Пример 1.1 Сбор нагрузок на плиту перекрытия жилого здания
Требуется собрать нагрузки на монолитную плиту перекрытия жилого дома. Толщина плиты 200 мм. Состав пола представлен на рис. 1.
Решение
Определим нормативные значения действующих нагрузок. Для удобства восприятия материала постоянные нагрузки будем обозначать индексом q, кратковременные — индексом ν, длительные — индексом p.
Жилые здания относятся ко II уровню ответственности, следовательно, коэффициент надежности по ответственности γн = 1,0. На этот коэффициент будем умножать значения всех нагрузок. (Для выбора коэффициента см. статью Коэффициент надежности по ответственности зданий и сооружений)
Сначала рассмотрим нагрузки от плиты перекрытия и конструкции пола. Эти нагрузки являются постоянными, т.к. действуют на всем протяжении эксплуатации здания.
1. Объемный вес железобетона равен 2500 кг/м3 (25 кН/м3). Толщина плиты δ1 = 200 мм = 0,2 м, тогда нормативное значение нагрузки от собственного веса плиты перекрытия составляет:
q1 = 25*δ1*γн = 25*0,2*1,0 = 5,0 кН/м2.
2. Нормативная нагрузка от звукоизоляционного слоя из экструдированного пенополистирола плотностью ρ2 = 35 кг/м3 (0,35 кН/м3) и толщиной δ2 = 30 мм = 0,03 м:
q2 = ρ2*δ2*γн = 0,35*0,03*1,0 = 0,01 кН/м2.
3. Нормативная нагрузка от цементно-песчаной стяжки плотностью ρ3 = 1800 кг/м3 (18 кН/м3) и толщиной δ3 = 40 мм = 0,04 м:
q3 = ρ3*δ3*γн = 18*0,04*1,0 = 0,72 кН/м2.
4. Нормативная нагрузка от плиты ДВП плотностью ρ4 = 800 кг/м3 (8 кН/м3) и толщиной δ4 = 5 мм = 0,005 м:
q4 = ρ4*δ4*γн = 8*0,005*1,0 = 0,04 кН/м2.
5. Нормативная нагрузка от паркетной доски плотностью ρ5 = 600 кг/м3 (6 кН/м3) и толщиной δ5 = 20 мм = 0,02 м:
q5 = ρ5*δ5*γн = 6*0,02*1,0 = 0,12 кН/м2.
Суммарная нормативная постоянная нагрузка составляет
q = q1 + q2 + q3 + q4 + q5 = 5 + 0,01 + 0,72 + 0,04 + 0,12 +5,89 кН/м2.
Расчетное значение нагрузки получаем путем умножения ее нормативного значения на коэффициент надежности по нагрузке γt.
Теперь определим временные (кратковременные и длительные) нагрузки. Полное (кратковременное) нормативное значение нагрузки от людей и мебели (так называемая полезная нагрузка) для квартир жилых зданий составляет 1,5 кПа (1,5 кН/м2). Учитывая коэффициент надежности по ответственности здания γн = 1,0, итоговая кратковременная нагрузка от людей составляет:
ν1p = ν1*γt = 1,5*1,3 = 1,95 кН/м2.
Длительную нагрузку от людей и мебели получаем путем умножения ее полного значения на коэффициент 0,35, указанный в табл. 6, т.е:
р1 = 0,35*ν1 = 0,35*1,5 = 0,53 кН/м2;
Полученные данные запишем в таблицу 1.
Помимо нагрузки от людей необходимо учесть нагрузки от перегородок. Поскольку мы проектируем современное здание со свободной планировкой и заранее не знаем расположение перегородок (нам известно лишь то, что они будут кирпичными толщиной 120 мм при высоте этажа 3,3 м), принимаем эквивалентную равномерно распределенную нагрузку с нормативным значением 0,5 кН/м2. С учетом коэффициента γн = 1,0 окончательное значение составит:
р2 = 0,5*γн = 0,5*1,9 =0,5 кН/м2.
При соответствующем обосновании в случае необходимости нормативная нагрузка от перегородок может приниматься и большего значения.
Коэффициент надежности по нагрузке γt = 1,3, поскольку перегородки выполняются на строительной площадке. Тогда расчетное значение нагрузки от перегородок составит:
р2р = р2*γt = 0,5*1,3 = 0,65 кН/м2.
(Для выбора плотности основных строй материалов см. статьи:
- Классификация нагрузок по продолжительности действия.
- Плотность стройматериалов по данным СНиП II-3-79
Для удобства все найденные значения запишем в таблицу сбора нагрузок (табл.1).
Таблица 1
Сбор нагрузок на плиту перекрытия
Вид нагрузки | Норм. кН/м2 | Коэф. γt | Расч.кН/м2 |
Постоянная нагрузка | |||
1. Ж.б. плита | 5,0 | 1,1 | 5,5 |
2. Пенополистирол | 0,01 | 1,3 | 0,013 |
3. Цем — песч. стяжка | 0,72 | 1,3 | 0,94 |
4. Плита ДВП | 0,04 | 1,1 | 0,044 |
5. Паркетная доска | 0,12 | 1,1 | 0,132 |
Всего: | 5,89 | 6,63 | |
Временная нагрузка | |||
1. Полезная нагрузка | |||
кратковременная ν1 | 1,5 | 1,3 | 1,95 |
длительная р1 | 0,53 | 1,3 | 0,69 |
2.Перегородки (длительная) р2 | 0,5 | 1,3 | 0,65 |
В нашем примере сейсмические, взрывные и т.п. воздействия (т.е. особые нагрузки) отсутствуют. Следовательно, будем рассматривать основные сочетания нагрузок.
I сочетание: постоянная нагрузка (собственный вес перекрытия и пола) + полезная (кратковременная).
При учете основных сочетаний, включающих постоянные нагрузки и одну временную нагрузку (длительную или кратковременную), коэффициенты Ψl, Ψt вводить не следует.
Тогда qI = q + ν1 = 5,89 + 1,5 = 7,39, кН/м2;
qIр = qp + ν1p = 6,63 + 1,95 = 8,58 кН/м2.
II вариант: постоянная нагрузка (собственный вес перекрытия и пола) + полезная (кратковременная) + нагрузка от перегородок (длительная).
Для основных сочетаний коэффициент сочетаний длительных нагрузок Ψl принимается: для первой (по степени влияния) длительной нагрузки — 1,0, для остальных — 0,95. Коэффициент Ψt для кратковременных нагрузок принимается: для первой (по степени влияния) кратковременной нагрузки — 1,0, для второй — 0,9, для остальных — 0,7.
Поскольку во II сочетании присутствует одна кратковременная и одна длительная нагрузка, то коэффициенты Ψl и Ψt = 1,0.
qIIр = qр + ν1р + p2р = 6,63+ 1,95 + 0,65 =9,23 кН/м2.
Совершенно очевидно, что II основное сочетание дает наибольшие значения нормативной и расчетной нагрузки.
Смотрите также:
Примеры:
Сбор нагрузок на перекрытие и балку
Сбор нагрузок производится всегда, когда нужно рассчитать несущую способность строительных конструкций. В частности, для перекрытий нагрузки собираются с целью определения толщины, шага и сечения арматуры железобетонного перекрытия, сечения и шага балок деревянного перекрытия, вида, шага и номера металлических балок (швеллер, двутавр и т.д.).
Сбор нагрузок производится с учетом требований СНиПа 2.01.07-85* (или по новому СП 20.13330.2011) «Актуализированная редакция» [1].
Данное мероприятие для перекрытия жилого дома включает в себя следующую последовательность:
1. Определение веса «пирога» перекрытия.
В «пирог» входят: ограждающие конструкции (например, монолитная железобетонная плита), теплоизоляционные и пароизоляционные материалы, выравнивающие материалы (например, стяжка или наливной пол), покрытие пола (линолеум, паркет, ламинат и т.д.).
Для определения веса того или иного слоя нужно знать плотность материала и его толщину.
2. Определение временной нагрузки.
К временным нагрузкам относятся мебель, техника, люди, животные, т. е. все то, что способно двигаться или переставляться местами. Их нормативные значения можно найти в таблице 8.3. [1]. Например, для квартир жилых домов нормативное значение равномерно распределенной нагрузки составляет 150 кг/м2.
3. Определение расчетной нагрузки.
Делается это с помощью коэффициентов надежности по нагрузки, которые можно найти в том же СНиПе. Для веса строительных конструкций и грунтов — это таблица 7.1 [1]. Что касается равномерно распределенной временной нагрузки и нагрузки от материалов, то здесь коэффициент надежности берется в зависимости от нормативного значения по пункту 8.2.2 [1]. Так, по нему, если вес составляет менее 200 кг/м2 коэффициент равен 1,3, если равен или более 200 кг/м2 — 1,2. Также данный пункт регламентирует значение нормативной нагрузки от веса перегородок, которая должна равняться не менее 50 кг/м2.
4. Сложение.
В конце необходимо сложить все расчетные и нормативные значения с целью определения общего значения для дальнейшего использования их в расчете на несущую способность.
В случае сбора нагрузок на балку ситуация та же. Только после получения конечных значений их нужно будет преобразовать из кг/м2 в кг/м. Делается это с помощью умножения общей расчетной или нормативной нагрузки на величину пролета.
Для того, чтобы материал был более понятен, рассмотрим два примера. В первом примере соберем нагрузки на перекрытие, а во втором на балку.
А после рассмотрения примеров с целью экономии времени можно воспользоваться специальным калькулятором. Он позволяет в режиме онлайн собрать нагрузки на перекрытие, стены и балки перекрытия.
Пример 1. Сбор нагрузок на междуэтажное перекрытие жилого дома.Имеется перекрытие, состоящее из следующих слоев:
1. Многопустотная железобетонная плита — 220 мм.
2. Цементно-песчаная стяжка (ρ=1800 кг/м3) — 30 мм.
3. Утепленный линолеум.
На перекрытие опирается одна кирпичная перегородка.
Определим нагрузки, действующие на 1 м2 грузовой площади (кг/м2) перекрытия. Для наглядности весь процесс сбора нагрузок произведем в таблице.
Вид нагрузки | Норм. |
Коэф. | Расч. |
Постоянные нагрузки: — железобетонная плита перекрытия (многопустотная) толщиной 220 мм — цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм — утепленный линолеум — перегородки Временные нагрузки: — жилые помещения |
290 кг/м2
54 кг/м2 5 кг/м2 50 кг/м2
150 кг/м2 |
1,1
1,3 1,3 1,1
1,3 |
319 кг/м2
70,2 кг/м2 6,5 кг/м2 55 кг/м2 195 кг/м2 |
ИТОГО | 549 кг/м2 | 645,7 кг/м2 |
Имеется перекрытие, которое опирается на деревянные балки, состоящее из следующих слоев:
1. Доска из сосны (ρ=520 кг/м3) — 40 мм.
2. Линолеум.
Шаг деревянных балок — 600 мм.
Также на перекрытие опирается перегородка из гипсокартонных листов.
Определение нагрузок на балку производится в два этапа:
1 этап — составляем таблицу, как описано выше, т.е. определяем нагрузки, действующие на 1 м2.
2 этап — преобразовываем нагрузки из 1кг/м2 в 1 кг/п.м.
Вид нагрузки | Норм. |
Коэф. | Расч. |
Постоянные нагрузки: — дощатый пол из сосны (ρ=520 кг/м3) толщиной 40 мм — линолеум — перегородки Временные нагрузки: — жилые помещения |
20,8 кг/м2
50 кг/м2
150 кг/м2 |
1,1
1,1
1,3 |
22,9 кг/м2
55 кг/м2
195 кг/м2 |
ИТОГО | 225,8 кг/м2 | 279,4 кг/м2 |
Определение нормативной нагрузки на балку:
qнорм = 225,8кг/м2*(0,3м+0,3м) = 135,48 кг/м.
Определение расчетной нагрузки на балку:
qрасч = 279,4кг/м2*(0,3м+0,3м) = 167,64 кг/м.
Поделиться статьей с друзьями:
Добавить комментарий
Понимание передачи нагрузок от плиты к балкам
🕑 Время чтения: 1 минута
Передача нагрузок от плиты к балкам контролируется геометрическими размерами плиты и направлением арматуры. Нагрузка на плиту, включая собственный вес, постоянную нагрузку и постоянную нагрузку, распределяется по балкам по их сторонам.
Нагрузки на плиты выражаются в весе на единицу площади, тогда как нагрузки на балки выражаются в единицах веса на длину балки.
Если плита имеет обычные размеры, передача нагрузки может быть выполнена легко и быстро. Однако, если он имеет неправильную форму, рекомендуется использовать подходящие программы, такие как SAP2000, SAFE и ETABS.
Contents:
- One-way Slab
- Two-way Slab
- Example
- Solution:
- Complex-geometry Slab
- FAQs
The load of the односторонняя плита, имеющая прямоугольную форму, делится поровну между соседними балками. Внутренняя балка воспринимает половину общей нагрузки плиты с каждой стороны.
Рисунок-1: Передача нагрузок от прямоугольной односторонней плиты к балкам с двух сторон плитыЕсли плита поддерживается только с двух сторон или поддерживается со всех четырех сторон, но отношение более длинной стороны к более короткой стороне больше, чем 2, это называется односторонней плитой, см. рис. 2.
Рис. 2: Односторонняя плита к балкам Двухсторонняя плитаНагрузки на двустороннюю плиту передаются на все балки со всех сторон. Таким образом, каждая балка несет определенную нагрузку от плиты. Плиту обычно делят на трапециевидные и треугольные области, проводя линии от каждого угла прямоугольника под углом 45 градусов.
Рисунок-3: Передача нагрузок от прямоугольной двухсторонней плиты к четырем балкамРисунок-4: Для квадратной двусторонней плиты нагрузка, передаваемая на четыре балки, равна треугольной площади) на единицу нагрузки на плиту, деленную на длину балки. Для внутренней балки аналогичным образом оценивается доля веса плиты другой стороны и прибавляется к предыдущей, т. е. нагрузка плиты с другой стороны балки. Таким образом, межкомнатные балки воспринимают нагрузки с обеих сторон. Рисунок-5: Передача нагрузок от двусторонних плит на внутренние балкиПример
Плита на рисунке ниже имеет толщину 150 мм и помимо собственного веса выдерживает нагрузку 0,85 кН/м 2 перегородка и динамическая нагрузка 2,4 кН/м 2 . Перенесите нагрузку плиты на балки со всех четырех сторон.
Рис. 6: Перенос двусторонней плиты на балкиРешение:
Собственный вес плиты = толщина плиты * удельный вес бетона
= 0,15 * 24 / м 3,6 кН/м0047 2
Суммарная статическая нагрузка на плиту = 3,6+0,85= 4,45 кН/м 2
Можно распределить рабочую нагрузку (нефакторизованную нагрузку) на балку или предельную распределенную нагрузку на плиту; используйте факторизованную нагрузку как для постоянной нагрузки, так и для временной нагрузки плиты в соответствии со спецификациями ACI 318-19.
В этом примере мы используем различные коэффициенты нагрузки, а затем используем комбинацию нагрузок для расчета предельной распределенной нагрузки на плиту. После этого на балки передается предельная распределенная нагрузка.
Предельная распределенная нагрузка (Wu)= 1,2*постоянная нагрузка+ 1,6*постоянная нагрузка
Предельная распределенная нагрузка (Wu)= 1,2*4,45+1,4*2,4= 8,7 кН/м 2
Нагрузка плиты на балку (4 m) = область треугольника*Wu
= 4*8,7 = 34,8 кН
Разнообразная распределенная нагрузка на плиту на луче (4 м) = 34,8/4 = 8,7 кН/м
Нагрузка на плиту на балку (4 м) = площадь трапеции*Wu
= 8*8,7=69.6 KN
Равномерная распределенная нагрузка плиты на балку (6 м) = 69,6 /6= 11,6 кН/м
Плита со сложной геометриейДля распределения нагрузки на плиту со сложной геометрия к балке. Для этой цели можно использовать такие компьютерные программы, как SAP200, SAFE и ETABS. Этот метод также может быть рассмотрен для плит с правильной геометрией.
Часто задаваемые вопросы
Как нагрузка передается от плиты к балкам?
В односторонней плите нагрузки передаются только в одном направлении, тогда как в двухсторонней плите нагрузки передаются в двух направлениях.
Каковы основные виды нагрузок на конструкции?
Типы нагрузок, действующих на конструкции зданий и других сооружений, можно в целом разделить на вертикальные нагрузки, горизонтальные нагрузки и продольные нагрузки. Вертикальные нагрузки состоят из постоянной нагрузки, динамической нагрузки и ударной нагрузки. К горизонтальным нагрузкам относятся ветровая нагрузка и сейсмическая нагрузка. Продольные нагрузки, т. е. тяговые и тормозные силы, учитываются в особых случаях проектирования мостов, козловых балок и т. д.
Как рассчитывается динамическая нагрузка на плиту?
Временная нагрузка на плиту определяется в зависимости от функции конструкции. Например, используйте 2,4 кН/м2 (50 фунтов на квадратный фут) для офисов в соответствии с таблицей 4-1 стандарта ASCE (ASCE/SEI 10-7).
Как рассчитать статическую нагрузку бетонных элементов?
Статическая нагрузка бетонного элемента рассчитывается путем умножения объема бетонного элемента на удельный вес бетона.
Какая нагрузка действует на здание?
Вынужденная нагрузка описывается как нагрузка, которая прикладывается к конструкции и не является постоянной в течение срока службы конструкции и может изменяться.
Подробнее
Как передаются напряжения от R.C. Колонны в фундамент?
Виды нагрузок на конструкции – Здания и другие сооружения
Плиты перекрытий | WBDG — Руководство по проектированию всего здания
Марка Постма, PE, Carl Walker, Inc.
Пересмотрено председателями советов по ограждению зданий при содействии Ричарда Келехера, AIA, CSI, LEED AP и Кеннета Роко, AIA The Facade Group , ООО
Также помогал Джадд Петерсон из Judd Allen Group
Введение
На этой странице
- Введение
- Описание
- Основы
- Приложения
- Детали
- Возникающие проблемы
- Соответствующие нормы и стандарты
- Дополнительные ресурсы
Цокольный этаж в здании может быть просто монолитной бетонной плитой на уровне грунта с ограниченными конструктивными соображениями для структурной поддержки или функций контроля окружающей среды. Цокольный этаж также может состоять из глинобитной или конструкционной фундаментной плиты с гидроизоляционной и изнашиваемой плитой, а общая система предназначена для восприятия структурных нагрузок гидростатического давления и поддержания контролируемой среды. Плиты перекрытий часто являются источником утечки в здание, основной причиной которой является растрескивание плит из обычных бетонных материалов. Вопросы контроля выбросов почвенных газов, таких как радон, также могут иметь важное значение.
Поскольку штраф за ремонт фундамента или плиты из-за нарушения гидроизоляции либо чрезвычайно дорог (до 7 раз превышает первоначальную стоимость гидроизоляции), либо практически невозможен после завершения строительства, лучше ошибиться осторожность при первоначальной установке. Подойдите к критическим областям, которые позже будут похоронены при строительстве, с крайним консерватизмом. Рекомендуется повысить качество подхода на один уровень больше, чем предлагается в существующих отчетах о состоянии, то есть использовать материал более высокого качества и детализировать его с дополнительным усилением и мерами предосторожности с ремнями и подтяжками, применяемыми на каждом уровне предполагаемого риска.
Описание
В этом разделе дается конкретное описание материалов и систем, используемых в системах перекрытий. Описания и рекомендации приведены в следующих разделах:
- Финишные напольные покрытия
- Бетонная плита пола
- Совокупные дренажные слои
- Замедлитель парообразования под плитой
- Гидроизоляционная мембрана
- Защитная плата
- Сборные дренажные слои
Финишные напольные покрытия
В зависимости от внутреннего пространства финишным напольным покрытием может быть сама открытая бетонная поверхность или различные напольные покрытия, такие как дерево, виниловые полы или ковер. Многие клеи, используемые при укладке напольных покрытий, чувствительны к влаге, что требует использования водонепроницаемой системы или длительного времени высыхания, если используется полиизолятор.
Бетонная плита перекрытия
В типичных офисных помещениях сама бетонная плита перекрытия состоит из бетона толщиной от 4 до 6 дюймов, армированного одним слоем сварной проволочной сетки на средней глубине, за исключением случаев ниже уровня грунтовых вод, когда гидростатические восходящее давление, требующее более прочной конструкции.
Замедлители парообразования под плитой или гидроизоляционная мембрана
Замедлители парообразования под плитой могут включать полиэтиленовые листы, полиолефиновые листы, связанный полиэтилен высокой плотности и композитные листы из асфальта/полиэтилена или полимерно-битумные листы. Полиэтиленовые листы обычно имеют толщину 15 мил с проклеенными швами, краями и отверстиями. Пароизоляторы следует выбирать в соответствии с ASTM E 1745 и E 1993, а устанавливать и проверять в соответствии с ASTM E 1643. гидростатические давления. Глиняная плита может быть использована для облегчения установки пароизоляционных мембран и гидроизоляционных мембран. Глиняные плиты обычно представляют собой неармированные бетонные плиты размером от 2 до 3 дюймов с затирочной поверхностью. Они обеспечивают плоскую поверхность для мембран, которые затем полностью поддерживаются и с меньшей вероятностью будут проколоты последующими строительными работами.
В качестве меры предосторожности всегда рекомендуется гидроизоляция шахты лифта независимо от состояния грунта.
Капиллярный разделительный слой
Капиллярный разделительный слой под плитами перекрытия обычно состоит из слоя гранулированного материала толщиной 6–8 дюймов (3/4 дюйма), зазоры которого градуированы для увеличения скорости дренажа. Гранулированный материал служит разрывом капилляров и местом для «хранения» воды до тех пор, пока она не впитается обратно в окружающую почву.
Основы
На рис. 3 представлена общая схема, характеризующая четыре функции, т. е. опора конструкции, контроль окружающей среды, отделка и распределение, поскольку они относятся к элементу ограждения ниже уровня земли из плит перекрытий.
Рис. 3. Схема плиты перекрытия
Четыре категории функций, т. е. опора конструкции, контроль окружающей среды, отделка и распределение, расширены в общих чертах для систем плит перекрытия.
Функции несущей конструкции —Плита перекрытия ограждения здания ниже уровня земли должна быть рассчитана на то, чтобы выдерживать вертикальные нагрузки, направленные вниз, а также любые нагрузки грунта или гидростатического давления, направленные вверх.
Вертикальные гравитационные нагрузки, направленные вниз, возникают из-за собственного веса плиты перекрытия и любых временных нагрузок от пребывания в помещении. Во многих более глубоких конструкциях плита перекрытия также может быть матовой фундаментной плитой, несущей значительные нагрузки на колонны и стены здания.
Плиты перекрытий также могут выдерживать восходящие нагрузки грунта или гидростатического давления. Восходящее давление грунта может быть приложено к плите перекрытия в ситуациях, когда она действует как матовое основание, а точечные нагрузки здания на фундамент приводят к восходящему давлению на плиту перекрытия.
В таких местах, как подвалы и незанятые подвальные помещения, опорный элемент конструкции с использованием бетонной плиты может не понадобиться. В этих областях, возможно, по-прежнему необходимо решать функции экологического контроля.
Функции контроля окружающей среды — Внешняя среда, которой подвергается плита перекрытия, включает нагрузки контроля окружающей среды, такие как тепловая нагрузка, влажность, насекомые и почвенный газ. Внутренняя среда, которой подвергается плита перекрытия, включает нагрузки контроля окружающей среды, такие как тепловая нагрузка и влажность. Производительность системы плит перекрытия зависит от ее способности контролировать, регулировать и/или смягчать эти климатические нагрузки на внутреннюю часть плиты перекрытия до желаемого уровня.
Как и в случае с системами фундаментных стен, контроль влажности, вероятно, является наиболее важной функцией контроля окружающей среды. Контроль влажности осуществляется в дренажно-барьерном подходе к проектированию. Для случаев с гидростатическим давлением от уровня грунтовых вод первый этап контроля влажности может быть выполнен с помощью насосных и дренажных систем для искусственного снижения естественного уровня грунтовых вод. Второй компонент системы контроля влажности включает слой капиллярного разрыва из гранулированного заполнителя под плитой перекрытия, чтобы создать зону для накопления и рассеивания влаги или ее откачивания или слива в выходную дренажную систему или систему отстойника. Во многих случаях плит перекрытий с низким уровнем грунтовых вод или в сухих условиях слой капиллярного разрыва гранулированного заполнителя (с выходным дренажем, если требуется) будет контролировать большую часть воды. Возможно, нет необходимости в активной насосной системе.
Ключевой вопрос, который остается, заключается в том, следует ли предусмотреть водонепроницаемую мембрану или замедлитель пара под плитой пола. Замедлитель пара препятствует миграции пара в отсутствие гидростатического давления. Гидроизоляция противостоит как миграции пара, так и гидростатическому давлению. Как правило, замедлитель парообразования может быть устранен только на участках с хорошим дренажем, где уровень грунтовых вод находится значительно ниже поверхности плиты перекрытия, а использование отделки пола не влияет на миграцию пара. Однако большинство строительных норм и правил требуют установки пароизолятора между гранулированным дренажем и плитой перекрытия. Дополнительным преимуществом этого слоя является минимизация усадочных напряжений и образование трещин в плите перекрытия из-за снижения сопротивления усадке.
Гидроизоляционные мембраны необходимы в ситуациях с гидростатическим давлением или во внутренних помещениях, чувствительных к влаге. Гидроизоляционные мембраны обычно наносят на глиняную плиту, отлитую на капиллярном разрыве гранулированного заполнителя, или на уплотненную землю. Защита гидроизоляционной мембраны от повреждений во время строительства имеет решающее значение. Защита обычно обеспечивается нанесением защитной плиты непосредственно на гидроизоляционную мембрану вскоре после установки мембраны. Детализация гидроизоляции на всех концах и проходках имеет решающее значение. Гидроизоляция верхней стороны плит перекрытия не рекомендуется ни при каких обстоятельствах.
Другие условия нагрузки окружающей среды могут включать почвенный газ, такой как радон. Миграцию почвенного газа во внутреннюю среду можно контролировать за счет надлежащего использования и детализации пароизоляции полиэтиленового типа или гидроизоляционной мембраны. Надлежащие нахлесты, защита во время строительства и внимание к деталям на всех концах, краях и проходах имеют решающее значение для полного контроля миграции почвенного газа.
Функции отделки — Единственная отделка напольных систем — это внутреннее пространство. Эта отделка зависит от внутреннего использования, будь то контролируемая офисная среда или неконтролируемая парковка. Типичные системы отделки могут включать ковер, плитку или приклеенный пол. Надлежащий контроль нагрузки миграции паров имеет решающее значение при укладке плитки или наклеенных полов, где требуется надлежащая адгезия. В некоторых случаях, таких как внутренняя парковка или складское помещение, внутренняя отделка представляет собой просто внутреннюю поверхность бетонной плиты пола. В других случаях, например, в подвалах, отделкой может быть пароизоляция.
Функции распределения — Плита перекрытия может содержать системы распределения, такие как электрические фидеры, электронные кабелепроводы, механические трубопроводы или системы отопления.
Применение
Существует два основных типа деталей цокольного этажа, различающихся требованиями внутреннего пространства и внешней среды:
- Плита цокольного этажа — типичная система
- Плита цоколя — водонепроницаемая система
Плита фундамента — типичная система
Типичная плита базового перекрытия, критерии проектирования которой включают контроль проникновения водяного пара во внутреннее пространство, но не касается гидроизоляции базового перекрытия из-за нагрузок гидростатического давления, может называться несовершенной барьерной системой. Компоненты системы включают в себя хорошо уплотненную, но хорошо дренирующую капиллярную систему разрыва гранулированного заполнителя, расположенную непосредственно на не выкопанном, ненарушенном грунте. Система капиллярного разрыва гранулированного заполнителя обеспечивает область сбора влаги для накопления и рассеивания, а также надежную опору для нагрузки плит. Замедлитель парообразования (см. Описание выше) помещается между гранулированной дренажной системой и бетонной плитой, чтобы свести к минимуму проникновение паров влаги или почвенных газов в занимаемое пространство. Бетонная плита перекрытия сама по себе обеспечивает структурную опору для нагрузок на пол и подходящую опору для напольных покрытий и отделки.
Плита цокольного этажа — водонепроницаемая система
Типичная плита цокольного этажа, критерии проектирования которой включают контроль миграции влаги и проникновения водяного пара во внутреннее пространство, может называться водонепроницаемой системой. Компоненты системы включают в себя хорошо уплотненную, но хорошо дренирующую капиллярную систему разрыва гранулированного заполнителя, расположенную непосредственно на не выкопанном, ненарушенном грунте. Система капиллярного разрыва гранулированного заполнителя обеспечивает область сбора влаги для накопления и рассеивания, а также надежную опору для нагрузки плит. Чтобы обеспечить прочный базовый материал, на который наносится гидроизоляционная мембрана, предусмотрена глиняная плита или слой уплотненной земли. В некоторых случаях при значительном гидростатическом давлении или для компенсации строительных нагрузок вместо глинобитной плиты используется матовая фундаментная плита. Затем гидроизоляция наносится непосредственно на фундаментную плиту мата и защищается защитной плитой. В этом случае поверх защищаемой гидроизоляционной системы заливается изнашиваемая плита перекрытия.
Проемы и кромки ниже уровня земли
Общий элемент, который является общим для всех зданий, но часто не полностью детализируется или не учитывается при проектировании, — это проходы и кромки. Эти проходы представляют собой любые отверстия в плитах перекрытия, которые обеспечивают проход для проникновения влаги в здание. Проходки для канализационных труб, проходки для ввода водопровода, сливные лотки в плите пола или рукава для электричества, газа или связи — все это обычные проходки, обычно со своей собственной конструкцией или подробными характеристиками. Эти характеристики, однако, оставляют желать лучшего в отношении герметизации и гидроизоляции. Проходки также могут стать довольно экзотическими, например, паровые проходы или другие элементы, требующие специальной обработки. Края плит также необходимо сделать паронепроницаемыми/водонепроницаемыми.
Когда поднимающиеся уровни грунтовых вод часто соприкасаются с нижней частью плиты на уклоне, может потребоваться рассмотреть возможность установки системы дренажных плит либо из параллельных перфорированных дренажных труб, либо из сетки таких труб для отвода поднимающейся воды и поддержания уровень грунтовых вод ниже плиты на уровне грунта путем откачки отстойника дренажной плитки от здания.
Изолирующие и компенсационные швы
Изолирующие швы компенсируют незначительные смещения между структурными элементами и/или приспособлениями, которые проникают сквозь них или вокруг них. Как первичное, так и резервное уплотнение эффективно уменьшают утечку. Поднятие профиля плиты также работает хорошо. Как и в случае с деформационными швами, также очень эффективна детализация бетонных уклонов или уклонов в изоляционных швах для предотвращения прямого накопления любой переходной влаги. В процессе проектирования следует учитывать те же правила, касающиеся материала дренажной решетки или продолжения пути потока от стыков до водосборных бассейнов.
Общее основное правило, применимое к обеспечению отсутствия утечек в системах герметизации швов, заключается в том, чтобы быть уверенным в том, что системы отвода влаги или дренажа правильно установлены и подключены к слоям основания. Устранение возможности образования напора воды на всех системах стыкового уплотнения считается основной функцией систем субдренажа.
Механические напольные стоки и насосные системы
Напольные трапы в плитах перекрытия требуют соответствующей конструкции для обратных клапанов или специальной обработки для пропускной способности в зависимости от использования конструкции. Там, где установлены дренажные насосы, необходимы специальные обратные клапаны или обратные клапаны для предотвращения обратного потока. Применение или установка насосных агрегатов и некоторых отстойников требует надлежащей координации и эффективной обработки системы сброса, чтобы избежать утечек через механические проникновения.
Сведения
Следующие сведения можно загрузить в формате DWG или просмотреть в Интернете в формате DWF™ (Design Web Format™) или Adobe Acrobat PDF, щелкнув соответствующий формат справа от названия чертежа.
Детали, связанные с этим разделом BEDG по WBDG, были разработаны комитетом и предназначены исключительно для иллюстрации общих концепций проектирования и строительства. Надлежащее использование и применение концепций, проиллюстрированных в этих деталях, будет варьироваться в зависимости от соображений производительности и условий окружающей среды, уникальных для каждого проекта, и, следовательно, не отражает окончательное мнение или рекомендацию автора каждого раздела или членов комитета, ответственных за разработку. ВБДГ.
Детали, графики и сопутствующая информация, показанные в деталях, предназначены только для иллюстрации основных концепций и принципов проектирования и должны рассматриваться совместно с соответствующими описательными разделами Руководства по проектированию всего здания (WBDG). Содержащаяся в нем информация не предназначена для фактического строительства и подлежит пересмотру в зависимости от изменений и/или уточнений местных, государственных и национальных строительных норм, новых технологий ограждающих конструкций, а также достижений в исследованиях и понимании механизмов разрушения ограждений зданий.
Подземная плита — водонепроницаемая система (деталь 1.3.2) DWG | DWF | PDF
Возникающие проблемы
Информацию о возникающих проблемах см. в разделе «Общий обзор».
Соответствующие нормы и стандарты
Стандарты
Существует большое количество стандартов, касающихся кровельных систем. ASTM разработала большинство из них. Стандарты ASTM обычно относятся к методам испытаний (лабораторным и полевым) и стандартам на продукцию. Тем не менее, есть несколько руководств по дизайну и применению:
- ASTM E 1745 Стандартные технические условия для пластиковых замедлителей водяного пара, используемых в контакте с почвой или гранулированным наполнителем под бетонными плитами
- ASTM E 1993 Стандартные технические условия для битумных замедлителей водяного пара, используемых в контакте с почвой или гранулированной засыпкой под бетонными плитами
- ASTM E 1643 Стандартная практика выбора, проектирования, установки и проверки замедлителей водяного пара, используемых в контакте с землей или гранулированной засыпкой под бетонными плитами
Дополнительные ресурсы
WBDG
Продукты и системы
См. соответствующие разделы в соответствующих спецификациях руководств: Спецификации Unified Facility Guide Specifications (UFGS), VA Guide Specifications, Federal Guide for Green Construction Specifications, MasterSpec®
Publications
Для ресурсов включая тексты, руководства и веб-страницы, см.