Решение примеров со степенями онлайн калькулятор: Калькулятор степеней онлайн

Опубликовано
3 = 8.

Примеры для решения:

Содержание

Возведение в степень презентация

Презентация по возведению в степень, рассчитанную на семиклассников. Презентация может разъяснить некоторые непонятные моменты, но, вероятно, таких моментов не будет благодаря нашей статье.

Скачать презентацию

Итог

Мы рассмотрели лишь верхушку айсберга, чтобы понять математику лучше — записывайтесь на наш курс: Ускоряем устный счет — НЕ ментальная арифметика.

Из курса вы не просто узнаете десятки приемов для упрощенного и быстрого умножения, сложения, умножения, деления, высчитывания процентов, но и отработаете их в специальных заданиях и развивающих играх! Устный счет тоже требует много внимания и концентрации, которые активно тренируются при решении интересных задач.

Определитель матрицы онлайн

Онлайн калькулятор. Определитель матрицы. Детерминант матрицы.

Этот онлайн калькулятор позволит вам определитель (детерминант) матрицы.

Для того чтобы вычислить определитель (детерминант) матрицы онлайн, выберите необходимый вам размер матрицы:

Размер матрицы: 2×23×34×45×56×67×7

Введите значения Матрицы:

Вводить можно числа или дроби. Например: 1.5 или 1/7 или -1/4 и т.д.

Найти определитель

Смотрите также:
Нахождение обратной матрицы

Определитель матрицы онлайн

Определитель матрицы

Нахождение определителя матрицы является очень частой задачей в высшей математике и алгебре. Как правило, без значения определителя матрицы не обойтись при решении сложных систем уравнений. На вычислении определителя матрицы построен метод Крамера решения систем уравнений. С помощью определения детермината определяют наличие и единственность решения систем уравнений.

Поэтому сложно переоценить важность умения правильно и точно находить определитель матрицы в математике. Методы решения определителей являются теоретически довольно простыми, однако с увеличением размера матрицы вычисления становятся очень громоздкими и требуют огромной внимательности и много времени. Очень легко в таких сложных математических вычислениях допустить незначительную ошибку или описку, что приведет к ошибке в окончательном ответе. Поэтому даже если вы находите определитель матрицы самостоятельно, важно проверить полученный результат. Это позволяет сделать наш сервис Нахождение определителя матрицы онлайн. Наш сервис выдает всегда абсолютно точный результат, не содержащий ни ошибок, ни описок. Вы можете отказаться от самостоятельных вычислений, поскольку с прикладной точки зрения, нахождение
определителя матрицы
не имеет обучающего характера, а просто требует много времени и числовых вычислений. Поэтому если в вашей задачи определение детерминанта матрицы являются вспомогательными, побочными вычислениями, воспользуйтесь нашим сервисом и найдите определитель матрицы онлайн!

Все вычисления проводятся автоматически с высочайшей точностью и абсолютно бесплатны. У нас очень удобный интерфейс для ввода матричных элементов. Но главное отличие нашего сервиса от аналогичных — возможность получения подробного решения. Наш сервис при вычислении определителя матрицы онлайн всегда использует самый простой и короткий метод и подробно описывает каждый шаг преобразований и упрощений. Так что вы получаете не просто значение детерминанта матрицы, окончательный результат, но и целое подробное решение.

Похожие сервисы:

Вычислить детерминант матрицы
Matrix problem solver

Калькулятор многочленов со степенями и буквами деление. Деление многочленов

Проиллюстрируем этот метод на примере деления многочлена 2x 4 -3x 3 +4x 2 +1 на многочлен x 2 -1:

В общем случае при делении многочлена P n (x) на многочлен T m (x) «столбиком» многочлены P n (x) и T m (x) располагают по убывающим степеням x. Затем старший член многочлена P n (x) делят на старший член многочлена T m (x) и получают старший член частного-многочлена q(x) умножают затем на делитель-многочлен T m (x) и полученный многочлен вычитают из многочлена P n (x). В результате вычитания получается некоторый многочлен D 1 (x), степень которого меньше n.

Если степень многочлена D 1 (x) меньше m, то процесс деления окончен, при этом многочлен D 1 (x) — остаток. Если степень многочлена D 1 (x), больше или равна m, то описанная процедура деления повторяется для многочлена D 1 (x), т.е. старший член многочлена D 1 (x) делят на старший член многочлена T m (x) и полученный многочлен вычитают из многочлена D 1 (x). В результате вычитания получается многочлен D 2 (x), степень которого меньше n-1. Если степень многочлена D 2 (x) меньше m, то процесс деления окончен, при этом многочлен D 2 (x) — остаток. Если же степень многочлена D 2 (x) больше или равна m, то описанная процедура деления повторяется для многочлена D 2 (x). Процесс продолжается до тех пор, пока степень полученного на k-м шаге многочлена D k (x) станет меньше степени многочлена T m (x), т.е. меньше m. При этом многочлен D k (x) — остаток.

При делении многочлена P n (x)=a 0 x n +a 1 x n-1 + … +a n-1 x+a n , расположенного по убывающим степеням x, на двучлен применяется метод сокращённого деления, называемой схемой Горнера . Этот метод есть непосредственное следствие метода неопределённых коэффициентов. Заметим, что при делении многочлена P n (x) степени n на двучлен в частном получается многочлен Q n-1 (x)=a 0· x n-1 +b 1· x n-2 + … +b n-1 степени n-1, а в остатке — число (в частности, нуль). По методу неопределённых коэффициентов имеем

Приравнивая коэффициенты при одинаковых степенях в левой и правой части равенства (4), находим

Откуда получаем рекуррентные формулы для нахождения коэффициентов частного b1, b2, …, bn-1 и остатка r:

Практически вычисление коэффициентов частного Q n-1 (x) и остатка r проводится по следующей схеме (схема Горнера):

В этой схеме, начиная с коэффициента b 1 , каждое число третьей строки получается из предыдущего числа этой строки умножением на число и прибавлением к полученному результату соответствующего числа первой строки, стоящего над искомым числом.

При делении многочлена P n (x) на x- имеем тождественное равенство

P n (x) =(x -)· Q n-1 (x)+r.

Оно справедливо, в частности, при x =, т.е. P n () = r

Следующая теорема позволяет найти остаток от деления многочлена на двучлен, не находя частного.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где — корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две:

как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а — четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент — коэффициент при — равен единице) справедлива формула Виета:

Где — корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен — схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 — так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы «убиваем двух зайцев»: одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 — число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}

Пусть требуется

(2x 3 – 7x 2 + x + 1) ÷ (2x – 1).

Здесь дано произведение (2x 3 – 7x 2 + x + 1) и один множитель (2x – 1), – надо найти другой множитель. В данном примере сразу ясно (но вообще этого установить нельзя), что и другой, искомый, множитель, или частное, есть многочлен. Это ясно потому, что данное произведение имеет 4 члена, а данный множитель лишь 2. Однако, сказать заранее, сколько членов у искомого множителя – нельзя: может быть 2 члена, 3 члена и т. д. Вспоминая, что старший член произведения всегда получается от умножения старшего члена одного множителя на старший член другого (см. умножение многочлена на многочлен) и что членов, подобных этому, быть не может, мы уверены, что 2x 3 (старший член данного произведения) получится от умножения 2x (старший член данного множителя) на неизвестный старший член искомого множителя. Чтобы найти последний, придется, следовательно, разделить 2x 3 на 2x – получим x 2 . Это и есть старший член частного.

Вспомним затем, что при умножении многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Поэтому данное произведение (2x 3 – 7x 2 + x + 1) представляет собою произведение делителя (2x – 1) на все члены частного. Но мы можем теперь найти произведение делителя на первый (старший) член частного, т. е. (2x – 1) ∙ x 2 ; получим 2x 3 – x 2 . Зная произведение делителя на все члены частного (оно = 2x 3 – 7x 2 + x + 1) и зная произведение делителя на 1-ый член частного (оно = 2x 3 – x 2), вычитанием мы можем найти произведение делителя на все остальные, кроме 1-го, члены частного. Получим

(2x 3 – 7x 2 + x + 1) – (2x 3 – x 2) = 2x 3 – 7x 2 + x + 1 – 2x 3 + x 2 = –6x 2 + x + 1.

Старший член (–6x 2) этого оставшегося произведения должен представлять собою произведение старшего члена делителя (2x) на старший член остального (кроме 1-го члена) частного. Отсюда найдем старший член остального частного. Надо –6x 2 ÷ 2x, получим –3x. Это и есть второй член искомого частного. Мы можем опять найти произведение делителя (2x – 1) на второй, только что найденный, член частного, т. е. на –3x.

Получим (2x – 1) ∙ (–3x) = –6x 2 + 3x. Из всего данного произведения мы уже вычли произведение делителя на 1-ый член частного и получили остаток –6x 2 + x + 1, представляющий собою произведение делителя на остальные, кроме 1-го, члены частного. Вычитая из него только что найденное произведение –6x 2 + 3x, получим остаток, представляющий собою произведение делителя на все остальные, кроме 1-го и 2-го, члены частного:

–6x 2 + x + 1 – (–6x 2 + 3x) = –6x 2 + x + 1 + 6x 2 – 3x = –2x + 1.

Разделив старший член этого оставшегося произведения (–2x) на старший член делителя (2x), получим старший член остального частного, или его третий член, (–2x) ÷ 2x = –1, – это и есть 3-й член частного.

Умножив на него делителя, получим

(2x – 1) ∙ (–1) = –2x + 1.

Вычтя это произведение делителя на 3-й член частного из всего оставшегося до сих пор произведения, т. е.

(–2x + 1) – (–2x + 1) = –2x + 1 + 2x – 1 = 0,

мы увидим, что в нашем примере произведение делится на остальные, кроме 1-го, 2-го и 3-го, члены частного = 0, откуда заключаем, что у частного больше членов нет, т. е.

(2x 3 – 7x 2 + x + 1) ÷ (2x – 1) = x 2 – 3x – 1.

Из предыдущего мы видим: 1) удобно располагать члены делимого и делителя по нисходящим степеням, 2) необходимо установить какой-либо порядок для выполнения вычислений. Таким удобным порядком можно считать тот, который употребляется в арифметике при делении многозначных чисел. Следуя ему, все предыдущие вычисления расположим так (сбоку даны еще краткие пояснения):

Те вычитания, какие здесь нужны, выполняются переменою знаков у членов вычитаемого, причем эти переменные знаки пишутся сверху.

Так, написано

Это значит: вычитаемое было 2x 3 – x 2 , а после перемены знаков получили –2x 3 + x 2 .

Благодаря принятому расположению вычислений, благодаря тому, что члены делимого и делителя расположены по нисходящим степеням и благодаря тому, что степени буквы x в обоих многочленах идут, понижаясь всякий раз на 1, оказалось, что подобные члены приходятся написанными друг под другом (напр.: –7x 2 и +x 2), почему легко выполнить их приведение. Можно подметить, что не все члены делимого нужны во всякий момент вычисления. Напр., член +1 не нужен в тот момент, где был найден 2-й член частного, и эту часть вычислений можно упростить.


Еще примеры:

1. (2a 4 – 3ab 3 – b 4 – 3a 2 b 2) ÷ (b 2 + a 2 + ab).

Расположим по нисходящим степеням буквы a и делимое и делитель:


(Заметим, что здесь, благодаря отсутствию в делимом члена с a 3 , в первом вычитании оказалось, что подписаны друг под другом не подобные члены –a 2 b 2 и –2a 3 b. Конечно, они не могут быть приведены в один член и написаны под чертою оба по старшинству).


В обоих примерах надо внимательнее относиться к подобным членам: 1) друг под другом часто оказываются написанными не подобные члены и 2) иногда (как, напр., в последнем примере, члены –4a n и –a n при первом вычитании) подобные члены выходят написанными не друг под другом.

Возможно выполнять деление многочленов в ином порядке, а именно: всякий раз разыскивать младший член или всего или остающегося частного. Удобно в этом случае располагать данные многочлены по восходящим степеням какой-либо буквы. Напр.:


Приводится доказательство, что неправильную дробь, составленную из многочленов, можно представить в виде суммы многочлена и правильной дроби. Подробно разобраны примеры деления многочленов уголком и умножения столбиком.

Теорема

Пусть P k (x) , Q n (x) — многочлены от переменной x степеней k и n , соответственно, причем k ≥ n . Тогда многочлен P k (x) можно представить единственным способом в следующем виде:
(1) P k (x) = S k-n (x) Q n (x) + U n-1 (x) ,
где S k-n (x) — многочлен степени k-n , U n-1 (x) — многочлен степени не выше n-1 , или нуль.

Доказательство

По определению многочлена:
;
;
;
,
где p i , q i — известные коэффициенты, s i , u i — неизвестные коэффициенты.

Введем обозначение:
.
Подставим в (1) :
;
(2) .
Первый член в правой части — это многочлен степени k . Сумма второго и третьего членов — это многочлен степени не выше k — 1 . Приравняем коэффициенты при x k :
p k = s k-n q n .
Отсюда s k-n = p k / q n .

Преобразуем уравнение (2) :
.
Введем обозначение: .
Поскольку s k-n = p k / q n , то коэффициент при x k равен нулю. Поэтому — это многочлен степени не выше k — 1 , . Тогда предыдущее уравнение можно переписать в виде:
(3) .

Это уравнение имеет тот же вид, что и уравнение (1) , только значение k стало на 1 меньше. Повторяя эту процедуру k-n раз, получаем уравнение:
,
из которого определяем коэффициенты многочлена U n-1 (x) .

Итак, мы определили все неизвестные коэффициенты s i , u l . Причем s k-n ≠ 0 . Лемма доказана.

Деление многочленов

Разделив обе части уравнения (1) на Q n (x) , получим:
(4) .
По аналогии с десятичными числами, S k-n (x) называется целой частью дроби или частным, U n-1 (x) — остатком от деления. Дробь многочленов, у которой степень многочлена в числителе меньше степени многочлена в знаменателе называется правильной дробью. Дробь многочленов, у которой степень многочлена в числителе больше или равна степени многочлена в знаменателе называется неправильной дробью.

Уравнение (4) показывает, что любую неправильную дробь многочленов можно упростить, представив ее в виде суммы целой части и правильной дроби.

По своей сути, целые десятичные числа являются многочленами, у которых переменная равна числу 10 . Например, возьмем число 265847. Его можно представить в виде:
.
То есть это многочлен пятой степени от 10 . Цифры 2, 6, 5, 8, 4, 7 являются коэффициентами разложения числа по степеням числа 10.

Поэтому к многочленам можно применить правило деления уголком (иногда его называют делением в столбик), применяемое к делению чисел. Единственное отличие заключается в том, что, при делении многочленов, не нужно переводить числа больше девяти в старшие разряды. Рассмотрим процесс деления многочленов уголком на конкретных примерах.

Пример деления многочленов уголком


.

Решение

Здесь в числителе стоит многочлен четвертой степени. В знаменателе — многочлен второй степени. Поскольку 4 ≥ 2 , то дробь неправильная. Выделим целую часть, разделив многочлены уголком (в столбик):



Приведем подробное описание процесса деления. Исходные многочлены записываем в левый и правый столбики. Под многочленом знаменателя, в правом столбике, проводим горизонтальную черту (уголок). Ниже этой черты, под уголком, будет целая часть дроби.

1.1 Находим первый член целой части (под уголком). Для этого разделим старший член числителя на старший член знаменателя: .

1.2 Умножаем 2 x 2 на x 2 — 3 x + 5 :
. Результат записываем в левый столбик:

1.3 Берем разность многочленов в левом столбике:

.



Итак, мы получили промежуточный результат:
.

Дробь в правой части неправильная, поскольку степень многочлена в числителе (3 ) больше или равна степени многочлена в знаменателе (2 ). Повторяем вычисления. Только теперь числитель дроби находится в последней строке левого столбика.
2.1 Разделим старший член числителя на старший член знаменателя: ;

2.2 Умножаем на знаменатель: ;

2.3 И вычитаем из последней строки левого столбика: ;


Промежуточный результат:
.

Снова повторяем вычисления, поскольку в правой части стоит неправильная дробь.
3.1 ;
3.2 ;
3.3 ;


Итак, мы получили:
.
Степень многочлена в числителе правой дроби меньше степени многочлена знаменателя, 1 . Поэтому дробь — правильная.

Ответ

;
2 x 2 — 4 x + 1 — это целая часть;
x — 8 — остаток от деления.

Пример 2

Выделить целую часть дроби и найти остаток от деления:
.

Решение

Выполняем те же действия, что и в предыдущем примере:

Здесь остаток от деления равен нулю:
.

Ответ

Умножение многочленов столбиком

Также можно умножать многочлены столбиком, аналогично умножению целых чисел. Рассмотрим конкретные примеры.

Пример умножения многочленов столбиком

Найти произведение многочленов:
.

Решение

1

2.1
.

2.2
.

2.3
.
Результат записываем в столбик, выравнивая степени x .

3
;
;
;
.

Заметим, что можно было записывать только коэффициенты, а степени переменной x можно было опустить. Тогда умножение столбиком многочленов будет выглядеть так:

Ответ

Пример 2

Найти произведение многочленов столбиком:
.

Решение

При умножении многочленов столбиком важно записывать одинаковые степени переменной x друг под другом. Если некоторые степени x пропущены, то их следует записывать явно, умножив на нуль, либо оставлять пробелы.

В этом примере некоторые степени пропущены. Поэтому запишем их явно, умноженными на нуль:
.
Умножаем многочлены столбиком.

1 Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1 Умножаем младший член второго многочлена на первый многочлен:
.
Результат записываем в столбик.

2.2 Следующий член второго многочлена равен нулю. Поэтому его произведение на первый многочлен также равно нулю. Нулевую строку можно не записывать.

2.3 Умножаем следующий член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

2. 3 Умножаем следующий (старший) член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

3 После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x :

В данной статье будут рассмотрены рациональные дроби, ее выделения целых частей. Дроби бывают правильными и неправильными. Когда в дроби числитель меньше знаменателя – это правильная дробь, а неправильная наоборот.

Yandex.RTB R-A-339285-1

Рассмотрим примеры правильных дробей: 1 2 , 9 29 , 8 17 , неправильных: 16 3 , 21 20 , 301 24 .

Будем вычислять дроби, которые могут сократиться, то есть 12 16 — это 3 4 , 21 14 — это 3 2 .

При выделении целой части производится процесс деления числителя на знаменатель. Тогда такая дробь может быть представлена как сумма целой и дробной части, где дробная считается отношением остатка от деления и знаменателя.

Пример 1

Найти остаток при делении 27 на 4 .

Решение

Необходимо произвести деление столбиком, тогда получим, что

Значит, 27 4 = ц е л а я ч а с т ь + о с т а т о к з н а м е н а т е л ь = 6 + 3 4

Ответ: остаток 3 .

Пример 2

Произвести выделение целых частей 331 12 и 41 57 .

Решение

Производим деление знаменателя на числитель при помощи уголка:

Поэтому имеем, что 331 12 = 27 + 7 12 .

Вторая дробь является правильной, значит, целая часть равняется нулю.

Ответ: целые части 27 и 0 .

Рассмотрим классификацию многочленов, иначе говоря, дробно-рациональную функцию. Ее считают правильной, когда степень числителя меньше степени знаменателя, иначе ее считают неправильной.

Определение 1

Деление многочлена на многочлен происходит по принципу деления углом, а представление функции как сумма целой и дробной частей.

Чтобы разделить многочлен на линейный двучлен, используется схема Горнера.

Пример 3

Произвести деление x 9 + 7 x 7 — 3 2 x 3 — 2 на одночлен 2 x 2 .

Решение

Воспользовавшись свойством деления, запишем, что

x 9 + 7 x 7 — 3 2 x 3 — 2 2 x 2 = x 9 2 x 2 + 7 x 7 2 x 2 — 3 2 x 3 2 x 2 + x 2 2 x 2 — 2 2 x 2 = = 1 2 x 7 + 7 2 x 5 — 3 4 x + 1 2 — 2 2 x — 2 .

Зачастую такого вида преобразования выполняются при взятии интегралов.

Пример 4

Произвести деление многочлена на многочлен: 2 x 3 + 3 на x 3 + x .

Решение

Знак деления можно записать в виде дроби вида 2 x 3 + 3 x 3 + x . Теперь необходимо выделить целую часть. Производим это при помощи деления столбиком. Получаем, что

Значит, получаем, что целая часть имеет значение — 2 x + 3 , тогда все выражение записывается как 2 x 3 + 3 x 3 + x = 2 + — 2 x + 3 x 3 + x

Пример 5

Разделить и найти остаток от деления 2 x 6 — x 5 + 12 x 3 — 72 x 2 + 3 на x 3 + 2 x 2 — 1 .

Решение

Зафиксируем дробь вида 2 x 6 — x 5 + 12 x 3 — 72 x 2 + 3 x 3 + 2 x 2 — 1 .

Степень числителя больше, чем у знаменателя, значит, что у нас имеется неправильная дробь. При помощи деления столбиком выдели целую часть. Получаем, что

Произведем деление еще раз и получим:

Отсюда имеем, что остаток равняется — 65 x 2 + 10 x — 3 , отсюда следует:

2 x 6 — x 5 + 12 x 3 — 72 x 2 + 3 x 3 + 2 x 2 — 1 = 2 x 3 — 5 x 2 + 10 x — 6 + — 65 x 2 + 10 x — 3 x 3 + 2 x 2 — 1

Существуют случаи, где необходимо дополнительно выполнять преобразование дроби для того, чтобы можно было выявить остаток при делении. Это выглядит следующим образом:

3 x 5 + 2 x 4 — 12 x 2 — 4 x 3 — 3 = 3 x 2 x 3 — 3 — 3 x 2 x 3 — 3 + 3 x 5 + 2 x 4 — 12 x 2 — 4 x 3 — 3 = = 3 x 2 x 3 — 3 + 2 x 4 — 3 x 2 — 4 x 3 — 3 = 3 x 2 + 2 x 4 — 3 x 2 — 4 x 3 — 3 = = 3 x 2 + 2 x x 3 — 3 — 2 x x 3 — 3 + 2 x 4 — 3 x 2 — 4 x 3 — 3 = = 3 x 2 + 2 x (x 3 — 3) — 3 x 2 + 6 x — 4 x 3 — 3 = 3 x 2 + 2 x + — 3 x 2 + 6 x — 4 x 3 — 3

Значит, что остаток при делении 3 x 5 + 2 x 4 — 12 x 2 — 4 на x 3 — 3 дает значение — 3 x 2 + 6 x — 4 . Для быстрого нахождения результата применяют формулы сокращенного умножения.

Пример 6

Произвести деление 8 x 3 + 36 x 2 + 54 x + 27 на 2 x + 3 .

Решение

Запишем деление в виде дроби. Получим, что 8 x 3 + 36 x 2 + 54 x + 27 2 x + 3 . Заметим, что в числителе выражение можно сложить по формуле куба суммы. Имеем, что

8 x 3 + 36 x 2 + 54 x + 27 2 x + 3 = (2 x + 3) 3 2 x + 3 = (2 x + 3) 2 = 4 x 2 + 12 x + 9

Заданный многочлен делится без остатка.

Для решения используется более удобный метод решения, причем деление многочлена на многочлен считается максимально универсальным, поэтому часто используемым при выделении целой части. Итоговая запись должна содержать полученный многочлен от деления.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Корень 3 степени из 2. Решение корней в онлайн калькуляторе

Из большого числа без калькулятора мы уже разобрали. В этой статье рассмотрим как извлечь кубический корень (корень третьей степени). Оговорюсь, что речь идёт о натуральных числах. Как вы думаете, сколько времени нужно, чтобы устно вычислить такие корни как:

Совсем немного, а если потренируетесь два-три раза минут по 20, то любой такой корень вы сможете извлечь за 5 секунд устно.

*Нужно отметить, что речь идёт о таких числах стоящих под корнем, которые являются результатом возведения в куб натуральных чисел от 0 до 100.

Мы знаем, что:

Так вот, число а, которое мы будем находить – это натуральное число от 0 до 100. Посмотрите на таблицу кубов этих чисел (результаты возведения в третью степень):


Вы без труда сможете извлечь кубический корень из любого числа в этой таблице. Что нужно знать?

1. Это кубы чисел кратных десяти:

Я бы даже сказал, что это «красивые» числа, запоминаются они легко. Выучить несложно.

2. Это свойство чисел при произведении.

Его суть заключается в том, что при возведении в третью степень какого-либо определённого числа, результат будет иметь особенность. Какую?

Например, возведём в куб 1, 11, 21, 31, 41 и т.д. Можно посмотреть по таблице.

1 3 = 1, 11 3 = 1331, 21 3 = 9261, 31 3 = 26791, 41 3 = 68921 …

То есть, при возведении в куб числа с единицей на конце в результате у нас всегда получится число с единицей в конце.

При возведении в куб числа с двойкой на конце в результате всегда получится число с восьмёркой в конце.

Покажем соответствие в табличке для всех чисел:

Знания представленных двух моментов вполне достаточно.

Рассмотрим примеры:

Извлечь кубический корень из 21952.

Данное число находится в пределах от 8000 до 27000. Это означает, что результат корня лежит в пределах от 20 до 30. Число 29952 заканчивается на 2. Такой вариант возможен только тогда, когда в куб возводится число с восьмёркой в конце. Таким образом, результат корня равен 28.

Извлечь кубический корень из 54852.

Данное число находится в пределах от 27000 до 64000. Это значит, что результат корня лежит в пределах от 30 до 40. Число 54852 заканчивается на 2. Такой вариант возможен только тогда, когда в куб возводится число с восьмёркой в конце. Таким образом, результат корня равен 38.

Извлечь кубический корень из 571787.

Данное число находится в пределах от 512000 до 729000. Это значит, что результат корня лежит в пределах от 80 до 90. Число 571787 заканчивается на 7. Такой вариант возможен только тогда, когда в куб возводится число с тройкой в конце. Таким образом, результат корня равен 83.

Извлечь кубический корень из 614125.

Данное число находится в пределах от 512000 до 729000. Это значит, что результат корня лежит в пределах от 80 до 90. Число 614125 заканчивается на 5. Такой вариант возможен только тогда, когда в куб возводится число с пятёркой в конце. Таким образом, результат корня равен 85.

Думаю, что вы теперь без труда сможете извлечь кубический корень из числа 681472.

Конечно, чтобы извлекать такие корни устно, нужна небольшая практика. Но восстановив две указанные таблички на бумаге, вы без труда в течение минуты, в любом случае, такой корень извлечь сможете.

После того, как нашли результат обязательно сделайте проверку (возведите его с третью степень). *Умножение столбиком никто не отменял 😉

На самом ЕГЭ задач с такими «страшненькими» корнями нет. Например, в требуется извлечь кубический корень из 1728. Думаю, что это теперь для вас не проблема.

Если вы знаете какие-то интересные приёмы вычислений без калькулятора, присылайте, со временем опубликую. На этом всё. Успеха Вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Корень n-ной степени из числа x — это такое неотрицательное число z, которое при возведении в n-ную степень превращается в x. Определение корня входит в список основных арифметических операций, с которыми мы знакомимся еще в детстве.

Математическое обозначение

«Корень» произошел от латинского слова radix и сегодня слово «радикал» используется как синоним данного математического термина. С 13-го века математики обозначали операцию извлечения корня буквой r с горизонтальной чертой над подкоренным выражением. В 16-веке было введено обозначение V, которое постепенно вытеснило знак r, однако горизонтальная черта сохранилась. Его легко набирать в типографии или писать от руки, но в электронных изданиях и программировании распространилось буквенное обозначение корня — sqrt. Именно так мы и будем обозначать квадратные корни в данной статье.

Квадратный корень

Квадратным радикалом числа x называется такое число z, которое при умножении на самого себя превращается в x. Например, если мы умножим 2 на 2, то получим 4. Двойка в этом случае и есть квадратный корень из четырех. Умножим 5 на 5, получим 25 и вот мы уже знаем значение выражения sqrt(25). Мы можем умножить и – 12 на −12 и получить 144, а радикалом 144 будет как 12, так и −12. Очевидно, что квадратные корни могут быть как положительными, так и отрицательными числами.

Своеобразный дуализм таких корней важен для решения квадратных уравнений, поэтому при поиске ответов в таких задачах требуется указывать оба корня. При решении алгебраических выражений используются арифметические квадратные корни, то есть только их положительные значения.

Числа, квадратные корни которых являются целыми, называются идеальными квадратами. Существует целая последовательность таких чисел, начало которой выглядит как:

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256…

Квадратные корни других чисел представляют собой иррациональные числа. К примеру, sqrt(3) = 1,73205080757… и так далее. Это число бесконечно и не периодично, что вызывает некоторые затруднения при вычислении таких радикалов.

Школьный курс математики утверждает, что нельзя извлекать квадратные корни из отрицательных чисел. Как мы узнаем в вузовском курсе матанализа, делать это можно и нужно – для этого и нужны комплексные числа. Однако наша программа рассчитана для извлечения действительных значений корней, поэтому она не вычисляет радикалы четной степени из отрицательных чисел.

Кубический корень

Кубический радикал числа x — это такое число z, которое при умножении на себя три раза дает число x. Например, если мы умножим 2 × 2 × 2, то получим 8. Следовательно, двойка является кубическим корнем восьми. Умножим три раза на себя четверку и получим 4 × 4 × 4 = 64. Очевидно, что четверка является кубическим корнем для числа 64. Существует бесконечная последовательность чисел, кубические радикалы которых являются целыми. Ее начало выглядит как:

1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744…

Для остальных чисел кубические корни являются иррациональными числами. В отличие от квадратных радикалов, кубические корни, как и любые нечетные корни, можно извлекать из отрицательных чисел. Все дело в произведении чисел меньше нуля. Минус на минус дает плюс – известное со школьной скамьи правило. А минус на плюс – дает минус. Если перемножать отрицательные числа нечетное количество раз, то результат будет также отрицательным, следовательно, извлечь нечетный радикал из отрицательного числа нам ничего не мешает.

Однако программа калькулятора работает иначе. По сути, извлечение корня – это возведение в обратную степень. Квадратный корень рассматривается как возведение в степень 1/2, а кубический – 1/3. Формулу возведения в степень 1/3 можно переиначить и выразить как 2/6. Результат один и тот же, но извлекать такой корень из отрицательного числа нельзя. Таким образом, наш калькулятор вычисляет арифметические корни только из положительных чисел.

Корень n-ной степени

Столь витиеватый способ вычисления радикалов позволяет определять корни любой степени из любого выражения. Вы можете извлечь корень пятой степени из куба числа или радикал 19 степени из числа в 12 степени. Все это элегантно реализовано в виде возведения в степени 3/5 или 12/19 соответственно.

Рассмотрим пример

Диагональ квадрата

Иррациональность диагонали квадрата была известна еще древним греками. Они столкнулись с проблемой вычисления диагонали плоского квадрата, так как ее длина всегда пропорциональна корню из двух. Формула для определения длины диагонали выводится из и в конечном итоге принимает вид:

d = a × sqrt(2).

Давайте определим квадратный радикал из двух при помощи нашего калькулятора. Введем в ячейку «Число(x)» значение 2, а в «Степень(n)» также 2. В итоге получим выражение sqrt(2) = 1,4142. Таким образом, для грубой оценки диагонали квадрата достаточно умножить его сторону на 1,4142.

Заключение

Поиск радикала – стандартная арифметическая операция, без которой не обходятся научные или конструкторские вычисления. Конечно, нам нет нужды определять корни для решения бытовых задач, но наш онлайн-калькулятор определенно пригодится школьникам или студентам для проверки домашних заданий по алгебре или математическому анализу.

Пришло время разобрать способы извлечения корней . Они базируются на свойствах корней , в частности, на равенстве , которое справедливо для любого неотрицательного числа b.

Ниже мы по очереди рассмотрим основные способы извлечения корней.

Начнем с самого простого случая – с извлечения корней из натуральных чисел с использованием таблицы квадратов, таблицы кубов и т.п.

Если же таблицы квадратов, кубов и т.п. нет под руками, то логично воспользоваться способом извлечения корня, который подразумевает разложение подкоренного числа на простые множители.

Отдельно стоит остановиться на , что возможно для корней с нечетными показателями.

Наконец, рассмотрим способ, позволяющий последовательно находить разряды значения корня.

Приступим.

Использование таблицы квадратов, таблицы кубов и т.д.

В самых простых случаях извлекать корни позволяют таблицы квадратов, кубов и т.д. Что же представляют собой эти таблицы?

Таблица квадратов целых чисел от 0 до 99 включительно (она показана ниже) состоит из двух зон. Первая зона таблицы располагается на сером фоне, она с помощью выбора определенной строки и определенного столбца позволяет составить число от 0 до 99 . Для примера выберем строку 8 десятков и столбец 3 единицы, этим мы зафиксировали число 83 . Вторая зона занимает оставшуюся часть таблицы. Каждая ее ячейка находится на пересечении определенной строки и определенного столбца, и содержит квадрат соответствующего числа от 0 до 99 . На пересечении выбранной нами строки 8 десятков и столбца 3 единицы находится ячейка с числом 6 889 , которое является квадратом числа 83 .


Таблицы кубов, таблицы четвертых степеней чисел от 0 до 99 и так далее аналогичны таблице квадратов, только они во второй зоне содержат кубы, четвертые степени и т.д. соответствующих чисел.

Таблицы квадратов, кубов, четвертых степеней и т.д. позволяют извлекать квадратные корни, кубические корни, корни четвертой степени и т.д. соответственно из чисел, находящихся в этих таблицах. Объясним принцип их применения при извлечении корней.

Допустим, нам нужно извлечь корень n -ой степени из числа a , при этом число a содержится в таблице n -ых степеней. По этой таблице находим число b такое, что a=b n . Тогда , следовательно, число b будет искомым корнем n -ой степени.

В качестве примера покажем, как с помощью таблицы кубов извлекается кубический корень из 19 683 . Находим число 19 683 в таблице кубов, из нее находим, что это число является кубом числа 27 , следовательно, .


Понятно, что таблицы n -ых степеней очень удобны при извлечении корней. Однако их частенько не оказывается под руками, а их составление требует определенного времени. Более того, часто приходится извлекать корни из чисел, которые не содержатся в соответствующих таблицах. В этих случаях приходится прибегать к другим методам извлечения корней.

Разложение подкоренного числа на простые множители

Достаточно удобным способом, позволяющим провести извлечение корня из натурального числа (если конечно корень извлекается), является разложение подкоренного числа на простые множители. Его суть заключается в следующем : после его достаточно легко представить в виде степени с нужным показателем, что позволяет получить значение корня. Поясним этот момент.

Пусть из натурального числа a извлекается корень n -ой степени, и его значение равно b . В этом случае верно равенство a=b n . Число b как любое натуральное число можно представить в виде произведения всех своих простых множителей p 1 , p 2 , …, p m в виде p 1 ·p 2 ·…·p m , а подкоренное число a в этом случае представляется как (p 1 ·p 2 ·…·p m) n . Так как разложение числа на простые множители единственно, то разложение подкоренного числа a на простые множители будет иметь вид (p 1 ·p 2 ·…·p m) n , что дает возможность вычислить значение корня как .

Заметим, что если разложение на простые множители подкоренного числа a не может быть представлено в виде (p 1 ·p 2 ·…·p m) n , то корень n -ой степени из такого числа a нацело не извлекается.

Разберемся с этим при решении примеров.

Пример.

Извлеките квадратный корень из 144 .

Решение.

Если обратиться к таблице квадратов, данной в предыдущем пункте, то хорошо видно, что 144=12 2 , откуда понятно, что квадратный корень из 144 равен 12 .

Но в свете данного пункта нас интересует, как извлекается корень с помощью разложения подкоренного числа 144 на простые множители. Разберем этот способ решения.

Разложим 144 на простые множители:

То есть, 144=2·2·2·2·3·3 . На основании с полученным разложением можно провести такие преобразования: 144=2·2·2·2·3·3=(2·2) 2 ·3 2 =(2·2·3) 2 =12 2 . Следовательно, .

Используя свойства степени и свойства корней , решение можно было оформить и немного иначе: .

Ответ:

Для закрепления материала рассмотрим решения еще двух примеров.

Пример.

Вычислите значение корня .

Решение.

Разложение на простые множители подкоренного числа 243 имеет вид 243=3 5 . Таким образом, .

Ответ:

Пример.

Является ли значение корня целым числом?

Решение.

Чтобы ответить на этот вопрос, разложим подкоренное число на простые множители и посмотрим, представимо ли оно в виде куба целого числа.

Имеем 285 768=2 3 ·3 6 ·7 2 . Полученное разложение не представляется в виде куба целого числа, так как степень простого множителя 7 не кратна трем. Следовательно, кубический корень из числа 285 768 не извлекается нацело.

Ответ:

Нет.

Извлечение корней из дробных чисел

Пришло время разобраться, как извлекается корень из дробного числа. Пусть дробное подкоренное число записано в виде как p/q . Согласно свойству корня из частного справедливо следующее равенство . Из этого равенства следует правило извлечения корня из дроби : корень из дроби равен частному от деления корня из числителя на корень из знаменателя.

Разберем пример извлечения корня из дроби.

Пример.

Чему равен квадратный корень из обыкновенной дроби 25/169 .

Решение.

По таблице квадратов находим, что квадратный корень из числителя исходной дроби равен 5 , а квадратный корень из знаменателя равен 13 . Тогда . На этом извлечение корня из обыкновенной дроби 25/169 завершено.

Ответ:

Корень из десятичной дроби или смешанного числа извлекается после замены подкоренных чисел обыкновенными дробями.

Пример.

Извлеките кубический корень из десятичной дроби 474,552 .

Решение.

Представим исходную десятичную дробь в виде обыкновенной дроби: 474,552=474552/1000 . Тогда . Осталось извлечь кубические корни, находящиеся в числителе и знаменателе полученной дроби. Так как 474 552=2·2·2·3·3·3·13·13·13= (2·3·13) 3 =78 3 и 1 000=10 3 , то и . Осталось лишь завершить вычисления .

Ответ:

.

Извлечение корня из отрицательного числа

Отдельно стоит остановиться на извлечении корней из отрицательных чисел. При изучении корней мы сказали, что когда показатель корня является нечетным числом, то под знаком корня может находиться отрицательное число. Таким записям мы придали следующий смысл: для отрицательного числа −a и нечетного показателя корня 2·n−1 справедливо . Это равенство дает правило извлечения корней нечетной степени из отрицательных чисел : чтобы извлечь корень из отрицательного числа нужно извлечь корень из противоположного ему положительного числа, и перед полученным результатом поставить знак минус.

Рассмотрим решение примера.

Пример.

Найдите значение корня .

Решение.

Преобразуем исходное выражение, чтобы под знаком корня оказалось положительное число: . Теперь смешанное число заменим обыкновенной дробью: . Применяем правило извлечения корня из обыкновенной дроби: . Осталось вычислить корни в числителе и знаменателе полученной дроби: .

Приведем краткую запись решения: .

Ответ:

.

Порязрядное нахождение значения корня

В общем случае под корнем находится число, которое при помощи разобранных выше приемов не удается представить в виде n -ой степени какого-либо числа. Но при этом бывает необходимость знать значение данного корня, хотя бы с точностью до некоторого знака. В этом случае для извлечения корня можно воспользоваться алгоритмом, который позволяет последовательно получить достаточное количество значений разрядов искомого числа.

На первом шаге данного алгоритма нужно выяснить, каков старший разряд значения корня. Для этого последовательно возводятся в степень n числа 0, 10, 100, … до того момента, когда будет получено число, превосходящее подкоренное число. Тогда число, которое мы возводили в степень n на предыдущем этапе, укажет соответствующий старший разряд.

Для примера рассмотрим этот шаг алгоритма при извлечении квадратного корня из пяти. Берем числа 0, 10, 100, … и возводим их в квадрат, пока не получим число, превосходящее 5 . Имеем 0 2 =05 , значит, старшим разрядом будет разряд единиц. Значение этого разряда, а также более младших, будет найдено на следующих шагах алгоритма извлечения корня.

Все следующие шаги алгоритма имеют целью последовательное уточнение значения корня за счет того, что находятся значения следующих разрядов искомого значения корня, начиная со старшего и продвигаясь к младшим. К примеру, значение корня на первом шаге получается 2 , на втором – 2,2 , на третьем – 2,23 , и так далее 2,236067977… . Опишем, как происходит нахождение значений разрядов.

Нахождение разрядов проводится за счет перебора их возможных значений 0, 1, 2, …, 9 . При этом параллельно вычисляются n -ые степени соответствующих чисел, и они сравниваются с подкоренным числом. Если на каком-то этапе значение степени превзойдет подкоренное число, то значение разряда, соответствующее предыдущему значению, считается найденным, и производится переход к следующему шагу алгоритма извлечения корня, если же этого не происходит, то значение этого разряда равно 9 .

Поясним эти моменты все на том же примере извлечения квадратного корня из пяти.

Сначала находим значение разряда единиц. Будем перебирать значения 0, 1, 2, …, 9 , вычисляя соответственно 0 2 , 1 2 , …, 9 2 до того момента, пока не получим значение, большее подкоренного числа 5 . Все эти вычисления удобно представлять в виде таблицы:

Так значение разряда единиц равно 2 (так как 2 2 5 ). Переходим к нахождению значения разряда десятых. При этом будем возводить в квадрат числа 2,0, 2,1, 2,2, …, 2,9 , сравнивая полученные значения с подкоренным числом 5 :

Так как 2,2 2 5 , то значение разряда десятых равно 2 . Можно переходить к нахождению значения разряда сотых:

Так найдено следующее значение корня из пяти, оно равно 2,23 . И так можно продолжать дальше находить значения : 2,236, 2,2360, 2,23606, 2,236067, … .

Для закрепления материала разберем извлечение корня с точностью до сотых при помощи рассмотренного алгоритма.

Сначала определяем старший разряд. Для этого возводим в куб числа 0, 10, 100 и т.д. пока не получим число, превосходящее 2 151,186 . Имеем 0 3 =02 151,186 , таким образом, старшим разрядом является разряд десятков.

Определим его значение.

Так как 10 3 2 151,186 , то значение разряда десятков равно 1 . Переходим к единицам.

Таким образом, значение разряда единиц равно 2 . Переходим к десятым.

Так как даже 12,9 3 меньше подкоренного числа 2 151,186 , то значение разряда десятых равно 9 . Осталось выполнить последний шаг алгоритма, он нам даст значение корня с требуемой точностью.

На этом этапе найдено значение корня с точностью до сотых: .

В заключение этой статьи хочется сказать, что существует масса других способов извлечения корней. Но для большинства задач достаточно тех, которые мы изучили выше.

Список литературы.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *