который может быть смоделирован с применением различных типов конечных элементов (стержневые, плоские, объёмные), с последующим анализом параметров напряжённо-деформированного состояния. Затем, на основании полученных силовых факторов и известных параметров основания, выполняется расчёт фундаментов зданий и сооружений.

Стоит отметить, что расчёт фундаментов с применением параметрических моделей упругого основания требует выполнения итерационной процедуры расчёта. Как правило, такой подход применяется в случае описания механического поведения грунта в виде граничных условий, представленных коэффициентами постели – механическими характеристиками основания, жёсткость которых оказывает существенное влияние на результаты расчёта. Другой подход основан на использовании пространственных конечно-элементных моделей грунта с соответствующим математическим описанием. Последний подход позволяет дать достоверное описание поведения грунтовых массивов послойно, оценить характер распределения напряжений в грунтах, а также значения осадки при действии внешних нагрузок.

Проектирование фундаментов в APM Civil Engineering реализовано в виде расчётов конструктивных элементов, а также с помощью стандартного конечно-элементного моделирования.

В качестве конструктивных элементов могут быть рассмотрены столбчатые, плитные и свайные фундаменты. Функциональные возможности APM Civil Engineering позволяют сформировать инженерно-геологические элементы и скважины, с заданными параметрами грунтов, на основании данных об инженерно-геологических условиях строительной площадки. Скважины располагаются с привязкой к рассчитываемому зданию и сооружению согласно полученным исходным данным. На основании заданной системы скважин с соответствующими инженерно-геологическими элементами, программа APM Civil Engineering выполняет визуализацию напластований грунтов. Данные результаты при необходимости можно использовать для формирования объёмной-конечно элементной модели грунтового массива.

По выполненным скважинам APM Civil Engineering в автоматическом режиме выполняет расчёт жёсткости упругого основания. После завершения итерационной процедуры по вычислению жёсткости упругих опор, моделирующих деформацию основания, инженер с использованием диалога работы с конструктивными элементами, имеет возможность осуществить подбор геометрических размеров фундамента, его армирование и получить результаты расчёта осадки и крена.

Стоит заметить, что расчёт столбчатых фундаментов, может быть выполнен в APM Civil Engineering путём автоматической установки упругих опор, с характеристиками рассчитанными в диалоге конструктивных элементов, и зависящих от заданных габаритов столбчатого фундамента и внешних нагрузок. Такой подход в расчёте позволяет консервативно оценить деформации основания.

Как показывает практика строительного проектирования, зачастую возникает необходимость выполнения расчёта системы «сооружение – фундамент – основание» путём моделирования грунтового массива объёмными конечными-элементами, например, при расчёте подземных сооружений, с использованием массивных фундаментов и пр. В программе APM Civil Engineering для таких целей реализована модель Друкера-Прагера, которая совместно с возможностью моделирования массивных тел, построенных с использованием объёмных конечных элементов, позволяет инженеру проектировщику выполнять требуемые расчёты. Подобный функционал позволяет пользователю решать сложные задачи, учитывающие совместную работу толстых фундаментных плит с основанием, совместную работу свай, ростверка и грунта.

Калькулятор расчета столбчатого фундамента: арматура, бетон, опалубка, габариты

Инструкция по расчету габаритов и количества  материалов столбчатого фундамента

 

Представленная программа помогает выполнить пример расчета стоимости свайного или столбчатого фундамента с усилительным ростверком. Выходящие данные будут включать нужное количество и цену следующих строительных материалов:

  • Щебень;
  • Арматура;
  • Песок;
  • Цемент.

В соответствии с Вашими введенными данными, калькулятор в режиме онлайн будет формировать чертеж будущего проекта.

Выбираем тип столба

При вводе параметров калькулятора, предоставляется возможность выбрать столбы и их основания двух основных форм: круглой или прямоугольной.

Все размеры необходимо указать в мм

H — Высота основной секции столба.

B — Указываем диаметр или ширину.

A — Высота основания сваи. Если Вы используете столбцы без основы, то не нужно указывать этот размер.

D — Диаметр или ширину основания фундаментной сваи.

D1 — Длина основания прямоугольной формы.

B1 — Ширина сваи прямоугольной формы.

Если фундаментный столб имеет круглое сечение, то эти размеры не используем в расчете.

Размеры фундамента

Y — Длина.

X — Ширина.

Y1 — Общее количество столбов по всей длине монолита, включая столбы в углах.

X1 — Общее количество свай по ширине монолита, включая столбы в углах.

S — Если этот параметр отмечен, то будет выполняться расчет столбов, которые располагаются под всей постройкой равномерно. В том случае, если не отмечен, то только сваи, которые будут располагаться по периметру всего фундамента.

Размеры ростверка

F — Высота.

E — Ширина.

В том случае, когда не требуется расчет ростверков монолитного типа, то не нужно указывать эти параметры.

Арматура

ARM1 — Общее число прутков арматуры для одного столбца.

ARM2 — Общее число рядов арматуры в ленте ростверка.

ARMD — Диаметр арматуры. Эти значения необходимо указывать в миллиметрах.

В том случае, если для Вашего проекта армирование не требуется, то это значение устанавливается в 0.

Указываем количество цемента, которое необходимо для изготовления 1 м³ бетона. Все данные указываем в килограммах.

Указываем пропорцию по массе для приготовления бетонного раствора. Значение параметров в каждом отдельном случае будут различны.

В первую очередь вышеуказанные параметры будут зависеть от технологии строительства, диаметра фракции щебня и марки цемента. Эти данные Вы можете уточнить у поставщиков и продавцов строительных материалов.

Укажите цены на строительные материалы, что позволит выполнить ориентировочный расчет общей стоимости проекта.

По введенным результатам программа выполнит вычисления:

  • Объема бетонного раствора для одного столба, раздельно для нижней и верхней части.
  • Расстояние между сваями, и их количество.
  • Общая масса и длина требуемого количества арматуры.
  • Объем раствора для ростверка.
  • Готовые чертежи с общим планом, по которым Вы сможете правильно спроектировать свайный фундамент.
  • Итоговую стоимость всех основных материалов для монтажа свайного с ростверком или столбчатого монолита.

Сфера применения

Сегодня используют столбчатый фундамент в том случае, когда монтаж конструкции ленточного типа не целесообразно, к примеру, для построек с легкими стенами, без подвалов, для бань или гаражей. Благодаря нашей программе, расчет не только не отнимет у Вас много времени, но, и поможет избавиться от трудоемкого процесса расчета. Вам необходимо будет только правильно заполнить все поля согласно подробной инструкции, и Вы сразу сможете получить все необходимые и достаточные сведения для постройки столбчатого монолита, узнаете объемы строительных материалов, а также общую стоимость проекта.

Общие данные

Столбчатый фундамент, как правило, состоит из железобетонных столбов, каждый из которых имеет расширение в нижней части, и объединен между собой ростверком. Такое сооружение опоры помогает ей препятствовать пучению почвы и выдерживать большие нагрузки. Столбцы должны располагаться в местах пересечения, в углах будущего здания, под тяжелыми стенами, несущими, балками или ответственными конструкциями. Сваи должны быть во всех местах с высокой нагрузкой. Ростверк используется для того, чтобы усилить конструкцию, выполненный между столбцами в форме армированной перемычки.

Где не стоит использовать столбчатый фундамент

На подвижных грунтах категорически не рекомендуется монтировать конструкцию, а также на таких как глинистые или слабые почвы, водянистые или торф. Не рекомендуется использовать в местности, где находится резкие перепады высот.

Где применяют

Фундамент на бетонных сваях станет идеальным решением для постройки дома, гаража, бани или дачи без существенных затрат.

Материалы

В первую очередь необходимо определить количество этажей будущей постройки и ее массу. Далее выполняется выбор материалов и расчет проекта, где можно использовать кирпич, бетон, железобетон, а также камень. Согласно типу выбранного материала выбирается размер сечения столбцов. Для бетонных свай размер сечения не менее 400 мм, для камня не менее 600 мм, для кирпича 380 мм, в том случае если кладка выше уровня грунта и не менее 250 мм в случае использования перевязочной технологии с забиркой.

Достоинства

Благодаря своей конструкции столбчатые конструкции отличаются рядом преимуществ, которые делают их идеальным решением для постройки жилых и нежилых объектов. Такой тип конструкции значительно дешевле, чем ленточные или блочные монолиты, расходует меньше строительных материалов и для их возведения уходит значительно меньше времени и затрат. Такой проект позволяет уменьшить площадь постройки и дает незначительную усадку. Такой тип основы для дома отлично противостоит пучениям морозных грунтов и разрушительному влиянию грунтовых вод.

Поэтапное строительство

Перед тем, как начать строительные работы, нужно определить глубину максимальную промерзания грунта и вид почвы. Все это нужно для того, чтобы при надобности можно было замерять уровень, на который могут подниматься грунтовые воды, после чего правильно выполнить гидроизоляцию. Монтаж столбчатого фундамента выполняется в следующей последовательности.

  1. Очищаем площадку, подготовительные работы.
  2. Согласно проекту выполняется разметка участка под конструкцию.
  3. Подготовка ям для столбцов.
  4. Выполняется монтаж опалубки для будущих опор.
  5. Монтаж арматуры.
  6. Выполняется заливка бетонных свай.
  7. Изготавливаем ростверка.
  8. Строительство стенок между столбцами или забирки.
  9. Выполняем гидроизоляцию по периметру всего фундамента.

Период и время заливки

Заливка бетона является заключительным этапом и должна выполнять слоями по 25-40 миллиметров. Каждый слой необходимо разработать вибратором, что позволит исключить образование воздушных прослоек, существенно ослабляющих монолит. Всю заливку правильней всего выполнить за один этап, залив бетонный слой, разбив вибратором и такими темпами до конца опоры.

Не рекомендуется заливать опоры с промежуточным интервалом в один день, так как могут образоваться швы на стыке слоев, что негативно скажется на крепости несущей конструкции сооружения.

Важно

Рассчитать фундамент для дома можно для всех типов построек: каркасных, блочных, монолитных, деревянных и кирпичных.

В том случае, когда планируется возвести дом на пучинистом грунте, то не рекомендуется откладывать строительство, которое уже начали. В том случае, если каркас начатый будет оставлен на зиму, то он деформируется.

Залитые бетонные опоры, должны выстоять в течение не менее 30 дней. За данный период не рекомендуется эти опоры подвергать нагрузке.

Лучше всего для изготовления бетонного раствора использовать цемент серии М400, крупнозернистый песок или мелкий гравий лучшего всего подойдут в качестве наполнителя.

Программа для расчета и проектирования свайного и ленточного фундамента

Строительство здания начинается с устройства фундамента. Важнейшим для застройщика вопросом является определение типа фундамента, правильный расчёт технических характеристик, позволяющий разрабатывать конструктивные решения. Современное строительство является сферой активного приложения достижений высоких технологий. Сегодня уже немыслимо выполнение проектных работ без использования компьютерной техники и специализированного программного обеспечения.

Пример расчёта фундамента в компьютерной программе

Программа для расчёта фундамента позволяет достаточно быстро и надёжно выполнить комплексную оценку характеристик различных вариантов основания для здания или сооружения, учесть свойства подстилающего несущего грунта, характер его работы в условиях предполагаемой эксплуатации и соотнести полученные характеристики с нагрузками от проектируемого здания.

Программа для проектирования фундамента выбирается в зависимости от потребностей и возможностей пользователя.

Профессиональные проектные организации или специалисты, разрабатывающие ответственные сооружения, конечно же, используют дорогостоящие программные комплексы с широкими возможностями, позволяющие рассчитывать, конструировать, проектировать самые различные фундаменты с учётом всех формальных требований и предоставлением итоговой документации.

Программа «Фундамент» — одна из лучших программ для расчёта фундамента

В качестве примера можно привести программы «Фундамент», «Base», «ПЛИТА».

Вернуться к оглавлению

Содержание материала

Более простые программы для расчёта фундамента

Однако частному застройщику едва ли посильно как применение такого профессионального программного обеспечения, так и его приобретение. Но для предварительной оценки параметров возможного фундамента, существуют более простые и доступные программные средства, позволяющие сформировать несколько более усреднённую, но достоверную картину будущего основания здания и более уверенно сделать выбор в пользу того или иного варианта.

Следует учитывать тот факт, что совершенство программных средств не может компенсировать недостатка или низкой достоверности исходной информации о состоянии несущего слоя грунта под подошвой фундамента.

Проект фундамента в программе Плита

Достоверные расчёты могут быть выполнены только тогда, когда застройщик имеет на руках полноценные данные о геологии участка.

Программа для расчёта ленточного фундамента, например «Ленточный фундамент 1.0.1», поможет собрать данные о нагрузках на погонный метр основания и понять необходимую ширину фундаментной подушки.
Программа для расчёта столбчатого фундамента позволит получить площадь опорной части отдельного элемента, воспринимающего нагрузки от определённой части здания.

Для расчёта свайного фундамента следует использовать соответствующее программное обеспечение, которое поможет определить количество, диаметр и глубину заложения свайного основания для конкретного здания и грунтовых условий. Можно упомянуть программу StatPile, позволяющую выполнять такие расчёты.

окно для работы программы «Ленточный фундамент»Вернуться к оглавлению

Программа для расчёта основания фундамента

«Расчёт оснований фундаментов» (версия 7.6.0) тоже достаточно простая, но программа вполне пригодна для бытового использования.

Понятный русскоязычный интерфейс имеет минимум настроек. С помощью этой программы можно проверить собственный расчёт или полностью подобрать подходящий фундамент.

В зависимости от потребностей окно расчёта попросит внести следующую информацию:

  1. Какой фундамент предпочтительнее: неглубокого заложения или свайный.
  2. Тип фундамента: столбчатый или ленточный, на забивных или буронабивных сваях.
  3. Расчёт основания по предельному состоянию: по несущей способности и деформации. Есть возможность выбрать сразу два параметра.
  4. Расчёт армирования фундамента.

Для предоставления необходимых данных программа предложит ввести имеющуюся информацию, а именно: указать грунтовые условия и предполагаемые или планируемые размеры основания дома. В случае обустройства свайного фундамента, программа просчитает тип и размер ростверка, а также объёмы армирования.

На выходе пользователь получает не только фундамент с рекомендованными характеристиками, но и полную рабочую документацию, подтверждающую расчёты. Она будет содержать ссылки на действующие нормативные документы, СНиПы и ГОСТы.

Вернуться к оглавлению

Программа для расчёта ленточных и столбчатых фундаментов

Еще одна любительская, но действенная разработка – это программа расчёта ленточных и столбчатых фундаментов. Минимум бесполезных слов и максимум информативности.

В основе лежит информация СНиПов, которые отвечают за проектирование фундаментов зданий. Тем, кто хорошо разбирается в технической литературе и дружит с вычислениями, можно обойтись и без этой программы. Фундамент можно рассчитать вручную или в Excel.

Однако здесь всё достаточно наглядно. Можно подобрать один из двух типов фундаментов – ленточный или столбчатый. Для ленточного предусмотрено две разновидности – монолитный или сборный. Программа укажет минимальную глубину заложения фундамента, а также просчитает величину осадки и просадки основания.

Пример расчёта столбчатого фундамента

Отдельную информацию о фундаменте можно получить, указав данные о грунтах.

Программа в своё время была очень популярна и востребована, ею пользовались не только индивидуальные строители, но и целые проектные институты.

Именно поэтому простыми расчётами дело не ограничивается.

Желающие могут экспортировать в файл данные для построения модели ленточного фундамента дома с помощью Автокада.

Вернуться к оглавлению

Программа для расчёта свайного фундамента

Если предыдущие программы больше предназначались для расчёта и проектирования ленточных фундаментов, то это ПО подходит исключительно для подбора свайного основания дома. «OporaTv2» полностью русскоязычная программа, которая не требует от пользователя специального образования или особых знаний в области компьютерных технологий и проектирования.


Основа программы – методика расчёта свайного фундамента по технологии ТИСЭ. Те, кто не доверяет утилитам, могут просчитать все нагрузки на фундамент вручную. Однако времени на это уйдёт больше, а результаты совпадут, так как алгоритм программы использует те же формулы и данные.

Основное рабочее поле разбито на девять тематических блоков. В каждом есть возможность ввести вручную или выбрать из предложенного списка данные. Именно здесь сообщается программе вся имеющаяся информация, которая и становится отправной точкой для расчёта основания дома.

Блок фундамент

Здесь необходимо ввести длину, ширину и высоту будущего фундамента. Причём под длиной понимается не только периметр, но и опоры под внутренними ненесущими перегородками.

Расчёт фундамента в программе Opora

Блок стены

В этом блоке представлено девять основных строительных материалов, которые используются для возведения несущих конструкций. Необходимо выбрать нужный материал и указать его количество. В случае отсутствия такового, стоит остановиться на материале со схожими эксплуатационными характеристиками, в том числе весом.

Блок грунт

Самая объёмная и самая важная информационная панель. Здесь не предлагается ввести какие-либо данные, приведённые сведения служат основанием для дальнейших расчетов. В таблице указан тип грунта и диаметр подошвы используемой сваи, остается выбрать желаемое сочетание.

Блок кровля

Из выбранных кровельных материалов необходимо выбрать используемый в вашем случае, а затем указать общую площадь крыши.

Блок снеговой покров

Может быть указан тип кровли или регион, данные выбираются мышкой из выпадающего меню.

Блоки цокольное, межэтажное и чердачное перекрытие

Каждый из последних трёх блоков содержит одинаковую информацию о материалах, используемых в качестве перекрытия. На выбор даются деревянные балки, бетонные пустотелые плиты и монолитные железобетонные плиты. Напротив соответствующего материала необходимо указать нужную площадь.

Окно расчета

И последний, девятый блок – это окно для расчёта.

После нажатия кнопки «расчёт», там появляется краткая, но ёмкая информация о фундаменте, которая содержит следующие сведения:

  • вес фундамента;
  • вес стен;
  • вес кровли;
  • вес перекрытий с учетом эксплуатационной нагрузки;
  • вес дома с запасом;
  • несущая способность одной опоры;
  • расчётное количество опор.

Все эти средства автоматизации конструкторских работ значительно ускоряют и упрощают проведение весьма сложных строительных расчётов.

Диаметр арматуры столбчатого фундамента. Арматура для фундамента. ArmaturaSila.ru

Портал о бетоне: калькуляторы, информация, производители.

BetonZone » Методы армирования и примерный расчет столбчатого фундамента

Методы армирования и примерный расчет столбчатого фундамента

Основным конструкционным материалом столбчатого фундамента является бетон. Он прочен, надежен, долговечен. Он выдерживает значительные нагрузки на сжатие, а потому основание дома остается целым на протяжении всего времени эксплуатации здания, независимо от давления грунта на него. Однако существуют еще нагрузки на растяжение и изгиб. Они возникают при давлении всей конструкции на подземную часть постройки. Кроме того в холодное время года, когда грунт промерзает на значительную глубину, заледенелая земля пытается вытолкнуть из себя столбы фундамента, когда как не промерзший грунт удерживает его внутри. Чтобы под подобными нагрузками основание дома не потеряло своей целостности, используется армирование столбчатого фундамента.

Способы армирования столбчатого фундамента

Сегодня в строительном мире существуют следующие виды армирования столбчатого фундамента:

  • вертикальное – оно же и основное. Выполняется из ребристой арматуры, класса не ниже А-III. Толщина материала может лежать в пределах 10-15 мм. Данный показатель зависит от предполагаемых нагрузок на фундамент и вычисляется, исходя из табличных данных нормативной документации и полевых исследований. Фактурная поверхность арматуры обеспечивает улучшение ее степени сцепления с бетоном, что только усилит конструкцию. Вертикальная арматура проходит вдоль всего столба фундамента. В зависимости от площади сечения последнего вертикальных армирующих прутов может быть от 2 штук до 6 штук. Чем больше количество армирующих прутков содержит столб, тем равномернее распределится нагрузка на изгиб и растяжение, а следовательно долговечнее будет фундамент. Однако здесь нужно выполнять определенные требования к армированию столбчатого фундамента: армирующий каркас не должен проходить ближе, чем на 5 см к краю бетонного столба;
  • горизонтальное – считается вспомогательным. Выполняется из гладкой арматуры, диаметром не более 6 мм. Она необходимо лишь для обвязки каркаса. В таком случае последний не потеряет свой первоначальной формы.

Чаще всего столбчатый фундамент заканчивается горизонтальным ростверком. Данная конструкция также подлежит армированию, так как на нее действуют переменные нагрузки. С одной стороны от тяжелых несущих и ограждающий конструкций здания, а с другой – от вспучивания грунта. Последние передаются от столбов основания строения. Армирование ростверка проходит по принципу усиления армирующим каркасом ленточного конструкции.

Совет. Диаметр лучей арматуры рассчитываются исходя из относительного содержания железных прутьев в бетонном столбе. Так, общее сечение арматуры не должно быть меньше 0,1% от общего сечения столба основания дома.

Нормативная документация по армированию столбчатого фундамента

Армирование столбового фундамента проходит согласно следующего ряда нормативных документов:

  • СНиП 52-01-2003 о бетонных и железобетонных конструкциях;
  • СНиП 2.01.07-85 о нагрузках и воздействии;
  • СП 50-101-2004 проектирование и устройство различных оснований здания;
  • СНиП 3.02.01-87 основания и фундаменты, другие земляные сооружения.

Пример расчета армирования столбчатого фундамента

Примерный расчет армирования столбчатого фундамента:
Согласно СНиПу 52-01-2003, для армирования стандартного двухметрового столба, диаметром 200 мм необходимо 4 стальных прута с площадью поперечного сечения каждого до 10 мм. Согласно стандартам такой каркас должен закрепляться в минимум четырех местах горизонтальным армирование. Оно выполняется проволокой 6 мм в диаметре.

Итак, для одного столба для вертикального армирования нужно 8 м ребристой арматуры, для горизонтального армирования 1,2 м обычной стальной проволоки. Если фундамент е из приведенных значений умножаем на 30. Получаем необходимую для армирования столбчатой основы длину стальной проволоки.

Вывод

Итак, для усиления столбчатого фундамента необходимо вертикальное и горизонтальное армирование. Усилению стальной проволокой подлежит и горизонтальный ростверк. Армирование проводится только в полном соответствии с нормативной документацией. Согласно установленным нормам проводятся и предварительные расчеты относительно требуемого количества арматуры.

Видео-обзор заливки столбчатого фундамента:

Основные особенности армирования столбчатых фундаментов с ростверком

Надежность и прочность столбчатого фундамента с ростверком во многом зависит от его правильного армирования. Рассмотрены особенности армирования столбчатого фундамента, последовательность работ при армировании, требования к арматуре, расположение арматуры в углах здания и на пересечении с несущими стенами. Также показаны нормативные документы, согласно которым ведется строительство и перечислены ошибки, которые не должны допускаться в ходе работ.

Особенности армирования столбчатого фундамента

Повышение крепости и надежности фундамента достигается его армированием. Бетон выдерживает большие нагрузки на сжатие. Изгибные или растягивающие усилия даже небольшие, разрывают его.

На столб фундамента действуют такие нагрузки:

  • на сжатие – вес здания;
  • на разрыв – зимой пучение грунта сжимает стенки столба и отрывает его вверх от подошвы;
  • на излом/сдвиг, зимой – горизонтальные подвижки грунта при замерзании или летом – сдвиг плотного слоя по водонасыщенному или слабому грунту.

Для нагрузок на сжатие не армируют, а воздействие от пучения грунта полностью устраняют, обернув столб тремя слоями полиэтилена или рубероида. Сдвиговая нагрузка возможна редко, но защищают от нее армированием.

Второй зоной армирования в столбчатых фундаментах, является ростверк. Армирование ростверка свайного фундамента производят только по его нижней и верхней поверхности с учетом толщины защитного слоя бетона.

Требования к арматуре столбов фундамента и ростверка

Для горизонтальной продольной арматуры ростверка берут прутки с регулярным профилем и диаметром 10 – 16 мм. Вертикальные и горизонтальные поперечные участки каркаса – из гладкой арматуры, диаметром 6 – 8 мм.

Для столбов вертикальная арматура – профилированная, горизонтальная – гладкая. Диаметры те же.

Обычно используют прутки марок А I и А III (А 400 С).

Можно использовать новый вид арматуры – композитную. Практика пока не велика, а характеристики у нее хорошие.

Последовательность армирования столбов и ростверка

Столбы армируют вертикальными прутьями. Их варят или вяжут проволокой в каркасы.

На дно ямы насыпают песок, толщиной 200 – 250 мм и сверху такой же слой песка со щебнем. Укладывают не менее 50 – 100 мм бетона для защиты металла от грунтовой влаги и коррозии.

Готовые каркасы опускают в скважины буронабивных свай или ямы под столбы.

Размеры каркаса в сечении должны быть меньше диаметра скважины на 35 – 50 мм с каждой стороны. Этот слой бетона называется защитным. Щелочной реакцией он защищает металл от коррозии.

Выпуски арматуры столбов при изготовлении каркаса загибают горизонтально на длину 30 – 40 диаметров прута. Если дипломированный сварщик умеет правильно, и не перекаливая варить арматуру, загибы не делают.

В ростверк стержни укладывают двумя слоями:

  • верхний слой ниже верхнего среза на толщину защитного слоя;
  • в нижнем слое, на ту же толщину выше подошвы.

Середина не армируется, тут нагрузок почти не бывает.

Схема расположения прутов арматуры определяется требованиями к частям фундамента:

  • для буронабивных свай или железобетонных свайных столбов – требования прочности на срез обуславливается нагрузкой от горизонтального смещения массивов грунта;
  • для горизонтального, обычно монолитного ростверка нагрузка будет изгибающей, т. к. балка ростверка расположена концами на опорах, а под средней ее частью опоры почти нет.

Как располагают арматуру в углах ростверка?

Армирование углов ростверка свайного фундамента и пересечения с несущими внутренними стенами нужно вести с загибанием прутов на длину не менее 0,4 – 0,8 м. Отогнутые части горизонтальных прутьев одной стороны ростверка должны заходить на перпендикулярную ей другую сторону и наоборот.

Варить можно не всегда – некоторые марки стали не варятся обычными электродами, возможны перегрев прутков, вытекание металла и ослабление стыков, швов и т. п.

Нормативные документы по столбчатым фундаментам

Количество прутков, марки арматуры, значение диаметров получают в результате расчета столбчатого фундамента профессиональным инженером-строителем. Как и чертежи для его армирования.

Для этого используют такие нормативные документы:

  • СП 20.13330. (СНиП 2.01.07-85*) Нагрузки и воздействия – терминология и нагрузки на столбчатый фундамент;
  • СП 50-101-2004 (актуализация СНиПов 2.02.01-83 и 3.02.01-87) – Свод Правил по фундаментам зданий и сооружений, п. с 12.1 – по 12.8 – общие требования к расчету, расчет столбчатых фундаментов – п. 12.3;
  • СП 22.13330. (обновленный СНиП 2.02.01-83) Основания зданий и сооружений – нагрузки, глубина заложения, учет грунтовых вод, особенности стадий проектирования;
  • СП 63.13330. (актуализация СНиП 52-01-2003) Бетонные и железобетонные конструкции , расчетные требования в п. 5, 7, 10.

Расчет по документам позволяет точнее определять цену на армирование столбчатого фундамента.

Ошибки при армировании

Наиболее часто встречающиеся ошибки:

  1. Арматурный каркас устанавливают на грунт. Металл корродирует, расширяется в объеме и рвет бетон в самом важном месте – подошве столбов.
  2. При установке в скважину каркас не центрируется. Арматура может выйти наружу столба или остаться малая толщина защитного слоя.
  3. Не выпускается арматура для связей с каркасом ростверка. Монолитный ростверк не сможет противостоять горизонтальным подвижкам грунта, и фундамент может разрушиться.
  4. При сварке стержней соединения не должны быть на углах и на пересечениях стен.
  5. При изгибе прутов место сгиба не греют – прут дает микротрещины.
  6. Арматура в средней части любого железобетонного изделия – грубая ошибка – бетонная балка или плита растягивается или сверху при нагрузке на края и опоре посередине, или снизу – когда опоры по краям, а нагрузка в середине. Эти растягивающие усилия и должна выдерживать арматура. В средней части изделия нагрузок почти нет, и арматура там – выброшенные деньги, время и труд.
  7. При заливке бетона глубинный вибратор использовать только во внутренней зоне каркаса и аккуратно, чтобы не нарушить его конфигурацию.

Вопросы и ответы по теме

По материалу пока еще не задан ни один вопрос, у вас есть возможность сделать это первым

Армирование фундаментов своими руками

Бетон становится железобетоном благодаря армированию фундамента. Установка арматурного каркаса необходима для того, чтобы фундамент, помимо сжатия, мог хорошо воспринимать нагрузки, направленные на изгиб и растяжение.

Как правильно армировать фундамент (арматурный каркас)

Во-первых, арматура должна быть чистой, без грязи и мусора. Только чистая арматура хорошо сцепляется с бетоном. В каркасе арматура есть двух типов (по назначению): рабочая и распределительная. Предназначение рабочей арматуры – принятие внешних нагрузок и от собственной массы здания. Распределительная арматура распределяет нагрузки на весь каркас.

Связь между арматурами обеспечивают сварные швы или проволочные связки. Чаще для надежности пользуются сваркой. Но если предполагаемые нагрузки на фундамент невелики, то можно обойтись и вязанием проволоки. В основном, арматурный каркас скрепляется на углах фундамента. Если диаметр арматурных прутьев менее 25 мм, то их скрепляют точечной сваркой или проволокой. Если более 25 мм, – то дуговой.

Помните: во всем каркасе должно быть скреплено не менее половины арматурных пересечений, на углах рекомендуется соединять все стыки.

Если ваша арматура имеет класс от 1 до 3 и диаметр не более 40 мм, то соединение производят с накладкой. При этом сварной шов не должен быть очень коротким, иначе крепление может разрушиться.

Для любого вида фундамента лучше использовать ребристую арматуру, так как она максимально крепко соединяется с бетоном.

Если будущий дом легкий, одноэтажный и неширокий, то можно использовать арматуру диаметром 10 мм. Если дом двухэтажный или широкий (длинный), то нужно использовать 12-милимметровую арматуру.

Армирование монолитного ленточного фундамента своими руками

В зависимости ширины и высоты ленточного фундамента армирование может производиться в 2 и более слоя каркасной сетки с шагом от 15 до 25 см. Обычно ширина ленточного монолитного фундамента составляет 40-60 см, а высотка 50-100 см. Если размеры 40#215;50 см, отступ горизонтальной и вертикальной сетки может быть по 10-15 см от всех сторон. При высоком фундаменте вертикальный шаг между горизонтальными арматурами может быть от 30 до 40 см (получается, при 100 см высоты и 60 см ширины шаг равен 40 см при 3-х горизонтальных арматурных сетках, а отступ от верхнего и нижнего края равен 10 см).

Горизонтальный шаг между вертикальными арматурами может быть равен 30 см и более, а расстояние до края бетона 1по 10 см с каждой стороны. В итоге количество арматурных сеток и шаг между ними рассчитывается, исходя из нагрузки на фундамент.

Армирование плитного фундамента своими руками

Поскольку плитный фундамент – это большой цельный прямоугольник или квадрат, ему необходимо обеспечить максимальную прочность и жесткость. Поэтому всю арматурную сетку нужно сваривать на каждом соединении. как горизонтально, так и вертикально. Таким образом, плита получит максимальные показатели надежности.

Поскольку для плитного фундамента используются широкие каркасы арматуры, нужно следить за тем, чтобы она была полностью погружена в бетон (иначе в будущем плита может сломаться в месте выхода арматуры).

В зависимости от типа нагрузки толщина фундаментной плиты может быть от 20 до 30 см. Как правило, армирование плитного фундамента производится в 2 слоя. Шаг между горизонтальными прутами бывает от 20 до 40 см, шаг между вертикальными прутами примерно такой же. Главное #8212; чтобы отступ всех прутьев от края фундамента был не менее 5 мм. Диаметр прутов должен быть не менее 12 мм, а арматура – только ребристая (для максимального сцепления с бетоном).

Армирование столбчатого фундамента своими руками

Армировать столбчатый фундамент очень просто. Для этого достаточно 4-6 длинных ребристых арматурных прутов и несколько тонких гладких прутов, чтобы ровно связать их. Длинный прут должен быть диаметром 10-12 мм, для гладкого достаточно 6 мм. Если столб слишком узкий (например, 20 см), то его можно армировать двумя прутами. При длине столба в 1,5-2 метра связывать арматурные пруты можно на расстоянии 40-50 см. Если фундамент для тяжелого дома, то связки лучше приварить. Армируйте столбчатый фундамент так, чтобы после заливки арматура выступала на 10-20 см. Так к ней удобно привязывать каркас ростверка.

Армирование свайного набивного фундамента своими руками

Свайный набивной фундамент армируется так же, как и столбчатый. Единственное различие – вертикальная арматура будет расположена по кругу, а не квадратом. Можно использовать 3-5 прутов диаметра 10 мм.

Армирование ростверка для фундамента своими руками

Ростверк армируется так же, как и ленточный монолитный фундамент. Просто ростверк не такой высокий. Следовательно, горизонтальных арматурных сеток будет не больше двух. Помните: каркас ростверка должен не доходить до края бетона на 3-5 мм с каждой стороны.

Источники: http://betonzone.com/metody-i-primernyj-raschet-armirovaniya-stolbchatogo-fundamenta, http://stroynedvizhka.ru/stroitelstvo-nedvighimosty/armirovanie-stolbchatyih-fundamentov-s-rostverkom/, http://gold-cottage.ru/fundament/armirovanie_fundamentov_svoimi_rukami.html


Комментариев пока нет!

Делаем расчет столбчатого фундамента своими руками

В статье «Расчет фундамента» мы говорили о том, что нужно учитывать при расчете основания, независимо от того, какой конкретно объект предполагается на нем возводить. Сегодня же мы постараемся подробно описать процесс расчета столбчатого фундамента. Воспользовавшись представленной информацией, вы сможете без труда своими руками учесть все нюансы и определиться с оптимальным выбором столбчатого основания, в том числе, прикинуть предстоящие расходы на строительство дома.

Оцениваем нагрузку от дома

Если вы самостоятельно решаете вопросы строительства загородного дома, то уже на этапе проектирования постройки знаете, из каких строительных материалов будете возводить здание. А это значит, что уже сейчас можно оценить вес надземной части постройки, просуммировав нагрузки от всех конструкций здания и добавив к ним сезонные нагрузки, а также нагрузки от объектов, которые впоследствии будут размещены внутри сооружения.

Исходя из полученных данных, оцениваются размеры железобетонной обвязки – высокого ростверка, который послужит рамой, равномерно распределяющей нагрузки на все опоры. Он же будет при необходимости передавать неравномерную деформационную нагрузку от столбчатого фундамента. Рассчитывается объем обвязки и ее массу при условии, что средний объемный вес железобетона равен 2400 кг/м3.

Суммируем все вышеперечисленные нагрузки F (по сути, проводим расчет нагрузки на фундамент), и остается только определиться с характером грунта и общим количеством опор.

Оцениваем характер грунта

Если расчет столбчатого фундамента осуществляется своими силами, то проведение лабораторных исследований показателей грунта не предполагается. Поэтому пойдем по бюджетному пути – будем проводить оценку на глаз. Для этого на месте предполагаемого строительства дома выкапываем шурф (яму) глубиной ниже глубины промерзания грунта (ГПГ). ГПГ можно узнать в справочном пособии или в статье, о которой мы говорили в самом начале повествования. Предположим, что ГПГ составляет 1,5 м. Выкапываем шурф глубиной 1,8 м. и отбираем пробы грунта и пытаемся скатать из него небольшой шарик. Оцениваем характер грунта следующим образом:

  • если шарик не скатывается, и вы визуально определили песчаный слой дна шурфа, то в зависимости от крупности песка, расчетное сопротивление грунта (далее – R) принимает значение от 2 (для очень мелкого, пылеватого) до 3 (для среднего) и 4,5 (для крупного песка)*;
  • если шарик рассыпается при сдавливании, велика вероятность, что грунт – супесь (R=3)*;
  • если шарик при сдавливании не рассыпается и по краям лепешки не образуются трещины, то перед нами глина (R=3-6)*;
  • шарик из грунта не рассыпается при сдавливании, но по краям образуются трещины, грунт – суглинок (R=2-4)*

*Значение R зависит также от влажности грунта и коэффициента пористости. Ориентировочные значения расчетного сопротивления грунта представлены в таблице ниже. Следует учитывать, что представленные значения актуальны при заглублении фундамента на 1,5…2 метра. Если же вы планируете возводить мелкозаглубленный фундамент, то расчетное сопротивление грунта будет уже другим: R=0,005R0(100+h/3), где R0-табличная величина, h – глубина (см), на которую планируется закладывать фундамент.

Итак, получили значение R. Определяем параметры и количество опор-столбов.

Расчет количества опор столбчатого фундамента

Количество столбов во многом зависит от площади основания каждого из них. Предположим, что вы выбрали к установке буронабивные сваи диаметром 300 мм. с расширением в нижней части (башмаком) в 500 мм (50 см). Площадь подошвы каждой опоры S будет равна pi×D2/4= 3,14×50×50/4=1960 см2.
Предположим, что нагрузка F = 100000 кг, R=4, тогда необходимо решить простое уравнение с одной неизвестной типа: R=F/(S×n), где n – количество опор. В нашем случае получаем n = 13 шт. Но ведь сами опоры также будут оказывать воздействие на грунт, поэтому их также необходимо включить в нагрузку. Проводим поправочные вычисления. Пусть длина столба составляет 2 м, диаметр оставляем тем же – 0,3 м. Объем одной опоры составит: 2×3,14×0,3×0,3/4=0,14 м3. Принятый средний объемный вес железобетона равен 2400 кг/м3, тогда масса одной опоры составит: 0,14×2400=336 кг (340 кг). Тогда масса 13 опор составит, соответственно, 4500 кг. Умножаем эту величину на коэффициент надежности 1,3, суммируем с F и подставляем в уравнение выше: 4=105850/(1960n). n=14 – количество опор, которые потребуется установить в нашем случае. Перед строительством столбчатого основания советуем ознакомиться с информацией по армированию железобетонных опор, которая представлена в этой статье. Также неплохо прочитать статью о расчете бетона для фундамента, изучив которую вы сможете определиться с количеством и качественными показателями бетонной смеси для основания своего дома.

Как видите, рассчитать количество столбов для столбчатого фундамента не так-то и сложно.

Загрузка…

Revit OpEd: расчет фундаментов и изоляции

Я был вовлечен в дискуссию на RevitForum.org, в которой спрашивали, как рассчитать полную битумную изоляцию, необходимую для покрытия бетонных поверхностей фундамента. В исходном посте описывалось использование инструмента Paint и сколько времени на это потребовалось. Мне всегда интересно, отвечают ли люди за расчеты или мне просто интересно, когда я читаю такие запросы. Иногда спрашиваю. Интеллектуальные упражнения могут быть интересными, но они могут потратить много времени, если результаты на самом деле никому не пригодятся.

Поскольку я уже приложил к этому усилия, я решил использовать этот пост, чтобы поделиться примером проекта, который я создал в ответ. Я поделился более ранней версией в ветке, но в этой высказано больше идей.


Я склонен пытаться использовать графики и формулы для расчета / прогнозирования необходимого изоляционного материала вместо использования краски и отбора материала. Изолированные фундаменты (опоры) имеют одну форму (большинство из них), поэтому нет составных слоев, таких как фундаментные плиты, полы или стены.

Это не так просто, как просто указать всю площадь поверхности каждого типа фундамента. Это даже не просто сделать. Поверхность, касающаяся земли, не получает изоляции (как я понимаю в этой ситуации). Там, где колонна стоит на основании, изоляция не требуется, поэтому нам нужно вычесть площадь основания колонны из верхней части площади поверхности основания. Никакая изоляция не требуется и там, где стена стоит на опоре.

У нас также есть неравенство параметров. Изолированные опоры не имеют параметра «толщина».Фундаментные плиты и перекрытия делаю. Непоследовательное применение размерных значений — это проблема, с которой мы сталкиваемся, когда используем предоставленные семейные категории (как следует из их наименования / поведения) и пытаемся скомпилировать их информацию с использованием «того же» понятия размерных критериев. Просто они не все равны, у них разные «убеждения».

Мой подход начался с графика фундамента, который включает в себя опоры и плиты, график для стен и третий график для колонн. Мне нужно было различать опоры и плиты, чтобы я мог создавать формулы для определения площади верха и сторон каждого вида опор.Полы и перекрытия имеют толщину и периметр по умолчанию. Когда они прямоугольные, у них также есть ширина и длина. Если они нерегулярны, то этого не происходит. Основания фундамента не имеют толщины, но имеют ширину и длину.

Я использовал формулу для деления объема, чтобы получить приблизительную высоту, которую можно использовать для расчета площади поверхности для верха и сторон. Я использовал параметр под названием Is Slab (целое число), чтобы моя формула Bitumen могла решить, какой метод формулы применяется. Я просто ввожу 1 для плит и 0 для опор.Это график фундамента для настенных, изолированных фундаментов и плит / полов.


Как видите, я добавил несколько строк в заголовок, чтобы объяснить пустые ячейки в расписании. Я также добавил формулы (после захвата изображений) в комментарии, чтобы можно было проверить результаты, не имея модели.

Вот расписание стен. Я не разрешил перекрытие стен на опоры или стены и их собственные опоры в приведенном выше расписании. Я бы, вероятно, создал другой график для вычитания площади нижней поверхности стен или, если возможно, включил бы его в этот.


А вот расписание столбцов, я поставил (-) в заголовок, чтобы было более очевидно, что площадь следует вычесть из других итогов.
Возможно, вы уже знаете, что столбцы не имеют параметров базовой ширины или длины, которые мы можем видеть в расписаниях. У них есть имя типа, но параметры, которые управляют их базовыми размерами, называются «b» и «h», как и соответствующий рисунок в некоторых руководствах по проектированию конструкций, которые я видел. Я добавил два общих параметра, Базовую ширину и Базовую длину, в семейство столбцов и просто сделал их равными «b» и «h».Это, вероятно, самый простой способ разрешить контент, в котором не используются системные параметры, совместимые с другими семействами, а также с контентом, который вы загружаете, и обнаруживающим такой же конфликт между другим контентом той же категории.

Предполагая, что описанный выше подход совершенно неинтересен, мы можем рассмотреть несколько возможных альтернатив.

  • Мы можем «рисовать» на материалах, и есть инструмент Split Face, который работает с полами, фундаментными плитами и стенами, но не с фундаментными конструкциями или колоннами.Мы можем смоделировать все элементы фундамента в виде полов и / или фундаментных плит, что упростило бы использование инструмента «Разрезать грань» и затем рисование на изоляции.
  • Используйте комбинацию вышеперечисленных расписаний и некоторое использование инструмента Paint и взятия материалов.
  • Мы можем создать отдельные семейства для условий изоляции, которые можно запланировать отдельно, или, по крайней мере, для фундаментов, которые нельзя «покрасить» с помощью инструмента рисования Revit.
  • Мы можем построить более сложные семейства фундаментов, которые имеют дополнительную форму (формы) для изолированных поверхностей, которые, в свою очередь, могут использоваться для их определения при отгрузке материала вместо обычного расписания.
  • Талантливый программист с Revit API может учесть всевозможные перестановки и создать довольно исчерпывающее резюме).
Я разместил файл проекта, если вы хотите СКАЧАТЬ. Счастливой изоляции!

Формула трапециевидной опоры

Формула трапециевидного фундамента используется для определения объема трапециевидного фундамента из соответствующих технических характеристик чертежа. Здесь формула трапециевидной опоры объясняется и поясняется с помощью примера.

Формула трапециевидной опоры

Как показано на рисунке 1 ниже, трапециевидная опора представляет собой комбинацию двух компонентов:

  1. Усеченная пирамида
  2. Прямоугольный кубоид

Рис.1. Трапециевидная опора — комбинация прямоугольного кубоида и усеченной пирамиды

Итак,

Объем трапециевидной опоры = Сумма (объем усеченной пирамиды + объем прямоугольного кубоида)

Рис.2. План и отметка трапециевидной опоры

1. Объем усеченной пирамиды равен,

.

Из фигуры-2,

ht = высота пирамиды

A1 = Площадь нижней поверхности пирамиды

A2 = Площадь верхней поверхности пирамиды

A1 = A x B

A2 = a x b

2. Объем кубоида равен,

Из фигуры-2,

A = Длина кубоида

B = ширина кубоида

hc = Высота кубоида

Пример — расчет по формуле трапециевидной опоры

Формулу трапециевидной опоры можно пояснить на примере.Рассмотрим трапециевидную опору, показанную на рисунке 3 ниже.

Рис.2. Пример плана и отметки трапециевидной опоры

Здесь учтено квадратное трапециевидное основание. Пусть a = 0,8 м и b = 0,8 м.

С, цифра-2, A = 1,5 м и B = 1,5 м

Следовательно,

  1. A1 = A x B = 1,5 x 1,5 = 2,25 м 2
  2. A2 = a x b = 0,8 x 0,8 м = 0,64 м 2
  3. ht = 0,3 м

Следовательно, из уравнения.2 и подставив соответствующие значения,

Vt = (0,3 / 2) (2,25 + 0,64 + квадратный корень из (2,25 x 0,64))

= 0,15 (2,89 + 1,2)

= 0,614 м 3

Из уравнения 3 и подставив соответствующие значения

Vc = 1,5 x 1,5 x 0,2

= 0,45 м 3

Из уравнения 1,

Объем трапециевидной опоры V = Vt + Vc = 0,614 + 0,45 = 1,064 м 3

Формулу можно использовать для трапециевидного фундамента, имеющего прямоугольную или квадратную форму.

Bentley — Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Служба поддержки Bentley Automation

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle — Справка по расширению администратора

Коннектор ProjectWise для Oracle — Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора ProjectWise Geospatial Management

Справка ProjectWise Geospatial Management Explorer

Сведения о геопространственном управлении ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Услуги цифрового двойника активов

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Управление эффективностью активов

Справка по AssetWise 4D Analytics

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

AssetWise CONNECT Edition Руководство по внедрению

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительный проект

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для справки проектировщика зданий

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Помощь в канализации и коммунальных услугах

Справка OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка по конструктору надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

Файл ReadMe OpenSite Designer

Инфраструктура связи

Справка по Bentley Coax

Bentley Communications PowerView Help

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка по OpenComms Designer

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительное ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

ConstructSim Work Package Server Руководство по установке

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергетическая инфраструктура

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e — управляемая конфигурация ProjectWise

Руководство по настройке подстанции

— управляемая конфигурация ProjectWise

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода PLAXIS 2D

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка Bentley CivilStorm

Справка Bentley HAMMER

Справка Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Управление активами линейной инфраструктуры

Справка по услугам AssetWise ALIM Linear Referencing Services

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Картография и геодезия

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Проектирование шахты

Справка по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности и аналитика

Справка по подготовке САПР LEGION

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование и визуализация

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Анализ морских конструкций

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Проектирование

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения о диспетчере изометрических данных OpenPlant

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения для менеджера орфографии OpenPlant

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка PlantWise

Ознакомительные сведения о PlantWise

Реализация проекта

Справка рабочего стола Bentley Navigator

Моделирование реальности

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Ознакомительные сведения о Декарте

Структурный анализ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Close the Collaboration Gap (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

STAAD.Pro Physical Modeler

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

Построение столбцового сжатия в строковой базе данных

Как мы достигли сжатия 91% -96% в последней версии TimescaleDB

Сегодня мы рады объявить о новой возможности сжатия для TimescaleDB, базы данных временных рядов на PostgreSQL. Эта новая функция, которая находится в частной бета-версии в течение нескольких месяцев, использует лучшие в своем классе алгоритмы сжатия вместе с новым методом для создания гибридного хранилища строк / столбцов. Во время периода бета-тестирования мы приглашали членов сообщества опробовать его и дать нам обратную связь — и в результате теперь мы видим до 96% степени сжатия без потерь для различных реальных и смоделированных рабочих нагрузок временных рядов.

В этом выпуске объем хранилища TimescaleDB теперь соответствует размерам хранилищ NoSQL, созданных по индивидуальному заказу и более ограниченных — без ущерба для наших уникальных возможностей.TimescaleDB по-прежнему предлагает полный SQL, реляционные СОЕДИНЕНИЯ и функции, мощные возможности автоматизации, а также надежность и огромную экосистему, которая возникает благодаря использованию основы PostgreSQL. Мы знаем, что хранилище могло быть ограничивающим фактором для некоторых людей, интересовавшихся TimescaleDB в прошлом, но мы рекомендуем вам попробовать собственное сжатие и сообщить нам, что вы думаете.

TimescaleDB достигает такой степени сжатия за счет использования лучших в своем классе алгоритмов сжатия различных типов данных.Мы используем следующие алгоритмы (и позволим пользователям выбирать алгоритм в будущих выпусках):

  • Сжатие Gorilla для чисел с плавающей запятой
  • Дельта-дельта + Simple-8b с кодированием длины прогона, сжатие для временных меток и других целочисленных подобные типы
  • Сжатие словаря всей строки для столбцов с несколькими повторяющимися значениями (+ сжатие LZ сверху)
  • Сжатие массива на основе LZ для всех других типов

Мы расширили Gorilla и Simple-8b для обработки распакованных данных в обратном порядке, что позволяет ускорить запросы, использующие обратное сканирование.Дополнительные технические подробности см. В нашем PR по сжатию.

(Мы обнаружили, что это сжатие для конкретного типа довольно мощное: помимо более высокой сжимаемости, некоторые из методов, таких как Gorilla и дельта-дельта, могут быть до 40 раз быстрее, чем сжатие на основе LZ во время декодирования, что приводит к улучшенная производительность запросов.)

Мы планируем в будущем предоставить расширенные алгоритмы для других собственных типов, таких как данные JSON, но даже сегодня, используя вышеупомянутые подходы, все типы данных PostgreSQL могут использоваться в собственном сжатии TimescaleDB.

Собственное сжатие (и TimescaleDB 1.5) сегодня широко доступно для загрузки по всем нашим каналам распространения, включая Timescale Cloud. Эта возможность выпущена под нашей лицензией Timescale Community (поэтому ее можно использовать совершенно бесплатно).

Строковые и столбцовые базы данных

Традиционно базы данных делятся на одну из двух категорий: строковые и столбцовые (так называемые «столбчатые») базы данных.

Вот пример. Допустим, у нас есть таблица, в которой хранятся следующие данные для 1 млн пользователей: user_id, name, # logins, last_login .Таким образом, у нас фактически есть 1 миллион строк и 4 столбца. Хранилище данных, ориентированное на строки, будет физически хранить данные каждого пользователя (т.е. каждую строку) непрерывно на диске. Напротив, колоночное хранилище будет хранить все идентификаторы user_id вместе, все имена вместе и так далее, так что данные каждого столбца хранятся на диске непрерывно.

В результате мелкие и широкие запросы будут выполняться быстрее в хранилище строк (например, «получить все данные для пользователя X»), в то время как глубокие и узкие запросы будут быстрее в хранилище столбцов (например.g., «вычислить среднее количество входов в систему для всех пользователей»).

В частности, столбчатые хранилища хорошо справляются с узкими запросами по очень широким данным. С таким хранилищем только обозначенные столбцы нужно читать с диска (вместо того, чтобы вводить страницы данных с диска со всеми строками, а затем выбирать один или несколько столбцов только в памяти).

Кроме того, поскольку отдельные столбцы данных обычно имеют один и тот же тип и часто берутся из более ограниченного домена или диапазона, они обычно сжимаются лучше, чем целая широкая строка данных, содержащая много разных типов данных и диапазонов.Например, весь наш столбец количества входов в систему будет целочисленного типа и может охватывать небольшой диапазон числовых значений.

И все же столбчатые магазины не лишены компромиссов. Во-первых, вставка занимает гораздо больше времени: системе необходимо разбить каждую запись на соответствующие столбцы и соответственно записать ее на диск. Во-вторых, для строковых хранилищ легче использовать индекс (например, B-дерево) для быстрого поиска подходящих записей. В-третьих, с помощью хранилища строк проще нормализовать набор данных, так что вы можете более эффективно хранить связанные наборы данных в других таблицах.

В результате выбор строковой или столбцовой базы данных во многом зависит от вашей рабочей нагрузки. Обычно строковые хранилища используются с транзакционными (OLTP) рабочими нагрузками, а столбчатые хранилища используются с аналитическими (OLAP) рабочими нагрузками.

Но рабочие нагрузки временных рядов уникальны

Если вы раньше работали с данными временных рядов, вы знаете, что рабочие нагрузки уникальны во многих отношениях:

  • Запросы временных рядов могут быть мелкими и широкими, где индивидуальный запрос обращается ко многим столбцам данных, а также к данным на разных устройствах / серверах / элементах.Например, « Что происходит в моем развертывании за последние K минут?
  • Запросы временных рядов также могут быть узкими и глубокими, когда отдельный запрос выбирает меньшее количество столбцов для определенного устройства / сервера / элемента за более длительный период времени. Например, « Какова средняя загрузка ЦП для этого сервера за последние 24 часа?
  • Рабочие нагрузки временного ряда обычно связаны с большим количеством пластин. Скорость вставки в сотни тысяч операций записи в секунду является нормальной.
  • Наборы данных временных рядов также очень детализированы, эффективно собирая данные с более высоким разрешением, чем OLTP или OLAP, что приводит к гораздо большим наборам данных. Терабайты данных временных рядов тоже вполне нормальны.

В результате для сохранения оптимальных временных рядов необходимо:

  • Поддерживать высокую скорость вставки, легко до сотен тысяч операций записи в секунду
  • Эффективно обрабатывать как мелкие и широкие, так и глубокие и узкие запросы в этом большом наборе данных
  • Эффективное хранение, т.е.е. сжать этот большой набор данных, чтобы он был управляемым и экономичным.

Именно это мы сделали с последней версией TimescaleDB.

Сочетание лучшего из обоих миров

TimescaleDB спроектирован как база данных временных рядов, построенная на основе PostgreSQL. При этом он унаследовал все, что есть в PostgreSQL: полный SQL, огромную гибкость запросов и моделей данных, проверенную на практике надежность, активных и страстных разработчиков и пользователей, а также одну из крупнейших экосистем баз данных.

Но низкоуровневое хранилище TimescaleDB использует строковый формат хранения PostgreSQL, который добавляет небольшие накладные расходы на каждую строку и снижает сжимаемость, поскольку смежные значения данных бывают разных типов — строки, целые числа, числа с плавающей точкой и т. взяты из разных диапазонов. Сама по себе PostgreSQL на сегодняшний день не предлагает никакого собственного сжатия (за исключением очень больших объектов, хранящихся на их собственных страницах с функцией TOAST, что неприменимо для большей части контента).

В качестве альтернативы некоторые пользователи запускают TimescaleDB в сжатой файловой системе, такой как ZFS или BTRFS, для экономии места, часто в диапазоне 3x-9x.Но это приводит к некоторым проблемам развертывания, учитывая, что это внешняя зависимость, и на ее сжимаемость по-прежнему влияет строковый характер базовой базы данных (поскольку данные отображаются на дисковые страницы).

Теперь, с TimescaleDB 1.5, мы смогли объединить лучшее из обоих миров: (1) все преимущества PostgreSQL, включая производительность вставки и производительность мелких и широких запросов для последних данных из хранилища строк, в сочетании с (2) сжатием и дополнительной производительностью запросов — чтобы гарантировать, что мы только читаем сжатые столбцы, указанные в запросе — для глубоких и узких запросов столбчатого хранилища.

Вот результаты.

Результаты: 91-96% экономии хранилища (по результатам независимого бета-тестирования)

Перед выпуском мы попросили некоторых членов сообщества и существующих клиентов TimescaleDB провести бета-тестирование новых функций сжатия с некоторыми из их фактических наборов данных. как протестированное сжатие с наборами данных Time-Series Benchmarking Suite.

Ниже приведены результаты, которые включают тип рабочей нагрузки, общее количество несжатых байтов, сжатые байты (размер, который они видели после сжатия) и экономию на сжатии.И эта экономия связана только с кодированием без потерь для сжатия.

Рабочая нагрузка Без сжатия Сжатый Экономия при хранении
ИТ-метрики (из бета-тестера Telco) 1396 ГБ 77.0 ГБ 94% экономия
Данные мониторинга промышленного Интернета вещей (из бета-тестера) 1.445 ГБ 0,077 ГБ 95% экономия
ИТ-метрики (набор данных DevOps из TSBS) 125 ГБ 5.5 ГБ 96% экономия
Данные мониторинга IoT (набор данных IoT из TSBS) 251 ГБ 23,8 ГБ Экономия 91%
«Степень сжатия потрясающе высока :)» — Тамихиро Ли, сетевой инженер, Sakura Internet

Дополнительные результаты: экономия средств и более быстрые запросы

Но такое сжатие не просто академическое, оно дает два реальных преимущества:

  • Стоимость. Масштабное хранение стоит дорого. Объем диска 10 ТБ в облаке стоит более 12 000 долларов США в год (из расчета 0,10 доллара США за ГБ в месяц для хранилища AWS EBS), а дополнительные реплики и резервные копии высокой доступности могут увеличить это число еще в 2–3 раза. Достижение 95% хранилища может сэкономить более 10–25 тысяч долларов в год только на затратах на хранение (например, 12 тысяч долларов / 10 ТБ * 10 ТБ / машина * 2 машины [одна главная и одна реплика] * 95% экономия = 22,8 тысячи долларов ).
  • Выполнение запроса. Сжатие приводит к немедленному повышению производительности для многих типов запросов.Чем больше данных умещается в меньшем пространстве, тем меньше страниц диска (со сжатыми данными) необходимо читать, чтобы отвечать на запросы. (Краткий обзор результатов тестирования приведен ниже, а более подробное описание — в следующем посте.)

Дальнейшие действия

Собственное сжатие сегодня широко доступно в TimescaleDB 1.5. Вы можете установить TimescaleDB или обновить текущее развертывание TimescaleDB. Если вы ищете полностью управляемый вариант с размещением, мы рекомендуем вам попробовать Timescale Cloud (мы предлагаем бесплатную 30-дневную пробную версию).

Мы также рекомендуем вам подписаться на наш предстоящий веб-семинар «Как снизить общую стоимость владения вашей базой данных с помощью TimescaleDB», чтобы узнать больше.

А теперь, если вы хотите узнать больше о забавных технических деталях — о создании столбчатого хранилища в строковых системах, индексировании и запросах сжатых данных, а также о некоторых тестах — продолжайте читать.

Благодарим за эти результаты некоторых из наших великих инженеров и менеджеров по менеджменту: Джоша Локермана, Гаятри Айяпан, Свена Клемма, Дэвида Кона, Анте Крешича, Мата Арье, Диану Хси и Боба Боула.(И да, мы нанимаем сотрудников по всему миру.)

Построение столбчатого хранилища на основе строковой системы

Признавая, что рабочие нагрузки временных рядов получают доступ к данным во временном порядке, наш высокоуровневый подход к созданию столбчатого хранилища заключается в преобразовании многих широкие строки данных (скажем, 1000) в одну строку данных. Но теперь каждое поле (столбец) этой новой строки хранит упорядоченный набор данных, составляющий весь столбец из 1000 строк.

Итак, давайте рассмотрим упрощенный пример с использованием таблицы со следующей схемой:

Timestamp ID устройства Код состояния Температура
12:00:01 А 0 70.11
12:00:01 В 0 69,70
12:00:02 А 0 70,12
12:00:02 В 0 69,69
12:00:03 А 0 70,14
12:00:03 В 4 69.70

После преобразования этих данных в одну строку данные в виде «массива»:

Отметка времени ID устройства Код состояния Температура
[12:00:01,
12:00:01,
12:00:02,
12:00:02,
12:00:03,
12:00:03]
[A,
B,
A,
B,
A,
B]
[0,
0,
0,
0,
0,
4]
[70.11,
69,70,
70,12,
69,69,
70,14,
69,70]

Даже до использования сжатия данных этот формат немедленно экономит память, значительно сокращая внутренние накладные расходы на каждую строку. PostgreSQL обычно добавляет ~ 27 байт служебных данных на строку (например, для управления версиями MVCC). Таким образом, даже без сжатия, если наша схема выше, скажем, 32 байта, то 1000 строк данных, которые раньше занимали [1000 * (32 + 27)] ~ = 59 килобайт, теперь занимают [1000 * 32 + 27] ~ = 32 килобайта в этом формате.

Но учитывая формат, в котором аналогичные данные (временные метки, идентификаторы устройств, показания температуры и т. Д.) Хранятся непрерывно, мы можем применить к ним алгоритмы сжатия, зависящие от типа, так что каждый массив сжимается отдельно.

Затем, если запрос запрашивает подмножество этих столбцов:

  ВЫБЕРИТЕ time_bucket («1 минута», отметка времени) как минуту
AVG (температура)
ИЗ таблицы
WHERE timestamp> now () - интервал «1 день»
ЗАКАЗАТЬ ПО МИНУТУ УБЫТ.
ГРУППА ПО минуте
  

Механизм запросов может извлекать (и распаковывать во время запроса) только столбцы метки времени и температуры для вычисления и возврата этого агрегирования.

Но учитывая, что формат хранения Postgres в стиле MVCC может записывать несколько строк на одной и той же странице диска, как мы можем гарантировать, что мы только получим желаемые сжатые массивы с диска, а не более широкий набор окружающих данных? Здесь мы используем не встроенные дисковые страницы для хранения этих сжатых массивов, т. Е. Они преобразуются в TOAST, так что данные в строке теперь указывают на страницу вторичного диска, на которой хранится сжатый массив (фактическая строка в основной таблице кучи становится очень маленькой. , потому что это просто указатели на TOASTED-данные).Таким образом, с диска загружаются только сжатые массивы для требуемых столбцов, что дополнительно повышает производительность запросов за счет сокращения дискового ввода-вывода. (Помните, что каждый массив может содержать от 100 до 1000 элементов данных, а не 6, как показано.)

Индексирование и запрос сжатых данных

Однако этот формат сам по себе имеет серьезную проблему: какие строки должны быть извлечены и распакованы из базы данных. чтобы разрешить запрос? В приведенной выше схеме база данных не может легко определить, какие строки содержат данные за прошедший день, поскольку сама метка времени находится в сжатом столбце.Нужно ли нам распаковывать все данные в блоке (или даже всю гипертаблицу), чтобы определить, какие строки соответствуют последнему дню? Точно так же пользовательские запросы обычно могут фильтровать или группировать по определенному устройству (например, SELECT temperature… WHERE device_id = ‘A’ ).

Распаковка всех данных была бы очень неэффективной. Но поскольку мы оптимизируем эту таблицу для запросов временных рядов, мы можем делать больше и автоматически включать больше информации в эту строку для повышения производительности запроса.

TimescaleDB делает это, автоматически создавая подсказки к данным и включая дополнительные группировки при преобразовании данных в этот столбчатый формат. При сжатии несжатой гипертаблицы (либо с помощью определенной команды, либо с использованием асинхронной политики) пользователь указывает столбцы «упорядочить по» и, необязательно, «сегментировать по» столбцам. Столбцы ORDER BY указывают, как упорядочиваются строки, входящие в сжатый патч. Обычно это метка времени, как в нашем текущем примере, хотя она также может быть составной, например.г., ЗАКАЗАТЬ по времени, затем по местоположению.

Для каждого столбца «ORDER BY» TimescaleDB автоматически создает дополнительные столбцы, в которых хранятся минимальное и максимальное значение этого столбца. Таким образом, планировщик запросов может посмотреть на этот специальный столбец, который указывает диапазон временных меток в сжатом столбце — без предварительного выполнения какой-либо декомпрессии — чтобы определить, может ли строка соответствовать предикату времени, указанному в SQL-запросе пользователя. .

Мы также можем сегментировать сжатые строки по определенному столбцу, чтобы каждая сжатая строка соответствовала данным об одном элементе, например.g., конкретный device_id. В следующем примере TimescaleDB сегментирует по идентификатору device_id, так что для устройства A и B существуют отдельные сжатые строки, и каждая сжатая строка содержит данные из 1000 несжатых строк об этом устройстве.

ID устройства Отметка времени Код состояния Температура Мин. Метка времени Макс. Отметка времени
А [12:00:01,
12:00:02,
12:00:03]
[0,
0,
0]
[70.11,
70,12,
70,14]
12:00:01 12:00:03
B [12:00:01,
12:00:02,
12:00:03]
[0,
0,
0]
[70,11,
70,12,
70,14]
12:00:01 12:00:03

Теперь запрос для устройства «A» между временным интервалом выполняется довольно быстро: планировщик запросов может использовать индекс для поиска тех строк для «A», которые содержат по крайней мере некоторые временные метки, соответствующие указанному интервалу, и даже последовательное сканирование выполняется довольно быстро, поскольку оценка предикатов для идентификаторов устройств или минимальных / максимальных временных меток не требует декомпрессии.Затем исполнитель запроса распаковывает только столбцы метки времени и температуры, соответствующие этим выбранным строкам.

Эта возможность обеспечивается встроенной структурой планировщика заданий TimescaleDB. Ранее мы использовали его для различных задач управления жизненным циклом данных, таких как политики хранения данных, переупорядочивание данных и непрерывное агрегирование. Теперь мы используем его для асинхронного преобразования последних данных из несжатой строковой формы в эту сжатую столбчатую форму по фрагментам гипертаблиц TimescaleDB: как только фрагмент станет достаточно старым, фрагмент будет транзакционно преобразован из строки в столбчатую форму.

Производительность запроса

Краткая информация

Здесь возникает логичный вопрос: «Как сжатие влияет на производительность запросов?»

Мы обнаружили, что сжатие также приводит к немедленному повышению производительности для многих типов запросов. Чем больше данных помещается в меньшее пространство, тем меньше страниц диска (со сжатыми данными) необходимо читать, чтобы отвечать на запросы.

Учитывая объем этого сообщения, мы подробно рассмотрим производительность запросов в другом предстоящем сообщении в блоге, в том числе рассмотрим производительность для запросов, касающихся как касания диска, так и доступа к данным в памяти, а также для рабочих нагрузок DevOps и IoT.

А пока мы подумали, что дадим краткий обзор наших результатов.

Тесты производительности запросов

Мы используем пакет Time Series Benchmark Suite с открытым исходным кодом (TSBS) с TimescaleDB, работающий на облачных виртуальных машинах с удаленным хранилищем SSD (в частности, типы экземпляров Google Cloud n1-highmem-8 с 8vCPU и 52 ГБ памяти с использованием как локальный твердотельный накопитель NVMe, так и удаленный жесткий диск).

В этом наборе запросов мы уделяем особое внимание производительности с привязкой к диску, которая часто встречается при выполнении дополнительных специальных или случайных запросов к большим наборам данных; в некотором смысле эти результаты служат «худшим случаем» по сравнению с теплыми данными, которые уже могут быть кэшированы в памяти.Для этого мы обеспечили выполнение всех запросов к данным, находящимся на диске, чтобы подсистема виртуальной памяти ОС еще не кэшировала страницы диска в память.

Как видно из приведенной ниже таблицы (в которой указано среднее значение 10 испытаний для двух экспериментальных установок, одна из которых использует локальный SSD, а другая — удаленный жесткий диск для хранения), практически все запросы TSBS выполняются быстрее с собственным сжатием.

Типы запросов Локальный SSD Удаленный жесткий диск
Холодные запросы (из TSBS) Несжатый (мс ​​/ запрос) Сжатый (мс ​​/ запрос) Передаточное отношение Несжатый (мс ​​/ запрос) Сжатый (мс ​​/ запрос) Передаточное отношение
процессор-макс-все-1 42.517 42,314 1,00 814,863 383,698 2,12
процессор-макс-все-8 46,657 40,342 1,16 2987,42 1779.795 1,68
группа по порядку по лимиту 1373.309 6065,812 0.23 95202.022 6178.808 15,41
high-cpu-1 46,657 40,342 1,16 1033,286 482,911 2,14
high-cpu-all 3551.953 8084.623 0,44 53995,25 8180.856 6,60
одногрупповоепо-1-1-12 49,546 38,46 1,29 1058,517 293,941 3,60
одногрупповоепо-1-1-1 33,54 25,695 1,31 286.307 234,785 1,22
одногрупповоепо-1-8-1 50.805 40,495 1,25 995,306 598,26 1,66
одногрупповые по-5-1-12 49,406 42,013 1,18 1083,432 432,758 2,50
одногрупповое по-5-1-1 30,734 27,674 1.11 278,793 241,537 1,15
одногрупповые по-5-8-1 45,91 43.002 1,07 1000,578 627,39 1,59
двойная группа по-1 5925,591 1823.033 3,25 56676.155 1986 г.937 28,52
двойная группа by-5 7568.038 2980.089 2,54 62681,04 2915.941 21,50
двойная группа по всем 9286.914 4399,367 2,11 65202,448 4257.638 15,31
последняя точка 1674.194 264,666 6,33 37998,325 539,368 70,45

Таблица выше содержит задержку «холодных» запросов TSBS DevOps к TimescaleDB, когда все данные находятся на диске, как для несжатых, так и для сжатых данных. «Улучшение» определяется как «задержка несжатого запроса / задержка сжатого запроса».

При этом можно создавать запросы, которые медленнее работают со сжатыми данными.В частности, сжатие TimescaleDB в настоящее время ограничивает типы индексов, которые могут быть построены на сжатых данных; примечательно, что b-деревья могут быть построены только на сегментированных столбцах. Но на практике мы обнаруживаем, что запросы, которые были бы быстрее с этими индексами, как правило, редки (например, они также требуют большого количества отдельных проиндексированных элементов, так что какой-либо один элемент не присутствует на большинстве страниц диска).

Ограничения и работа в будущем

Первоначальный выпуск встроенного сжатия TimescaleDB является довольно мощным, с настраиваемыми расширенными алгоритмами сжатия для различных типов данных и реализуется через нашу среду непрерывного асинхронного планирования.Кроме того, у нас уже есть запланированные улучшения, например улучшенное сжатие данных JSON.

Одним из основных ограничений нашего первоначального выпуска в версии 1.5 является то, что после преобразования фрагментов в сжатую форму столбца мы в настоящее время не разрешаем любые дальнейшие модификации данных (например, вставки, обновления, удаления) без ручной декомпрессии. Другими словами, чанки неизменны в сжатом виде. Попытки изменить данные блоков будут либо ошибаться, либо завершаться беззвучно (по желанию пользователей).

Тем не менее, учитывая, что рабочие нагрузки временных рядов в основном вставляют (или реже обновляют) последние данных , это гораздо меньше ограничение для временных рядов, чем для случая использования, не связанного с временными рядами. Кроме того, пользователи могут настроить возраст фрагментов до того, как они будут преобразованы в эту сжатую столбчатую форму, что обеспечивает гибкость для умеренно неупорядоченных данных или во время запланированной обратной засыпки. Пользователи также могут явно распаковывать фрагменты перед их изменением. Мы также планируем ослабить / удалить это ограничение в будущих выпусках.

Сводка

Мы очень рады этой новой возможности и тому, как она принесет большую экономию средств, производительность запросов и масштабируемость хранилища для TimescaleDB и нашего сообщества.

Как мы упоминали выше, если вы хотите опробовать собственное сжатие сегодня, вы можете установить TimescaleDB или обновить текущее развертывание TimescaleDB. Если вы ищете полностью управляемый вариант с размещением, мы рекомендуем вам попробовать Timescale Cloud (мы предлагаем бесплатную 30-дневную пробную версию).Вы также можете подписаться на наш предстоящий веб-семинар «Как снизить общую стоимость владения базой данных с помощью TimescaleDB», чтобы узнать больше.

За последние пару месяцев мы анонсировали как горизонтально масштабируемую кластеризацию, так и собственное сжатие для TimescaleDB. Взятые вместе, они помогают реализовать наше видение TimescaleDB как мощной, производительной и экономичной платформы для данных временных рядов, от малых до очень больших, от периферии до облака.

Мы все неоднократно слышали заблуждение о том, что нужно пожертвовать SQL, реляционными возможностями, гибкостью запросов и моделей данных, а также непревзойденной надежностью и надежностью в базах данных временных рядов, чтобы достичь необходимого масштабирования, производительности и эффективности. .Точно так же все мы слышали скептицизм по поводу PostgreSQL: хотя PostgreSQL — потрясающая и надежная основа базы данных, она не может работать с данными временных рядов.

В TimescaleDB 1.5 мы продолжаем опровергать эти представления и демонстрировать, что за счет целенаправленного внимания и инженерных решений проблем с данными временных рядов не нужно идти на эти компромиссы.

Если у вас есть данные временных рядов, попробуйте последнюю версию TimescaleDB. Мы будем рады вашим отзывам.И вместе давайте создадим единственную базу данных временных рядов, которая не заставит вас идти на сложные компромиссы. Приходите, съешьте свой торт и съешьте его тоже.

Буассида, М. (2013). Комплексное проектирование столбчатых армированных фундаментов. Международный журнал геотехнической инженерии. Maney & Sons Ltd, 7 (2), 156-164.

Кроме того, разработка программного обеспечения Columns, включающего

новой методологии проектирования, упрощает сравнение

с существующими методами проектирования и предлагает более

вариантов для полного проектирования, включая ускорение

консолидации мягких грунтов. армирована дренированной колонной

материалом (Ellouze et al., 2010; Bouassida and Hazzar,

2012).

Таким образом, предлагается проанализировать оценку недавнего метода прогнозов

путем сравнения с

записями из историй болезни (Bouassida and Hazzar,

2008). Параллельно с этим новые тенденции, заявленные выше, нуждаются в углублении

за счет новых исследовательских программ. Далее,

с учетом улучшенных характеристик исходного грунта

представляет собой еще один параметр, который следует проанализировать.

Заключение

В этой статье был представлен обзор плодотворных исследований программы

для всех типов колонн

Установка

: каменные колонны, сваи для уплотнения песка и методы глубокого перемешивания

. Расширенные результаты последовали после исследования

, в частности, группы колонн, моделирующей

, для прогнозирования несущей способности и осадки укрепленного грунта

колоннами. Кроме того, были рассмотрены новые аспекты

, которые проявились с большим интересом, чтобы продолжить, более реалистичным образом

, для проектирования фундаментов на системе армированных колонн

.Из-за важности

во всем мире темы улучшения почвы, особенно

для методов столбчатого армирования, больше исследований все еще остается в исследовательской деятельности, а также в анализе

зарегистрированных данных из историй болезни.

Ссылки

Валаам, Н. П. и Букер, Дж. Р. 1981. Анализ жестких плотов, поддерживаемых гранулированными сваями

, Int. J. Numer. Анальный. Meth. Геомех., 5, (4), 379–403.

Белл, А.Л. 1915. Боковое давление и сопротивление глины, Мин. Proc. ICE,

1, (99), 233–272.

Бен Саид, Б., Буассида, М. и де Бухан, П. 2004. Оценка по номиналу

me´thode d’homoge´ne´isation du tassement d’une fondation sur un

sol renforce´ par columns , Proc. Int. Symp. на тему «Улучшение земли —

» (ASEP-GI 2004), Париж, Франция, сентябрь, Laboratoire

Central des Ponts et Chausse´es, 59–66.

Бергадо Д. Т. и Лам Ф.L. 1987. Полномасштабные испытания под нагрузкой на гранулированные сваи

с различной плотностью и разным соотношением гравия и песка

на мягкой бангкокской глине, Soils Found. J., 27, (1), 86–93.

Биарес, Дж., Гамбин, М., Гомес-Корриа, А., Фалвиньи, Э. и Бранк, Д.

1998. Использование прессометра для получения параметров упругопластических моделей

для песков, Proc 1st Int. Конф. по «характеристике участка» (ISC

’98), Атланта, Джорджия, США, апрель, Балкема, 747–752.

Буассида М. и Хадри Т. 1995. Экстремальная нагрузка грунта, усиленного

колоннами

: случай изолированной колонны, Найденные почвы. J., 35, (1), 21–

36.

Bouassida, M., de Buhan, P. and Dormieux, L. 1995. Несущая способность

фундамент, опирающийся на грунт, усиленный группой columns,

Ge´otechnique, 45, (1), 25–34.

Буассида, М. и Хадри, Т. 1996. Экстремальная нагрузка грунта, усиленная

колоннами

: случай изолированной колонны, завершение обсуждения

, представленное А.Порбаха, почвы найдены. J., 36, (1), 118–119.

Bouassida, M., de Buhan, P. и Dormieux, L. 1996. Несущая способность

фундамент, опирающийся на грунт, усиленный группой колонн,

Завершение дискуссии, представленной Nagpure, DD и Madhav ,

MR, Ge´otechnique, 46, (3), 570–572.

Bouassida, M. 1996a. Etude expe´rimentale du renforcement de la vase de

Tunis par colnes de sable — приложение для проверки

re´sistance en сжатие ‘Orique d’une Cellule Composite con-

fine´e, Rev.Франк. Геотех., 75, (2), 3–12.

Bouassida, M. 1996b. Определение потенциала

fondations rigides poses sur un sol renforce par columns, The`se

Dr. d’e´tat, ENIT, Тунис, Тунис.

Буассида, М. и Хадри, Т. 1998. Capacite´ portante d’une fondation

posée sur un sol renforce´ par un groupe de columnsnes, Rev. Maroc.

Ge´nie Civil, 78, (4), 2–16.

Bouassida, M. и Jellali, B. 2002. Capacite´ portante d’un sol renforce´

par une tranche´e, Rev.Франк. Ge´nie Civil, 6, (7–8), 1381–1395.

Bouassida, M., Guetif, Z., de Buhan, P. and Dormieux, L. 2003a.

Оценка номинального подхода к варианту разметки

renforce´ par columnsnes, Rev. Franc ». Геотех., 102, (1), 21–29.

Bouassida, M., Guetif, Z., de Buhan, P. and Dormieux, L. 2003b.

Расчет осадки фундамента на грунте, усиленном

колоннами, Учеб. 13-я Африканская региональная конференция. на тему «Механика грунтов и

геотехническая инженерия», Марракеш, Марокко, декабрь

ISSMGE, 467–473.

Буассида, М. и Порбаха, А. 2004. Максимальная несущая способность мягких глин

, армированных группой колонн — применение для метода глубокого перемешивания

, Soils Found. J., 44, (3), 91–101.

Буассида, М. и Хаззар, Л. 2008. Сравнение каменных колонн

и вертикальных геодрен с применением техники насыпи с предварительной нагрузкой,

Proc. 6-й Int. Конф. по «Истории успеха в геотехнической инженерии»,

Арлингтон, штат Вирджиния, США, август, статья 7.18а.

Буассида М., Джеллали Б. и Порбаха А. 2009. Анализ предельных значений жестких фундаментов

на плавающих колоннах, Int. J. Geomech., ASCE, 9, (3), 89–

101.

Bouassida, M. 2011. Расчет армированных грунтов с помощью колонн, Proc. 11-я

Панамериканская конференция. на тему «Почвенный механик и инженер-геолог —

ing» и 64-я Канадская геотехническая конференция, Торонто, Онтарио,

Канада, октябрь, Канадское геотехническое общество, Vol. 2, 1760–

1764.

Буассида, М. и Хаззар, Л. 2012. Новый инструмент для оптимизации проектирования

грунтов, армированных колоннами, Ground Imp. J., ICE, 165, (1), 3–40.

Браунс, Дж. 1978. Die anfangstraglast von schottersa¨ulen im bindigen

untergrund, Die Bautech, 55, (8), 263–271.

Бромс Б. Б. 1982. Известковые колонны в теории и практике, Proc. Int. Конф.

«Механика грунта», Мехико, Мексика, 149–165.

Чоу, Ю. К. 1996. Анализ оседания песчаных свай уплотнения, грунты

Найдено.J., 36, (1), 111–113.

Датье, К.Р. 1982. Расчетная и несущая способность системы фундаментов

с каменными колоннами, Тр. Symp. на тему «Методы улучшения почвы и горных пород

, включая геотекстиль, армированный грунт и современные методы забивки свай

», Бангкок, Таиланд, декабрь, AIT, Paper A1, 1-27.

Эллуз, С., Буассида, М., Дебатс, Дж. М. и Шарфф, Г. 2008.

Моделирование установки группы колонн в мягкой глине,

Proc.Int. Конф. по «Геотехнической инженерии», Хаммамет,

Тунис, октябрь, IGS, 95–103.

Эллуз, С. и Буассида, М. 2009. Прогнозирование оседания

армированной мягкой грунтовой глины группой каменных колонн, Proc. 2-й. Int.

конф. на тему «Новые разработки в механике грунтов и геотехнике

инженерия», Никосия, Кипр, Ближневосточный университет, май 182–187.

Эллуз, С., Буассида, М., Хаззар, Л. и Мруех, Х. 2010. На

оседание фундамента каменной колонны по методу Прибе, Земля

Imp.J., ICE, 163, (2), 101–107.

Фриха В., Буассида М. и Каноу Дж. 2008. Калибровка упругопластической модели

для прогнозирования предельной несущей способности каменной колонны

, Proc. GeoCong: «Геостойкость и снижение геологической опасности

», Новый Орлеан, Лос-Анджелес, март, Институт ASCE GEO, 604–

611.

Гринвуд, Д. А. 1970. Механическое улучшение почвы под землей

Поверхность

, Proc. Symp. по «наземной инженерии», Лондон, Великобритания, ICE,

Paper II, 9–20.

Гетиф З. и Буассида М. 2005. Аналитическая оценка поселения

эволюция мягкого грунта, укрепленного каменными колоннами, Proc. 16-е межд.

конф. на тему «Механика грунтов и геотехника», Осака,

Япония, сентябрь, Millpress, Vol. 3, 1355–1358.

Гетиф З., Буассида М. и Дебатс Дж. М. 2007. Улучшенные характеристики мягкой глины

благодаря установке каменных колонн, Comput. Геотех.

J., 34, (2), 104–111.

Гетиф, З., Bouassida, M. и Tounekti, F. 2008. Численное моделирование установки каменной колонны

с использованием усовершенствованной упругопластической модели для мягкого грунта

, Proc. 5-й Int. Symp. по «Армированию земли»: «Новые горизонты

в армировании земли», 441–446; Лондон, Тейлор и

Фрэнсис.

Bouassida Комплексное проектирование столбчатых армированных фундаментов

International Journal of Geotechnical Engineering 2013 VOL 7NO 2163

Выплата фонда зависит от вашего среднего значения — Новости некоммерческой организации

Представьте себе фонд, рассчитывающий бюджет грантов на основе стоимости активов в конце каждого квартала в 2006, 2007 и 2008 годах.

3

9169 9169 9169

Квартал

Закрытие Dow Jones Average

Simple Rolling Dow Jones Среднее по кварталам

I квартал 2006 г.

11,150,22

11,129,77

1 квартал 2006 г.

11,679,07

11,404.42

4 квартал 2006 г.

12,463,15

11,933,79

1 квартал 2007 г.

12,616703

12,616703

12,628,63

2

2

12,844,91

3 квартал 2007 г.

13 895,63

13,370,27

4 квартал 2007 г.

9

82

13,318,05

1 квартал 2008 г.

12,262,89

12,790,47

3 9703 970293 970293

9

3

10,850,66

11,460,45

4 квартал 2008 г.

8,776,39

10,118.42

Как видно из диаграммы, влияние на бюджет выделения грантов на 2009 год в течение трех лет по сравнению с более чем одним годом очевидно. Фонд, определяющий предоставление грантов в 2009 году на основе 5 процентов среднего значения этих 12 кварталов (11 903,37), будет иметь более высокие денежные выплаты, чем фонд, который просто использует среднюю стоимость своих активов на конец последнего года (хотя обычно рассчитывается в месячном исчислении для наших целей среднее значение за четыре квартала 2008 года будет равно 10 809.99)

Инвестиционные эксперты и статистики используют несколько терминов для описания этой практики, например, «скользящие средние», «скользящие средние» и «скользящие средние». Скользящее среднее, например, рассчитанное по кварталам за годичный период (каждый квартал, усредненное со средним значением за предыдущий квартал), приводит к несколько более высокому общему среднему (среднее за три года кварталов, рассчитанное на основе скользящих средних, составляет 12 065,64).

Теория, лежащая в основе этой практики, заключается в том, что при усреднении стоимости активов за более длительный период времени «волатильность» выплат несколько снижается: если вы усредняете предыдущие два «высоких» года, резкое падение рынка, подобное тому, что было в 2008 году, не ухудшается. t снизить выплаты.И наоборот, в периоды бума год с большим «подъемом» усредняется по сравнению с более низкими периодами, так что выплаты также не сильно увеличиваются.

Но выплаты фонда (или технически «квалифицируемые распределения», включая гранты, программные инвестиции и большинство связанных административных расходов) должны составлять не менее 5 процентов от стоимости общих активов фонда в предыдущем финансовом году, верно ? Да, но это многолетнее усреднение хорошо работает для выполнения требований обязательных выплат фонда.Технически фонд основывает свою годовую выплату на 12-месячной средней стоимости своих активов в предыдущем году. Даже такое годовое усреднение несколько снижает волатильность (сравните 10 809,99 среднего значения индекса Доу-Джонса за четыре квартала 2008 года по сравнению с конечным значением индекса Доу-Джонса, равным 8 776,39).

Многолетнее усреднение помогает фондам выполнять требования по выплатам, поскольку IRS предоставляет фондам до пяти лет для удовлетворения требований по выплатам в течение любого одного года. Так, например, предположим, что выплаты фонда в конкретный год из-за многолетнего скользящего усреднения приводят к избыточным или избыточным расходам на благотворительность.Это превышение может быть «перенесено», чтобы помочь фонду выполнить свои требования по выплатам в течение пяти лет в будущем. Снова возьмем пример из диаграммы. Выплата фонда, основанная на трехлетнем скользящем среднем (5 процентов от 12 065,64), будет намного выше, чем его требуемая выплата (5 процентов от 10 809,99). Этот излишек может быть применен к будущим годам, когда скользящее среднее опустится ниже средней стоимости активов за последний год. Он рассчитывается автоматически на основе 990PF фонда, так что излишки прошлых лет могут быть автоматически применены к дефициту выплат фонда.

Это, конечно, упрощенный анализ. Выплаты являются более сложными, с аспектами, которые большинство людей не осознают, например, разрешение фондам уменьшать стоимость их пожертвований (для расчета выплат) на 1,5 процента за «денежные средства, которые считаются предназначенными для благотворительных целей» и т. Д. Но если фонды решат не делать этого соблюдать это требование минимальной выплаты, они могут понести штрафы. С 2007 года фонды подвергались первоначальному штрафу в размере 30 процентов от нераспределенной суммы, которая должна была быть потрачена в качестве квалифицируемого распределения (ранее это было 15 процентов).И помимо штрафа за недостачу, фонды должны распределить оставшуюся часть своей требуемой выплаты.

Вот почему для фонда не помешает выплачивать примерно 5% распределений, чтобы покрыть годы, когда он может опуститься ниже. Загадка — это основа «акцизного налога». Согласно закону, фонд должен платить налог в размере 2 процентов от чистого инвестиционного дохода. Этот налог снижается до 1 процента, если фонд производит соответствующие выплаты (или выплаты) сверх своего среднего распределения за предыдущие пять лет.Другими словами, более высокий средний процент выплат означает, что фонд должен поддерживать этот средний показатель, чтобы избежать 2-процентного акцизного налога. Многие фонды и некоммерческие организации решительно выступают за объединение акцизного налога с фиксированной ставкой в ​​1 процент.

Фонды не изобрели практику скользящих средних. Разного рода управляющие целевым капиталом уже давно используют «скользящие средние» для сглаживания выплат, будь то расходы фондов или пенсии пенсионеров. Но это не неприкосновенный закон.Фонд может использовать усреднение для расчета своих выплат или отклонить его по своему усмотрению. Таким образом, несмотря на рынки и скользящие средние значения, некоторые фонды из-за своей миссии могут увеличить выдачу грантов в 2009 году — и по совершенно другим причинам другие могут значительно сократить свои денежные выплаты. Это нелегкое решение для инвестиционных менеджеров и руководителей фондов.

Главная книга малого бизнеса | Аккаунты, примеры и многое другое

Главная книга вашего бизнеса играет важную роль в прогнозировании финансового состояния вашей компании.Но если вы не ведете учетную запись в главной бухгалтерской книге, ваш бизнес может пострадать от последствий.

Итак … как выглядит главная бухгалтерская книга вашего малого бизнеса? Нужно ли немного любви? Если да, читайте дальше, чтобы узнать все о главной книге, в том числе о том, что это такое, о типах счетов в книге и многом другом.

Что такое главная книга?

Главная бухгалтерская книга вашего предприятия — это основа ваших книг. Ваша бухгалтерская книга — это запись, используемая для сортировки и обобщения ваших транзакций.

В своей бухгалтерской книге вы отвечаете за регистрацию дебетов и кредитов. Ваши кредиты и дебеты в вашей бухгалтерской книге всегда должны быть сбалансированы. Несбалансированные кредиты и дебеты могут повлиять на финансовую отчетность вашего бизнеса и дать вам неточные финансовые отчеты.

Регистр компании обычно делится на пять основных категорий. Вы также можете использовать подкатегории или вспомогательные книги, чтобы предоставить дополнительную информацию о бизнес-операциях.

Счета в главной книге

Учетные записи работают аналогично картотеке.Каждая учетная запись помечена именем. И вы должны регистрировать (или записывать) связанные транзакции в каждой учетной записи.

Счета в главной книге взяты из вашего плана счетов (COA). Сертификат подлинности вашего бизнеса классифицирует ваши бизнес-операции.

Наиболее распространенные счета, используемые в бухгалтерской книге малого бизнеса, включают:

  • Активы
  • Обязательства
  • Собственный капитал
  • Выручка
  • Расходы

Активы — это предметы, которые увеличивают ценность вашего малого бизнеса.Активы могут быть материальными (физическими) или нематериальными (нефизическими). Собственность, автомобили, товарные знаки и патенты — вот лишь несколько примеров активов, которыми может владеть ваш бизнес.

Обязательства — это существующая задолженность вашего предприятия. Деньги, причитающиеся другому бизнесу, продавцу, организации, сотруднику или государственному учреждению, обычно считаются обязательством. Некоторые примеры обязательств включают ссуды, ипотечные кредиты и начисленные расходы.

Собственный капитал, также называемый чистыми активами, собственным капиталом и собственным капиталом, — это сумма вашей собственности в вашей компании.Вы можете рассчитать собственный капитал, вычтя общую сумму обязательств из общей суммы активов.

Доход — это сумма денег, которую ваша компания получает за период. Вы получаете операционную выручку от основных бизнес-операций и видов деятельности, таких как продажи. Вы также можете получать доход от действий, не связанных напрямую с вашим бизнесом (например, аренда здания), которые называются внереализационными доходами.

Расходы — это затраты, связанные с бизнес-операциями. У вас, вероятно, есть различные деловые расходы, включая гонорары, оборудование, расходные материалы, аренду и коммунальные услуги.

Субсчета главной книги

Субсчета или вспомогательные книги содержат подробную информацию о записях в главной книге. Субсчета позволяют еще больше разбить ваши счета, чтобы вы точно знали, куда входят и откуда уходят средства. Вы можете найти дополнительные учетные записи под каждой основной учетной записью.

Взгляните на примеры субсчетов для каждого основного типа счета ниже:

Субсчета активов :

Разделы пассивов :

Субсчета капитала :

  • Собственный капитал
  • Обыкновенные акции
  • Нераспределенная прибыль

Подсчета доходов :

  • Продажи продукции
  • Полученные проценты
  • Прочие поступления

Расходные субсчета :

  • Страхование
  • Аренда
  • Оборудование
  • Принадлежности
  • Себестоимость проданной продукции

Создание главной книги

Когда дело доходит до создания главной книги, у вас есть несколько вариантов записи транзакций.Вы можете:

  • Создание главной книги на бумаге
  • Использовать электронную таблицу
  • Приобрести бухгалтерскую программу

Размер вашей главной книги зависит от размера вашего бизнеса. Если у вас небольшой бизнес, у вас может быть меньше учетных записей и дополнительных учетных записей, потому что у вас меньше транзакций.

Каждая запись в главной книге должна содержать:

  • Номер счета (если есть)
  • Имя счёта
  • Начальный остаток на счете
  • Тип операции
  • Имя клиента, поставщика и сотрудника (если применимо)
  • Дата
  • Описание
  • Дебетовая и кредитовая колонки
  • Конечный остаток на счете

Для разноски в бухгалтерскую книгу необходимо использовать двойную бухгалтерию.Бухгалтерский учет с двойной записью означает, что вы записываете две записи для каждой транзакции. Одна запись является дебетовой, а другая — кредитной.

Опять же, ваша главная книга должна содержать записи по дебету и кредиту для каждой транзакции. Ваши дебетовые и кредитные операции всегда должны быть сбалансированы в вашей главной книге. Если они не совпадают, проблема в вашей главной книге.

При создании главной книги разделите каждую учетную запись (например, счет активов) на два столбца. Левый столбец должен содержать ваши дебеты, а правая сторона — ваши кредиты.

Поместите свои активы и расходы в левую часть бухгалтерской книги. Ваши обязательства, собственный капитал и доход находятся на правой стороне. Обе стороны должны иметь равные значения, чтобы ваш реестр был сбалансирован.

В конце каждого периода переносите записи журнала в главную бухгалтерскую книгу малого бизнеса.

Помните об этой таблице, когда будете делать записи в главной книге:

Пример главной книги

Если вам интересно, как выглядит главная бухгалтерская книга, вы попали в нужное место.

Для начала вот как может выглядеть основная главная книга:

Дата Описание Журнал Ref. # Транзакция Транзакция
Дебетовая Кредитная

Теперь давайте посмотрим на аккаунт в действии.Взгляните на текущий счет в главной книге:

Дата Описание Дебетовая операция Кредитная операция
13.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *