Сложение и вычитание целых чисел
В данном уроке мы изýчим сложение и вычитание целых чисел.
Напомним, что целые числа — это все положительные и отрицательные числа, а также число 0. Например, следующие числа являются целыми:
−3, −2, −1, 0, 1, 2, 3
Положительные числа легко складываются и вычитаются, умножаются и делятся. К сожалению, этого нельзя сказать об отрицательных числах, которые смущают многих новичков своими минусами перед каждой цифрой.
Примеры сложения и вычитания целых чисел
Первое чему следует научиться это складывать и вычитать целые числа с помощью координатной прямой. Совсем необязательно рисовать координатную прямую. Достаточно воображать её в своих мыслях и видеть, где располагаются отрицательные числа и где положительные.
Рассмотрим следующее простейшее выражение
1 + 3
Значение данного выражения равно 4
1 + 3 = 4
Этот пример можно понять с помощью координатной прямой.
Знак плюса в выражении 1 + 3 указывает нам, что нужно двигаться вправо в сторону увеличения чисел.
Пример 2. Найдём значение выражения 1 − 3
Значение данного выражения равно −2
1 − 3 = −2
Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −2. На рисунке можно увидеть, как это происходит:
Знак минуса в выражении 1 − 3 указывает нам, что нужно двигаться влево в сторону уменьшения чисел.
Вообще, если осуществляется сложение, то нужно двигаться вправо в сторону увеличения. Если же осуществляется вычитание, то нужно двигаться влево в сторону уменьшения.
Пример 3. Найти значение выражения −2 + 4
Значение данного выражения равно 2
−2 + 4 = 2
Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на четыре шага. В результате мы окажемся в точке, где располагается положительное число 2
Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на четыре шага, и оказались в точке, где располагается положительное число 2.
Пример 4. Найти значение выражения −1 − 3
Значение данного выражения равно −4
−1 − 3 = −4
Этот пример опять же можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −4
Видно, что мы сдвинулись из точки где располагается отрицательное число −1 в левую сторону на три шага, и оказались в точке, где располагается отрицательное число −4.
Пример 5. Найти значение выражения −2 + 2
Значение данного выражения равно 0
−2 + 2 = 0
Этот пример можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на два шага. В результате мы окажемся в точке, где располагается число 0
Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на два шага и оказались в точке, где располагается число 0.
Правила сложения и вычитания целых чисел
Чтобы сложить или вычесть целые числа, вовсе необязательно каждый раз воображать координатную прямую, и тем более рисовать её. Можно воспользоваться готовыми правилами.
Применяя правила, нужно обращать внимания на знак операции и знаки чисел, которые нужно сложить или вычесть. От этого будет зависеть какое правило применять.
Пример 1. Найти значение выражения −2 + 5
Здесь к отрицательному числу прибавляется положительное число. Другими словами, осуществляется сложение чисел с разными знаками, потому что −2 это отрицательное число, а 5 — положительное. Для таких случаев применяется следующее правило:
Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.
Итак, посмотрим какой модуль больше:
Модуль числа 5 больше, чем модуль числа −2. Правило требует из большего модуля вычесть меньший. Поэтому мы должны из 5 вычесть 2, и перед полученным ответом поставить знак того числа, модуль которого больше.
У числа 5 модуль больше, поэтому знак этого числа и будет в ответе. То есть ответ будет положительным:
−2 + 5 = 5 − 2 = 3
Обычно записывают покороче: −2 + 5 = 3
Пример 2. Найти значение выражения 3 + (−2)
Здесь как и в предыдущем примере, осуществляется сложение чисел с разными знаками. 3 это положительное число, а −2 — отрицательное. Обратите внимание, что число −2 заключено в скобки, чтобы сделать выражение понятнее. Это выражение намного проще для восприятия, чем выражение 3 + −2.
Итак, применим правило сложения чисел с разными знаками. Как и в прошлом примере, из большего модуля вычитаем меньший модуль и перед ответом ставим знак того числа, модуль которого больше:
3 + (−2) = |3| − |−2| = 3 − 2 = 1
Модуль числа 3 больше, чем модуль числа −2, поэтому мы из 3 вычли 2, и перед полученным ответом поставили знак того числа, модуль которого больше. У числа 3 модуль больше, поэтому знак этого числа и поставлен в ответе. То есть ответ положительный.
Обычно записывают покороче 3 + (−2) = 1
Пример 3. Найти значение выражения 3 − 7
В этом выражении из меньшего числа вычитается большее. Для такого случая применяется следующее правило:
Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее, и перед полученным ответом поставить минус.
3 − 7 = 7 − 3 = −4
В этом выражении есть небольшая загвоздка. Вспомним, что знак равенства (=) ставится между величинами и выражениями тогда, когда они равны между собой.
Значение выражения 3 − 7 как мы узнали равно −4. Это означает, что любые преобразования которые мы будем совершать в данном выражении, должны быть равны −4
Но мы видим, что на втором этапе располагается выражение 7 − 3, которое не равно −4.
Чтобы исправить эту ситуацию, выражение 7 − 3 нужно взять в скобки и перед этой скобкой поставить минус:
3 − 7 = − (7 − 3) = − (4) = −4
В этом случае равенство будет соблюдаться на каждом этапе:
После того, как выражение вычислено, скобки можно убрать, что мы и сделали.
Поэтому, чтобы быть более точным, решение должно выглядеть так:
3 − 7 = − (7 − 3) = − (4) = − 4
Данное правило можно записать с помощью переменных. Выглядеть оно будет следующим образом:
a − b = − (b − a)
Большое количество скобок и знаков операций могут усложнять решение, казалось бы совсем простой задачи, поэтому целесообразнее научиться записывать такие примеры коротко, например 3 − 7 = − 4.
На самом деле сложение и вычитание целых чисел сводится только к сложению. Это означает, что если требуется осуществить вычитание чисел, эту операцию можно заменить сложением.
Итак, знакомимся с новым правилом:
Вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.
Например, рассмотрим простейшее выражение 5 − 3. На начальных этапах изучения математики мы ставили знак равенства и записывали ответ:
5 − 3 = 2
Но сейчас мы прогрессируем в изучении, поэтому надо приспосабливаться к новым правилам. Новое правило говорит, что вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.
На примере выражения 5 − 3 попробуем понять это правило. Уменьшаемое в данном выражении это 5, а вычитаемое это 3. Правило говорит, что для того, чтобы из 5 вычесть 3 , нужно к 5 прибавить такое число, которое будет противоположно 3.
5 + (−3)
А как находить значения для таких выражений мы уже знаем. Это сложение чисел с разными знаками, которое мы рассмотрели ранее. Чтобы сложить числа с разными знаками, мы из большего модуля вычитаем меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше:
5 + (−3) = |5| − |−3| = 5 − 3 = 2
Модуль числа 5 больше, чем модуль числа −3. Поэтому мы из 5 вычли 3 и получили 2. У числа 5 модуль больше, поэтому знак этого числа и поставили в ответе. То есть ответ положителен.
Поначалу быстро заменять вычитание сложением удаётся не всем. Это связано с тем, что положительные числа записываются без знака плюс.
Например, в выражении 3 − 1 знак минуса, указывающий на вычитание, является знаком операции и не относится к единице. Единица в данном случае является положительным числом, и у неё есть свой знак плюса, но мы его не видим, поскольку плюс перед положительными числами не записывают.
А стало быть, для наглядности данное выражение можно записать следующим образом:
(+3) − (+1)
Для удобства числа со своим знаками заключают в скобки. В таком случае заменить вычитание сложением намного проще.
В выражении (+3) − (+1) вычитаемое это число (+1), а противоположное ему число это (−1).
Заменим вычитание сложением и вместо вычитаемого (+1) записываем противоположное ему число (−1)
(+3) − (+1) = (+3) + (−1)
Дальнейшее вычисление не составит особого труда.
(+3) − (+1) = (+3) + (−1) = |3| − |−1| = 3 − 1 = 2
На первый взгляд покажется, какой смысл в этих лишних телодвижениях, если можно старым добрым методом поставить знак равенства и сразу записать ответ 2. На самом деле это правило ещё не раз нас выручит.
Решим предыдущий пример 3 − 7, используя правило вычитания. Сначала приведём выражение к понятному виду, расставив каждому числу свои знаки.
У тройки знак плюса, поскольку она является положительным числом. Минус, указывающий на вычитание не относится к семёрке. У семёрки знак плюса, поскольку она является положительным числом:
(+3) − (+7)
Заменим вычитание сложением:
(+3) − (+7) = (+3) + (−7)
Дальнейшее вычисление не составляет труда:
(+3) − (−7) = (+3) + (-7) = −(|−7| − |+3|) = −(7 − 3) = −(4) = −4
Пример 7. Найти значение выражения −4 − 5
Приведём выражение к понятному виду:
(−4) − (+5)
Перед нами снова операция вычитания. Эту операцию нужно заменить сложением. К уменьшаемому (−4) прибавим число, противоположное вычитаемому (+5). Противоположное число для вычитаемого (+5) это число (−5).
(−4) − (+5) = (−4) + (−5)
Мы пришли к ситуации, где нужно сложить отрицательные числа. Для таких случаев применяется следующее правило:
Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.
Итак, сложим модули чисел, как от нас требует правило, и поставим перед полученным ответом минус:
(−4) − (+5) = (−4) + (−5) = |−4| + |−5| = 4 + 5 = −9
Запись с модулями необходимо заключить в скобки и перед этими скобками поставить минус. Так мы обеспечим минус, который должен стоять перед ответом:
(−4) − (+5) = (−4) + (−5) = −(|−4| + |−5|) = −(4 + 5) = −(9) = −9
Решение для данного примера можно записать покороче:
−4 − 5 = −(4 + 5) = −9
или ещё короче:
−4 − 5 = −9
Пример 8. Найти значение выражения −3 − 5 − 7 − 9
Приведём выражение к понятному виду. Здесь все числа, кроме числа −3 являются положительными, поэтому у них будут знаки плюса:
(−3) − (+5) − (+7) − (+9)
Заменим вычитания сложениями. Все минусы, кроме минуса, стоящего перед тройкой, поменяются на плюсы, и все положительные числа поменяются на противоположные:
(−3) − (+5) − (+7) − (+9) = (−3) + (−5) + (−7) + (−9)
Теперь применим правило сложения отрицательных чисел. Чтобы сложить отрицательные числа, нужно сложить их модули и перед полученным ответом поставить минус:
(−3) − (+5) − (+7) − (+9) = (−3) + (−5) + (−7) + (−9) =
= −( |−3| + |−5| + |−7| + |−9| ) = −(3 + 5 + 7 + 9) = −(24) = −24
Решение данного примера можно записать покороче:
−3 − 5 − 7 − 9 = −(3 + 5 + 7 + 9) = −24
или ещё короче:
−3 − 5 − 7 − 9 = −24
Пример 9. Найти значение выражения −10 + 6 − 15 + 11 − 7
Приведём выражение к понятному виду:
(−10) + (+6) − (+15) + (+11) − (+7)
Здесь сразу две операции: сложение и вычитание. Сложение оставляем без изменения, а вычитание заменяем сложением:
(−10) + (+6) − (+15) + (+11) − (+7) = (−10) + (+6) + (−15) + (+11) + (−7)
Соблюдая порядок действий, выполним поочерёдно каждое действие, опираясь на ранее изученные правила. Записи с модулями можно пропустить:
Первое действие:
(−10) + (+6) = − (10 − 6) = − (4) = − 4
Второе действие:
(−4) + (−15) = − (4 + 15) = − (19) = − 19
Третье действие:
(−19) + (+11) = − (19 − 11) = − (8) = −8
Четвёртое действие:
(−8) + (−7) = − (8 + 7) = − (15) = − 15
Таким образом, значение выражения −10 + 6 − 15 + 11 − 7 равно −15
Примечание. Приводить выражение к понятному виду, заключая числа в скобки, вовсе необязательно. Когда происходит привыкание к отрицательным числам, это действие можно пропустить, поскольку оно отнимает время и может запутать.
Итак, для сложения и вычитания целых чисел необходимо запомнить следующие правила:
Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.
Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить минус.
Вычесть одно число из другого означает, прибавить к уменьшаемому такое число, которое противоположно вычитаемому.
Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.
Задания для самостоятельного решения
Задание 1. Найдите значение выражения:
−50 + 40
Решение
−50 + 40 = −10
Задание 2. Найдите значение выражения:
25 + (−5)
Решение
25 + (−5) = 20
Задание 3. Найдите значение выражения:
−20 + 60
Решение
−20 + 60 = 40
Задание 4. Найдите значение выражения:
20 + (−8)
Решение
20 + (−8) = 12
Задание 5. Найдите значение выражения:
30 + (−50)
Решение
30 + (−50) = −20
Задание 6. Найдите значение выражения:
27 + (−19)
Решение
27 + (−19) = 8
Задание 7. Найдите значение выражения:
−17 + (−12) + (−8)
Решение
Задание 8. Найдите значение выражения:
−6 − 4
Решение
−6 − 4 = −6 + (−4) = −10
Задание 9. Найдите значение выражения:
−6 − (−4)
Решение
−6 − (−4) = −6 + 4 = −2
Задание 10. Найдите значение выражения:
−15 − (−15)
Решение
−15 − (−15) = −15 + 15 = 0
Задание 11. Найдите значение выражения:
−11 − (−14)
Решение
−11 − (−14) = −11 + 14 = 3
Задание 12. Найдите значение выражения:
−3 + 2 − (−1)
Решение
Задание 13. Найдите значение выражения:
−5 − 6 − 3
Решение
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Навигация по записям
Вычитание отрицательного числа, правило, примеры
Данная статья посвящена разбору такой темы, как выполнение вычитания отрицательных чисел. Материал представляет собой полезную информацию о правиле вычитания отрицательных чисел и других определениях. Для закрепления сути параграфа мы детально разберем примеры типичных упражнений и задач.
Правило вычитания отрицательных чисел
Для того, чтобы разобраться в данной теме, следует узнать основные определения и понятия.
Определение 1Правило вычитания отрицательных чисел формулируется так: чтобы из числа a вычесть число b со знаком минус, необходимо к уменьшаемому a прибавить число −b, которое является противоположным вычитаемому b.
Если представить данное правило вычитания отрицательного числа b из произвольного числа a в буквенном виде, то оно будет выглядеть так: a−b=a+(−b).
Для того, чтобы использовать данное правило, необходимо доказать его справедливость.
Возьмем числа a и b. Чтобы вычесть из числа a число b, необходимо найти такое число с, которое в сумме с числом b будет равняться числу a. Другими словами, если найдено такое число c, что c+b=a, то разность a−b равна c.
Для того, чтобы доказать правило вычитания, необходимо показать, что сложение суммы a+(−b) с числом b – это есть число a. Необходимо вспомнить о свойствах действий с действительными числами. Так как в этом случае работает сочетательное свойство сложения, то равенство (a+(−b)) +b=a+((−b) +b) будет верным.
Так, как сумма чисел с противоположными знаками равняется нулю, то a+((−b) +b) =a+0, а сумма a+0= а (если к числу прибавить нуль, то оно не изменится). Равенство a−b=a+(−b)считается доказанным, значит, доказана и справедливость приведенного правила вычитания чисел со знаком минус.
Мы рассмотрели, как работает данное правило для действительных чисел a и b. Но оно также считается справедливым для любых рациональных и целых чисел a и b. Действия с рациональными и целыми числами также обладают свойствами, использованными при доказательстве. Следует добавить, что с помощью разобранного правила можно выполнять действия числа со знаком минус как из положительного числа, так и из отрицательного или нуля.
Рассмотрим разобранное правило на типичных примерах.
Примеры использования правила вычитания
Рассмотрим примеры с вычитанием чисел. Для начала рассмотрим простой пример, который поможет легко разобраться со всеми тонкостями процесса.
Пример 1Необходимо отнять от числа −13 число −7.
Возьмем число, противоположное вычитаемому −7. Это число 7. Тогда по правилу вычитания отрицательных чисел имеем (−13) −(−7) =(−13) +7. Выполняем сложение. Теперь получаем: (−13) +7=−(13−7) =−6.
Вот все решение: (−13) −(−7) =(−13) +7=−(13−7) =−6. (−13)−(−7)=−6. Вычитание дробных отрицательных чисел также можно выполнять. Необходимо перейти к обыкновенным дробям, смешанным числам или десятичным дробям. Выбор числа зависит от того, с каким вариантом вам удобнее работать.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать задание Пример 2Необходимо выполнить вычитание из числа 3,4 числа -2323.
Применяем описанное выше правило вычитания, получаем 3,4—2323=3,4+2323. Заменяем дробь на десятичное число: 3,4=3410=175=325 (как переводить дроби, можно посмотреть в материале по теме), получаем 3,4+2323=325+2323. Выполняем сложение. На этом вычитание отрицательного числа -2323 из числа 3,4 завершено.
Приведем краткую запись решения: 3,4—2323=27115.
Пример 3Необходимо выполнить вычитание числа −0,(326) от нуля.
По правилу вычитания, которое мы изучили выше, 0−(−0,(326))=0+0,(326)=0,(326).
Последний переход верен, так как здесь работает свойство сложения числа с нулем: 0−(−0,(326))=0,(326).
Из рассмотренных примеров видно, что при вычитании отрицательного числа может получиться как положительное, так и отрицательное число. Вычитание отрицательного числа может в результате дать и число 0, это происходит, когда уменьшаемое равно вычитаемому.
Пример 4Необходимо вычислить разность отрицательных чисел -5—5.
По правилу вычитания мы получаем -5—5=-5+5.
Мы пришли к сумме противоположных чисел, которая всегда равна нулю: -5—5=-5+5=0
Итак,-5—5=0.
В некоторых случаях результат вычитания необходимо записать в виде числового выражения. Это справедливо в тех случаях, когда уменьшаемое или вычитаемое является иррациональным числом. К примеру, вычитание из отрицательного числа −2 отрицательного числа –π проводится так: (−2)−(−π)=(−2)+π=π−2. Значение полученного выражения может быть вычислено максимально точно только в том случае, если это необходимо. Для подробной информации можно изучить другие разделы, связанные с данной темой.
Сложение и вычитание рациональных чисел
В данном уроке рассматривается сложение и вычитание рациональных чисел. Тема относится к категории сложных. Здесь необходимо использовать весь арсенал полученных ранее знаний.
Правила сложения и вычитания целых чисел справедливы и для рациональных чисел. Напомним, что рациональными называют числа, которые могут быть представлены в виде дроби , где a – это числитель дроби, b – знаменатель дроби. При этом, b не должно быть нулём.
В данном уроке дроби и смешанные числа мы всё чаще будем называть одним общим словосочетанием — рациональные числа.
Пример 1. Найти значение выражения:
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:
Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих дробей до их вычисления:
Модуль рационального числа больше, чем модуль рационального числа . Поэтому мы из вычли . Получили ответ . Затем сократив эту дробь на 2, получили окончательный ответ .
Некоторые примитивные действия, такие как заключение чисел в скобки и проставление модулей, можно пропустить. Данный пример вполне можно записать покороче:
Пример 2. Найти значение выражения:
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус, стоящий между рациональными числами и является знаком операции и не относится к дроби . У этой дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы запишем его для наглядности:
Заменим вычитание сложением. Напомним, что для этого нужно к уменьшаемому прибавить число, противоположное вычитаемому:
Получили сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус:
Запишем решение данного примера покороче:
Примечание. Заключать в скобки каждое рациональное число вовсе необязательно. Делается это для удобства, чтобы хорошо видеть какие знаки имеют рациональные числа.
Пример 3. Найти значение выражения:
В этом выражении у дробей разные знаменатели. Чтобы облегчить себе задачу, приведём эти дроби к общему знаменателю. Не будем подробно останавливаться на том как это сделать. Если испытываете с этим затруднения, обязательно повторите урок действия с дробями.
После приведения дробей к общему знаменателю выражение примет следующий вид:
Заключим каждое рациональное число в скобки вместе своими знаками:
Это сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:
Запишем решение данного примера покороче:
Пример 4. Найти значение выражения
Заключим каждое рациональное число в скобки вместе со своими знаками:
Вычислим данное выражение в следующем порядке: слóжим рациональные числа и , затем из полученного результата вычтем рациональное число .
Первое действие:
Второе действие:
Таким образом, значение выражения равно
Пример 5. Найти значение выражения:
Представим целое число −1 в виде дроби , а смешанное число переведём в неправильную дробь:
Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:
Заключим каждое рациональное число в скобки вместе со своими знаками:
Получили сложение рациональных чисел с разными знаками. Вычитаем из большего модуля меньший модуль, и перед полученным ответом ставим знак того рационального числа, модуль которого больше:
Получили ответ .
Есть и второй способ решения. Он заключается в том, чтобы сложить отдельно целые части.
Итак, вернёмся к изначальному выражению:
Заключим каждое число в скобки. Для этого смешанное число временно развернём:
Вычислим целые части:
(−1) + (+2) = 1
В главном выражении вместо (−1) + (+2) запишем полученную единицу:
Полученное выражение свернём. Для этого запишем единицу и дробь вместе:
Запишем решение этим способом покороче:
Пример 6. Найти значение выражения
Переведём смешанное число в неправильную дробь. Остальную часть перепишем без изменения:
Заключим каждое рациональное число в скобки вместе со своими знаками:
Заменим вычитание сложением:
Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:
Запишем решение данного примера покороче:
Пример 7. Найти значение выражение
Представим целое число −5 в виде дроби , а смешанное число переведём в неправильную дробь:
Приведём данные дроби к общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:
Заключим каждое рациональное число в скобки вместе со своими знаками:
Заменим вычитание сложением:
Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:
Таким образом, значение выражения равно .
Решим данный пример вторым способом. Вернемся к изначальному выражению:
Запишем смешанное число в развёрнутом виде. Остальное перепишем без изменений:
Заключим каждое рациональное число в скобки вместе своими знаками:
Заменим вычитание сложением там, где это можно:
Вычислим целые части:
В главном выражении вместо запишем полученное число −7
Выражение является развёрнутой формой записи смешанного числа . Запишем число −7 и дробь вместе, образуя окончательный ответ:
Запишем это решение покороче:
Пример 8. Найти значение выражения
Переведём смешанные числа в неправильные дроби:
Заключим каждое рациональное число в скобки вместе своими знаками:
Заменим вычитание сложением:
Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:
Таким образом, значение выражения равно
Данный пример можно решить и вторым способом. Он заключается в том, чтобы сложить целые и дробные части по отдельности. Вернёмся к изначальному выражению:
Заключим каждое рациональное число в скобки вместе со своими знаками:
Заменим вычитание сложением:
Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус. Но в этот раз слóжим по отдельности целые части (−1 и −2), и дробные и
Запишем это решение покороче:
Пример 9. Найти выражения выражения
Переведём смешанные числа в неправильные дроби:
Заключим рациональное число в скобки вместе своим знаком. Рациональное число в скобки заключать не нужно, поскольку оно уже в скобках:
Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:
Получили сложение отрицательных рациональных чисел. Слóжим модули этих чисел и перед полученным ответом поставим минус:
Таким образом, значение выражения равно
Теперь попробуем решить этот же пример вторым способом, а именно сложением целых и дробных частей по отдельности.
В этот раз, в целях получения короткого решения, попробуем пропустить некоторые действия, такие как: запись смешанного числа в развёрнутом виде и замена вычитания сложением:
Обратите внимание, что дробные части были приведены к общему знаменателю.
Пример 10. Найти значение выражения
Заменим вычитание сложением:
В получившемся выражении нет отрицательных чисел, которые являются основной причиной допущения ошибок. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вычитаемым, а также убрать скобки:
Получилось простейшее выражение, которое вычисляется легко. Вычислим его любым удобным для нас способом:
Пример 11. Найти значение выражения
Это сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:
Пример 12. Найти значение выражения
Выражение состоит из нескольких рациональных чисел. Согласно порядку действий, в первую очередь необходимо выполнить действия в скобках.
Сначала вычислим выражение , затем выражение Полученные результаты слóжим .
Первое действие:
Второе действие:
Третье действие:
Ответ: значение выражения равно
Пример 13. Найти значение выражения
Переведём смешанные числа в неправильные дроби:
Заключим рациональное число в скобки вместе со своим знаком. Рациональное число заключать в скобки не нужно, поскольку оно уже в скобках:
Приведём данные дроби в общему знаменателю. После их приведения к общему знаменателю, они примут следующий вид:
Заменим вычитание сложением:
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед полученными ответом поставим знак того рационального числа, модуль которого больше:
Таким образом, значение выражения равно
Рассмотрим сложение и вычитание десятичных дробей, которые тоже относятся к рациональным числам и которые могут быть как положительными, так и отрицательными.
Пример 14. Найти значение выражения −3,2 + 4,3
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что плюс который дан в выражении, является знаком операции и не относится к десятичной дроби 4,3. У этой десятичной дроби свой знак плюса, который невидим по причине того, что его не записывают. Но мы его запишем для наглядности:
(−3,2) + (+4,3)
Это сложение рациональных чисел с разными знаками. Чтобы сложить рациональные числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того рационального числа, модуль которого больше. А чтобы понять какой модуль больше, а какой меньше, нужно суметь сравнить модули этих десятичных дробей до их вычисления:
(−3,2) + (+4,3) = |+4,3| − |−3,2| = 1,1
Модуль числа 4,3 больше, чем модуль числа −3,2 поэтому мы из 4,3 вычли 3,2. Получили ответ 1,1. Ответ положителен, поскольку перед ответом должен стоять знак того рационального числа, модуль которого больше. А модуль числа 4,3 больше, чем модуль числа −3,2
Таким образом, значение выражения −3,2 + (+4,3) равно 1,1
Этот пример можно записать покороче:
−3,2 + (+4,3) = 1,1
Пример 15. Найти значение выражения 3,5 + (−8,3)
Это сложение рациональных чисел с разными знаками. Как и в прошлом примере из большего модуля вычитаем меньший и перед ответом ставим знак того рационального числа, модуль которого больше:
3,5 + (−8,3) = −(|−8,3| − |3,5|) = −(8,3 − 3,5) = −(4,8) = −4,8
Таким образом, значение выражения 3,5 + (−8,3) равно −4,8
Этот пример можно записать покороче:
3,5 + (−8,3) = −4,8
Пример 16. Найти значение выражения −7,2 + (−3,11)
Это сложение отрицательных рациональных чисел. Чтобы сложить отрицательные рациональные числа, нужно сложить их модули и перед полученным ответом поставить минус.
Запись с модулями можно пропустить, чтобы не загромождать выражение:
−7,2 + (−3,11) = −7,20 + (−3,11) = −(7,20 + 3,11) = −(10,31) = −10,31
Таким образом, значение выражения −7,2 + (−3,11) равно −10,31
Этот пример можно записать покороче:
−7,2 + (−3,11) = −10,31
Пример 17. Найти значение выражения −0,48 + (−2,7)
Это сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус. Запись с модулями можно пропустить, чтобы не загромождать выражение:
−0,48 + (−2,7) = (−0,48) + (−2,70) = −(0,48 + 2,70) = −(3,18) = −3,18
Пример 18. Найти значение выражения −4,9 − 5,9
Заключим каждое рациональное число в скобки вместе со своими знаками. Учитываем, что минус который располагается между рациональными числами −4,9 и 5,9 является знаком операции и не относится к числу 5,9. У этого рационального числа свой знак плюса, который невидим по причине того, что он не записывается. Но мы запишем его для наглядности:
(−4,9) − (+5,9)
Заменим вычитание сложением:
(−4,9) + (−5,9)
Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:
(−4,9) + (−5,9) = −(4,9 + 5,9) = −(10,8) = −10,8
Таким образом, значение выражения −4,9 − 5,9 равно −10,8
Запишем решение этого примера покороче:
−4,9 − 5,9 = −10,8
Пример 19. Найти значение выражения 7 − 9,3
Заключим в скобки каждое число вместе со своими знаками
(+7) − (+9,3)
Заменим вычитание сложением
(+7) + (−9,3)
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:
(+7) + (−9,3) = −(9,3 − 7) = −(2,3) = −2,3
Таким образом, значение выражения 7 − 9,3 равно −2,3
Запишем решение этого примера покороче:
7 − 9,3 = −2,3
Пример 20. Найти значение выражения −0,25 − (−1,2)
Заменим вычитание сложением:
−0,25 + (+1,2)
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль, и перед ответом поставим знак того числа, модуль которого больше:
−0,25 + (+1,2) = 1,2 − 0,25 = 0,95
Запишем решение этого примера покороче:
−0,25 − (−1,2) = 0,95
Пример 21. Найти значение выражения −3,5 + (4,1 − 7,1)
Выполним действия в скобках, затем слóжим полученный ответ с числом −3,5
Первое действие:
4,1 − 7,1 = (+4,1) − (+7,1) = (+4,1) + (−7,1) = −(7,1 − 4,1) = −(3,0) = −3,0
Второе действие:
−3,5 + (−3,0) = −(3,5 + 3,0) = −(6,5) = −6,5
Ответ: значение выражения −3,5 + (4,1 − 7,1) равно −6,5.
Пример 22. Найти значение выражения (3,5 − 2,9) − (3,7 − 9,1)
Выполним действия в скобках. Затем из числа, которое получилось в результате выполнения первых скобок, вычтем число, которое получилось в результате выполнения вторых скобок:
Первое действие:
3,5 − 2,9 = (+3,5) − (+2,9) = (+3,5) + (−2,9) = 3,5 − 2,9 = 0,6
Второе действие:
3,7 − 9,1 = (+3,7) − (+9,1) = (+3,7) + (−9,1) = −(9,1 − 3,7) = −(5,4) = −5,4
Третье действие
0,6 − (−5,4) = (+0,6) + (+5,4) = 0,6 + 5,4 = 6,0 = 6
Ответ: значение выражения (3,5 − 2,9) − (3,7 − 9,1) равно 6.
Пример 23. Найти значение выражения −3,8 + 17,15 − 6,2 − 6,15
Заключим в скобки каждое рациональное число вместе со своими знаками
(−3,8) + (+17,15) − (+6,2) − (+6,15)
Заменим вычитание сложением там, где это можно:
(−3,8) + (+17,15) + (−6,2) + (−6,15)
Выражение состоит из нескольких слагаемых. Согласно сочетательному закону сложения, если выражение состоит из нескольких слагаемых, то сумма не будет зависеть от порядка действий. Это значит, что слагаемые можно складывать в любом порядке.
Не будем изобретать велосипед, а слóжим все слагаемые слева направо в порядке их следования:
Первое действие:
(−3,8) + (+17,15) = 17,15 − 3,80 = 13,35
Второе действие:
13,35 + (−6,2) = 13,35 − −6,20 = 7,15
Третье действие:
7,15 + (−6,15) = 7,15 − 6,15 = 1,00 = 1
Ответ: значение выражения −3,8 + 17,15 − 6,2 − 6,15 равно 1.
Пример 24. Найти значение выражения
Переведём десятичную дробь −1,8 в смешанное число. Остальное перепишем без изменения:
Далее вычисляем данное выражение, применяя ранее изученные правила:
Пример 25. Найти значение выражения
Заменим вычитание сложением. Попутно переведём десятичную дробь (−4,4) в неправильную дробь
В получившемся выражении нет отрицательных чисел. А поскольку нет отрицательных чисел, мы можем убрать плюс перед вторым числом, и убрать скобки. Тогда получим простое выражение на сложение, которое решается легко
Пример 26. Найти значение выражения
Переведём смешанное число в неправильную дробь, а десятичную дробь −0,85 в обыкновенную дробь. Получим следующее выражение:
Получили сложение отрицательных рациональных чисел. Слóжим их модули и перед полученным ответом поставим минус:
Пример 27. Найти значение выражения
Переведём обе дроби в неправильные дроби. Чтобы перевести десятичную дробь 2,05 в неправильную дробь, можно перевести ее сначала в смешанное число, а затем в неправильную дробь:
После перевода обеих дробей в неправильные дроби, получим следующее выражение:
Получили сложение рациональных чисел с разными знаками. Вычтем из большего модуля меньший модуль и перед полученным ответом поставим знак того числа, модуль которого больше:
Пример 28. Найти значение выражения
Заменим вычитание сложением. Далее переведём десятичную дробь в обыкновенную дробь. Затем вычислим получившееся выражение, применяя ранее изученные правила:
Пример 29. Найти значение выражения
Переведём десятичные дроби −0,25 и −1,25 в обыкновенные дроби, остальное перепишем без изменения. Получим следующее выражение:
Можно сначала заменить вычитание сложением там, где это можно и сложить рациональные числа одно за другим.
Есть и второй вариант: сначала сложить рациональные числа и , а затем из полученного результата вычесть . Этим вариантом и воспользуемся.
Первое действие:
Второе действие:
Ответ: значение выражения равно −2.
Пример 30. Найти значение выражения
Переведём десятичные дроби в обыкновенные. Остальное перепишем без изменения:
Получили сумму из нескольких слагаемых. Если сумма состоит из нескольких слагаемых, то выражение можно вычислять в любом порядке. Это следует из сочетательного закона сложения.
Поэтому мы можем организовать наиболее удобный для нас вариант. В первую очередь можно сложить первое и последнее слагаемое, а именно рациональные числа и . У этих чисел одинаковые знаменатели, а значит это освободит нас от необходимости приводить их к нему.
Первое действие:
Полученное число можно сложить со вторым слагаемым, а именно с рациональным числом . У рациональных чисел и одинаковые знаменатели в дробных частях, что опять же является преимуществом для нас
Второе действие:
Ну и слóжим полученное число −7 с последним слагаемым, а именно с рациональным числом . Удобно то, что при вычислении данного выражения, семёрки исчезнут, поскольку их сумма будет равна нулю:
Третье действие:
Ответ: значение выражения равно
Задания для самостоятельного решения
Задание 1. Найдите значение выражения:
Решение:
Задание 2. Найдите значение выражения:
Решение:
Задание 3. Найдите значение выражения:
Решение:
Задание 4. Найдите значение выражения:
Решение:
Задание 5. Найдите значение выражения:
Решение:
Задание 6. Найдите значение выражения:
Решение:
Задание 7. Найдите значение выражения:
Решение:
Задание 8. Найдите значение выражения:
Решение:
Задание 9. Найдите значение выражения:
Решение:
Задание 10. Найдите значение выражения:
Решение:
Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Возникло желание поддержать проект?
Используй кнопку ниже
Навигация по записям
Сложение и вычитание чисел — Excel для Mac
Сложение нескольких чисел в одной ячейке
-
Щелкните любую пустую ячейку и введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите несколько чисел, разделенных знаком «плюс» (+).
Например: 50+10+5+3.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 68.
Примечания:
-
Если вместо ожидаемого результата отображается дата, выделите ячейку и на вкладке Главная выберите пункт Общий.
-
-
Сложение чисел с помощью ссылок на ячейки
Ссылка на ячейку представляет собой букву столбца и номер строки, например А1 или F345. При использовании в формуле ссылки на ячейку вместо значения ячейки можно изменить значение, не меняя формулу.
-
Введите число, например 5, в ячейку C1. Затем введите другое число, например 3, в ячейку D1.
-
В ячейке E1 введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите C1+D1.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 8.
Примечания:
-
Если изменить значение в ячейке C1 или D1 и нажать клавишу RETURN, значение ячейки E1 изменится, даже если формула осталась неизменной.
-
Если вместо ожидаемого результата отображается дата, выделите ячейку и на вкладке Главная выберите пункт Общий.
-
Быстрое суммирование чисел в строке или столбце
-
Введите несколько чисел в столбец или строку, а затем выделите заполненный диапазон ячеек.
-
На строка состояния, посмотрите на значение рядом с sum. Общее количество — 86.
Вычитание нескольких чисел в одной ячейке
-
Щелкните любую пустую ячейку и введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите несколько чисел, разделенных знаком «минус» (–).
Например: 50-10-5-3.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 32.
Вычитание чисел с помощью ссылок на ячейки
Ссылка на ячейку представляет собой букву столбца и номер строки, например А1 или F345. При использовании в формуле ссылки на ячейку вместо значения ячейки можно изменить значение, не меняя формулу.
-
Введите числа в ячейки C1 и D1.
Например, введите 5 и 3.
-
В ячейке E1 введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите C1-D1.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 2.
Примечания:
-
Если изменить значение в ячейке C1 или D1 и нажать клавишу RETURN, значение ячейки E1 изменится, даже если формула осталась неизменной.
-
Если вместо ожидаемого результата отображается дата, выделите ячейку и на вкладке Главная выберите пункт Общий.
-
Сложение нескольких чисел в одной ячейке
-
Щелкните любую пустую ячейку и введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите несколько чисел, разделенных знаком «плюс» (+).
Например: 50+10+5+3.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 68.
Примечание: Если вместо ожидаемого результата вы видите дату, выберите ячейку, а затем на вкладке «Главная» в области «Число» выберите во всплывающее меню пункт «Общие».
Сложение чисел с помощью ссылок на ячейки
Ссылка на ячейку представляет собой букву столбца и номер строки, например А1 или F345. При использовании в формуле ссылки на ячейку вместо значения ячейки можно изменить значение, не меняя формулу.
-
Введите число, например 5, в ячейку C1. Затем введите другое число, например 3, в ячейку D1.
-
В ячейке E1 введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите C1+D1.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 8.
Примечания:
-
Если изменить значение в ячейке C1 или D1 и нажать клавишу RETURN, значение ячейки E1 изменится, даже если формула осталась неизменной.
-
Если вместо ожидаемого результата вы видите дату, выберите ячейку, а затем на вкладке «Главная» в области «Число» выберите во всплывающее меню пункт «Общие».
-
Быстрое суммирование чисел в строке или столбце
-
Введите несколько чисел в столбец или строку, а затем выделите заполненный диапазон ячеек.
-
На строка состояния посмотрите на значение рядом с sum=. Общее количество — 86.
Если строка состояния не отображается, в меню Вид выберите пункт Строка состояния.
Вычитание нескольких чисел в одной ячейке
-
Щелкните любую пустую ячейку и введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите несколько чисел, разделенных знаком «минус» (–).
Например: 50-10-5-3.
-
Нажмите клавишу RETURN.
Если использовать числа из примера, получается результат 32.
Вычитание чисел с помощью ссылок на ячейки
Ссылка на ячейку представляет собой букву столбца и номер строки, например А1 или F345. При использовании в формуле ссылки на ячейку вместо значения ячейки можно изменить значение, не меняя формулу.
-
Введите числа в ячейки C1 и D1.
Например, введите 5 и 3.
-
В ячейке E1 введите знак равенства (=), чтобы начать ввод формулы.
-
После знака равенства введите C1-D1.
-
Нажмите клавишу RETURN.
Если вы использовали числа из примера, результат будет -2.
Примечания:
-
Если изменить значение в ячейке C1 или D1 и нажать клавишу RETURN, значение ячейки E1 изменится, даже если формула осталась неизменной.
-
Если вместо ожидаемого результата вы видите дату, выберите ячейку, а затем на вкладке «Главная» в области «Число» выберите во всплывающее меню пункт «Общие».
-
Как решать примеры с минусами
Еще в начальной школе учат, как складывать и вычитать числа. Для того чтобы научиться это делать, необходимо выучить таблицу сложения и основанную на ней таблицу вычитания. Получается,первоклашка сможет из семнадцати вычесть девять или решить любой подобный пример. Однако завести в тупик его сможет пример обратного характера: как вычесть из девяти семнадцать. Примеры с отрицательными числами даются по школьной программе много позже, когда человек созревает до абстрактного мышления.Математических действий существует четыре вида: сложение, вычитание, умножение и деление. Поэтому примеров сбудет четыре типа. Отрицательные числа внутри примера выделяются скобками для того, чтобы не перепутать математическое действие. Например, 6-(-7), 5+(-9), -4*(-3) или 34:(-17).
Сложение. Данное действие может иметь вид:1) 3+(-6)=3-6=-3. Замена действия: сначала раскрываются скобки, знак «+» меняется на противоположный, далее из большего (по модулю) числа «6» отнимается меньшее — «3», после чего ответу присваивается знак большего, то есть «-«.
2) -3+6=3. Этот пример можно записать по-другому («6-3») или решать по принципу «из большего отнимать меньшее и присваивать ответу знак большего».
3) -3+(-6)=-3-6=-9. При раскрытии скобок происходит замена действия сложения на вычитание, затем суммируются модули чисел и результату ставиться знак «минус».
Вычитание.1) 8-(-5)=8+5=13. Раскрываются скобки, знак действия меняется на противоположный, получается пример на сложение.
2) -9-3=-12. Элементы примера складываются и ответ получает общий знак «-«.
3) -10-(-5)=-10+5=-5. При раскрытии скобок снова меняется знак на «+», далее из большего числа отнимается меньшее и у ответа — знак большего числа.
Умножение и деление.При выполнении умножения или деления знак не влияет на само действие. При произведении или делении чисел с разными знаками ответу присваивается знак «минус», если числа с одинаковыми знаками — у результата всегда знак «плюс».1)-4*9=-36; -6:2=-3.
2)6*(-5)=-30; 45:(-5)=-9.
3)-7*(-8)=56; -44:(-11)=4.
Отрицательные дроби. Действия с отрицательными дробями
Отрицательные дроби — это дроби, числитель или знаменатель которых является отрицательным числом.
Отрицательные дроби могут быть записаны по-разному. Например, рассмотрим два частных:
-2 : 7 и 2 : (-7),
каждое из них равно отрицательному числу
Каждое из данных частных можно записать в виде дроби, в которой дробная черта заменит знак деления:
-2 : 7 | = | -2 | и | 2 : (-7) | = | 2 | . |
7 | -7 |
Следовательно, при записи отрицательных дробей знак минус
можно ставить перед дробью, перед числителем или перед знаменателем:
Сложение и вычитание
Чтобы сложить две отрицательные дроби, надо сначала привести их к общему знаменателю, а затем сложить числители по правилам сложения рациональных чисел.
Пример.
Приведём дроби к общему знаменателю:
— | 2 | + (- | 1 | ) = | -8 | + | -5 | . |
5 | 4 | 20 | 20 |
Теперь сложим числители дробей по правилам сложения рациональных чисел:
-8 | + | -5 | = | -8 + (-5) | = | -13 | = | — | 13 | . |
20 | 20 | 20 | 20 | 20 |
Таким образом:
— | 2 | + (- | 1 | ) = | -8 | + | -5 | = |
5 | 4 | 20 | 20 |
= | -8 + (-5) | = | -13 | = | — | 13 | . |
20 | 20 | 20 |
Для вычисления разности двух отрицательных дробей можно вычитание заменить сложением, взяв уменьшаемое со свои знаком, а вычитаемое с противоположным.
Пример.
— | 5 | — (- | 11 | ) = | — | 5 | + (+ | 11 | ) = |
12 | 12 | 12 | 12 |
= | — | 5 | + | 11 | = | -5 + 11 | = | 6 | . |
12 | 12 | 12 | 12 |
Сложение и вычитание отрицательных дробей производится по правилам сложения обыкновенных дробей, то есть сначала идёт приведение к общему знаменателю, если это нужно, а затем производятся вычисления.
Умножение и деление
Чтобы найти произведение двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем перемножить дроби по правилу умножения дробей.
Пример.
— | 2 | · (- | 4 | ) = | -2 | · | -4 | = | -2 · (-4) | = | 8 | . |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
Так как при умножении двух отрицательных чисел результат будет положительным, то данный пример можно решить сразу, отбросив оба минуса:
— | 2 | · (- | 4 | ) = | 2 | · | 4 | = | 2 · 4 | = | 8 | . |
3 | 5 | 3 | 5 | 3 · 5 | 15 |
При умножении отрицательной дроби на положительную результат будет отрицательным.
Пример.
— | 2 | · | 4 | = | — | 2 · 4 | = | — | 8 | . |
3 | 5 | 3 · 5 | 15 |
К отрицательным дробям можно применять любые законы умножения. Поэтому предыдущий пример можно переписать так:
4 | · (- | 2 | ) = | — | 4 · 2 | = | — | 8 | . |
5 | 3 | 5 · 3 | 15 |
То есть при умножении положительной дроби на отрицательную результат будет отрицательным.
Чтобы найти частное двух отрицательных дробей, надо знаки минус перенести или в числители, или в знаменатели, а затем произвести вычисления.
Пример.
— | 2 | : (- | 4 | ) = | -2 | : | -4 | = |
3 | 5 | 3 | 5 |
= | -2 · 5 | = | -10 | = | 10 | . |
3 · (-4) | -12 | 12 |
Знак результата умножения или деления отрицательных дробей можно узнать по правилам знаков целых чисел.
Правила сложения, вычитания, умножения чисел | fizmat.by
Тестирование онлайн
Сложение и вычитание
Сложение чисел
Результат сложения двух или более чисел называется суммой, а сами числа — слагаемыми.
Сумма двух отрицательных чисел. Складываем числа, аналогично положительным, записываем результат со знаком «минус». Например, (-6)+(-5,3)=-(6+5,3)=-11,3.
От перестановки мест слагаемых сумма не изменяется a+b=b+a.
Вычитание чисел
Результат действия называется разностью. Сами числа — уменьшаемое и вычитаемое.
Сложение положительного и отрицательного числа — это не что иное, как вычитание! Мало кто задумывается, что вычитание 7-2 можно представить в виде 7+(-2), получили сложение отрицательного и положительного числа. Для того, чтобы сложить два числа с противоположными знаками, необходимо от большего числа вычесть меньшее, а знак суммы должен совпадать со знаком большего числа.
Например, —8+3=—(8-3)=—5; или -7+45=+(45-7)=+38=38.
Умножение чисел
Результат умножения двух или более чисел называется произведением, а сами числа — множителями.
Умножить число а на b — значит найти сумму b слагаемых, каждое из которых равно a.
Например,
Произведение двух чисел одного знака есть число положительное. Например,
Произведение двух чисел с разными знаками есть число отрицательное. Например,
От перестановки множителей значение произведения не изменяется ab=ba.
1) Для любых натуральных чисел a и b верно равенство a+b=b+a. Это свойство называют переместительным (коммутативным) законом сложения, который формулируется так: от перестановки слагаемых значение суммы не изменяется.
2) Для любых натуральных a, b и c верно равенство (a+b)+с=a+(b+с). Это свойство называется сочетательным (ассоциативным) законом сложения, который формулируется так: значение суммы не изменится, если какую-либо группу слагаемых заменить их суммой.
1) Для любых натуральных чисел a и b верно равенство ab=ba. Это свойство называют переместительным законом умножения, который формулируется так: от перестановки множителей значение произведения не изменяется.
2) Для любых натуральных a, b и c верно равенство (ab)с=a(bс). Это свойство называют сочетательным законом умножения, который формулируется так: значение произведения не изменится, если какую-либо группу множителей заменить их произведением.
3) При любых значениях a, b и c верно равенство (a+b)с=aс+bс. Это свойство называют распределительным (дистрибутивным) законом умножения (относительно сложения), который формулируется так: чтобы умножить сумму на число, достаточно умножить каждое слагаемое на это число и сложить полученные произведения. Аналогично можно записать: (a-b)с=aс-bс.
Сложение и вычитание с минусами
Добавление любого числа к его противоположный — также называемый аддитивным обратным — всегда дает нулевой результат. Например:
— 999 + 999 знак равно 0 2,5 + ( — 2,5 ) знак равно 0 1 + ( — 1 ) знак равно 0
Как только вы это узнаете, есть несколько способов подумать о сложении.
Метод алгебраической плитки
Пусть желтые плитки представляют положительные числа, а красные плитки — отрицательные числа.
Пример 1:
Проблема сложения 5 + ( — 2 ) можно представить как
Сгруппируйте две отрицательные плитки с двумя положительными.
С 2 + ( — 2 ) знак равно 0 , эти плитки исчезнут.Мы остались с 3 позитивная плитка.
Так 5 + ( — 2 ) знак равно 3 .
Когда оба числа отрицательны , у нас только отрицательные плитки, поэтому ответ тоже отрицательный.
Пример 2:
Проблема сложения — 3 + ( — 4 ) можно представить как
Результат просто 7 негативы плитки.
Так — 3 + ( — 4 ) знак равно — 7 .
Метод числовой линии
Когда ты добавить положительный номер, вы переходите к верно в числовой строке.
Когда ты добавить отрицательный номер, вы переходите к оставил в числовой строке.
Пример 3:
Добавлять 6 + ( — 8 ) используя числовую строку.
Начать с 6 , и двигаться 8 единиц слева.
6 + ( — 8 ) знак равно — 2
Вычитание числа равносильно сложению противоположного числа.
Так, вычитание положительного число похоже на добавление минуса; вы переходите к оставил в числовой строке.
Вычитание отрицательного число похоже на добавление плюса; вы переходите к верно в числовой строке.
Пример 4:
Вычесть — 4 — ( — 7 ) .
Начать с — 4 , и двигаться 7 единиц вправо.
— 4 — ( — 7 ) знак равно 3 .
Сложение и вычитание положительных и отрицательных чисел
Числа могут быть положительными или отрицательными
Это числовая строка:
Отрицательные числа (-) | Положительные числа (+) |
«-» — отрицательный знак. | «+» — положительный знак |
Отсутствие знака означает положительный результат
Если число имеет без знака , это обычно означает, что это положительное число .
Воздушные шары и гиря
Давайте подумаем о числах как о воздушных шарах (положительных) и весах (отрицательных):
К этой корзине привязаны воздушные шары и гирьки: |
Добавление положительного числа
Сложение положительных чисел — это просто сложение.
Мы можем добавить воздушные шары (мы добавляем положительное значение ) корзина тянется вверх (положительно) |
Пример: 2 + 3 = 5
действительно говорит
«Положительное 2 плюс Положительное 3 равно Положительное 5»
Мы могли бы записать это как (+2) + (+3) = (+5)
Вычитание положительного числа
Вычитание положительных чисел — это просто вычитание.
Воздушные шары можно забрать ( вычитаем положительное значение ) корзина тянется вниз (минус) |
Пример: 6 — 3 = 3
действительно говорит
«Положительное 6 минус Положительное 3 равно Положительное 3»
Мы могли бы записать это как (+6) — (+3) = (+3)
Добавление отрицательного числа
Теперь давайте посмотрим, как выглядит сложение и вычитание отрицательных чисел :
Мы можем складывать веса (мы добавляем отрицательные значений) корзина тянется вниз (минус) |
Пример: 6 + (−3) = 3
действительно говорит
«Положительные 6 плюс отрицательные 3 равны положительным 3»
Мы могли бы записать это как (+6) + (−3) = (+3)
Последние два примера показали нам, что удаление воздушных шаров (вычитание положительного числа) или прибавление веса (добавление отрицательного числа) заставляют корзину опускаться.
Итак, у них тот же результат :
- (+6) — (+3) = (+3)
- (+6) + (−3) = (+3)
Другими словами вычитание положительного то же самое, что добавление отрицательного .
Вычитание отрицательного числа
Наконец, мы можем убрать веса (мы вычитаем отрицательных значений ) корзина тянется вверх (положительно) |
Пример: Что такое 6 — (−3)?
6 — (- 3) = 6 + 3 = 9
Да, действительно! Вычесть отрицание — это то же самое, что и сложить!
Два отрицания дают положительный результат
Что мы нашли?
Добавление положительного числа — это простое сложение…
Добавление положительного значения Добавление
Положительные и отрицательные вместе …
Вычитание положительного
или
Добавление отрицательного
равно
Вычитание
Пример: Что такое 6 — (+3)?
6 — (+ 3) = 6 — 3 = 3
Пример: Что такое 5 + (−7)?
5 + (- 7) = 5 — 7 = −2
Вычитание негатива…
Вычитание отрицательного числа аналогично Добавление
Пример: Что такое 14 — (−4)?
14 — (- 4) = 14 + 4 = 18
Правила:
Все это можно поместить в два правила :
Правило | Пример | ||||
---|---|---|---|---|---|
+ (+) | Два одинаковых знака становятся положительным знаком | 3 + (+ 2) = 3 + 2 = 5 | |||
— (-) | 6 — (- 3) = 6 + 3 = 9 | ||||
+ (-) | Два непохожих знака превращаются в знак минуса | 7 + (- 2) = 7 — 2 = 5 | |||
— (+) | 8 — (+ 2) = 8 — 2 = 6 | ||||
Они «подобны знакам», когда они подобны друг другу (другими словами: одинаковы).
Итак, все, что вам нужно запомнить, это:
Два знака типа становятся положительным знаком
Два знака , отличных от , превращаются в знак минус
Пример: Что такое 5 + (- 2)?
+ (-) — это в отличие от знаков (они не совпадают), поэтому они становятся отрицательным знаком .
5 + (- 2) = 5 — 2 = 3
Пример: Что такое 25 — (- 4)?
— (-) — это , как знаки , поэтому они становятся положительным знаком , .
25 — (- 4) = 25 + 4 = 29
Пример: Что такое −6 + (+ 3)?
+ (+) — это , как знаки , поэтому они становятся положительным знаком , .
−6 + (+ 3) = −6 + 3 = −3
Начните с −6 на числовой прямой, двигайтесь вперед на 3, и вы получите −3
А теперь поиграйся!
Попробуйте сыграть в Casey Runner, вам нужно знать правила положительного и отрицательного, чтобы добиться успеха! |
Объяснение здравого смысла
И есть объяснение «здравого смысла»:
Если я скажу «Ешь!» Я призываю вас поесть (положительный результат)
Если я скажу «Не ешьте!» Я говорю об обратном (отрицательном).
Теперь, если я скажу: «Не ешь ли , а не !», Я говорю, что не хочу, чтобы вы умерли с голоду, поэтому я снова говорю: «Ешь!» (положительный).
Итак, два отрицания дают положительный результат, и если это вас устраивает, тогда вы сделали!
Другое объяснение здравого смысла
Друг +, враг —
+ + ⇒ + | .друг друга мой друг | |
+ — ⇒ — | друг врага — мой враг | |
— + ⇒ — | враг друга — мой враг | |
— — ⇒ + | .враг врага — мой друг |
Пример банка
Пример. В прошлом году банк по ошибке снял с вашего счета 10 долларов, и они хотят это исправить.
Итак, банк должен забрать отрицательные 10 долларов.
Допустим, ваш текущий баланс составляет 80 долларов, поэтому у вас будет:
80 долларов — (- 10 долларов) = 80 долларов + 10 долларов = 90 долларов
Таким образом, вы получаете $ 10 еще на свой счет.
Длинный пример, который вам может понравиться
Очки союзника
Элли может быть непослушным или милым. Так сказали родители Элли
«Если вы будете любезны, мы добавим 3 балла (+3).
Если вы непослушны, снимаем 3 балла (−3).
Когда вы набираете 30 очков, вы получаете игрушку ».
Ally начинает день с 9 очками: | 9 | |
Мама Элли обнаруживает пролитое молоко: | 9 — 3 = 6 | |
Тогда папа признается, что пролил молоко и пишет «отменить». Как «отменить» минус 3? | ||
Итак, мама считает: | 6 — (−3) = 6 + 3 = 9 |
Итак, когда мы вычитаем отрицательное, мы получаем
баллов (т.е.е. так же, как добавление очков).
Таким образом, вычитание отрицательного числа аналогично Добавление
Несколько дней спустя. У Элли 12 очков. | ||
| | |
Мама добавляет 3 очка, потому что комната Элли чистая. | 12 + 3 = 15 | |
| | |
Папа говорит: «Я убрал эту комнату» и пишет «отменить» на диаграмме.Мама считает: | 15 — (+3) = 12 | |
| | |
Папа видит, как Элли чистит собаку. Пишет на графике «+3». Мама считает: | 12 + (+3) = 15 | |
| | |
Элли бросает камень в окно. Папа пишет на диаграмме «−3».Мама считает: | 15 + (−3) = 12 |
См .: как « 15 — (+3) », так и « 15 + (−3) » дают 12.
Итак:
Неважно, вычитаете ли вы положительные
или добавляете отрицательные,
вы все равно теряете очки.
Таким образом, вычитание положительного
или
Добавление отрицательного
равно
Вычитание
Попробуйте эти упражнения…
Теперь попробуйте этот лист и посмотрите, как у вас дела.
А еще попробуйте эти вопросы:
Сложение и вычитание положительных и отрицательных чисел — Положительные и отрицательные числа — KS3 Maths Revision
Для сложения и вычитания чисел всегда начинайте отсчет с нуля.
Когда прибавляет положительных чисел, считать до справа .
Когда из вычитается положительных чисел, отсчитывается до слева .
Использование числовой строки
Пример
Вычислить \ (4-5-3 \).
Представьте, что вы двигаетесь вверх и вниз по числовой строке, чтобы найти ответ.
Начиная с нуля, считайте до \ ({4} \). Затем вычтите \ ({5} \). Затем вычтите \ ({3} \). Ответ: \ ({- 4} \).
Расчет числовой строки
Расчет 4 — 5 — 3
Расчет числовой строки
Начиная с нуля, считайте до 4.
Расчет числовой строки
Затем вычтите 5.
Расчет числовой линии
Затем вычтите 3.
- Вопрос
Рассчитайте: \ (- 2 + 9 — 10 + 6 \).
- Показать ответ
Ответ: \ ({3} \) или \ ({+ 3} \).
Два знака
- Когда складывает положительных чисел, считать до справа .
- Когда добавляет отрицательных чисел, считать до осталось .
- Когда из вычитается положительных чисел, считайте до , оставив .
- Когда из вычитается отрицательных чисел, считайте до справа .
Помните:
- вычтите , когда два разных знака появляются рядом друг с другом
- добавьте , когда два одинаковых знака появляются рядом друг с другом
Пример
\ [3 + {-5} = 3-5 = -2 \]
\ (3 — {-5} = 3 + 5 = +8 \) (или \ ({8} \))
- Вопрос
Рассчитать:
a ) \ (10 + — 7 \)
b) \ (4 — — 3 \)
- Показать ответ
a) \ (10 + — 7 = 10-7 = 3 \)
b) \ (4 — -3 = 4 + 3 = 7 \)
Сложение и вычитание отрицательных чисел
Purplemath
Как вы справляетесь с сложением и вычитанием минусов? Процесс работает аналогично сложению и вычитанию положительных чисел.Когда вы добавляли положительное число, вы перемещались вправо в числовой строке. Когда вы вычитали положительное число, вы двигались влево.
Теперь, если вы добавляете отрицательный результат, вы можете рассматривать это почти так же, как когда вы вычитали положительное, если вы рассматриваете «добавление отрицательного» как добавление к левому . То есть, добавляя минус, вы добавляете в обратном направлении. Точно так же, если вы вычитаете отрицательное значение (то есть вычитаете минус), вы вычитаете в другом направлении; то есть вы будете вычитать, перемещая вправо .
Например:
MathHelp.com
Вернемся к первому примеру с предыдущей страницы: «9 — 5» можно также записать как «9 + (–5)».Графически это будет выглядеть как «стрелка от нуля до девяти, а затем« отрицательная »стрелка длиной пять единиц»:
← проведите по экрану , чтобы просмотреть изображение полностью →
… и вы получите «9 + (–5) = 4».
Теперь взгляните на то вычитание, которое вы не смогли сделать: 5 — 9. Поскольку теперь у вас есть отрицательные числа слева от нуля, у вас также теперь есть «пробел» для завершения этого вычитания.Рассматривайте вычитание как добавление отрицательного числа 9; то есть нарисуйте стрелку от нуля до пяти, а затем «отрицательную» стрелку длиной девять единиц:
← проведите по экрану , чтобы просмотреть изображение полностью →
… или, что то же самое:
← проведите по экрану , чтобы просмотреть изображение полностью →
Тогда 5 — 9 = 5 + (–9) = –4.
Конечно, этот метод отсчета вашего ответа в числовой строке не будет работать так хорошо, если вы имеете дело с большими числами. Например, подумайте о том, чтобы сделать «465 — 739». Вы, конечно, не хотите использовать для этого числовую линию. Однако, поскольку 739 больше 465, вы знаете, что ответ на «465–739» должен быть отрицательным, потому что «минус 739» приведет вас куда-нибудь слева от нуля. Но как определить , какое отрицательное число является ответом?
Посмотрите еще раз на «5 — 9».Теперь вы знаете, что ответ будет отрицательным, потому что вы вычитаете большее число, чем вы начали (девять больше пяти). Самый простой способ справиться с этим — выполнить вычитание «как обычно» (меньшее число вычитается из большего числа), а затем поставить знак «минус» в ответ: 9-5 = 4, поэтому 5-9 = –4. Это работает так же для больших чисел (и это намного проще, чем пытаться нарисовать картинку): так как 739 — 465 = 274, то 465 — 739 = –274.
Сложить два отрицательных числа просто: вы просто добавляете две «отрицательные» стрелки, так что это похоже на «обычное» сложение, но в противоположном направлении. Например, 4 + 6 = 10 и –4 — 6 = –4 + (–6) = –10. Но что делать, если у вас много как положительных, так и отрицательных чисел?
Упростить 18 — (–16) — 3 — (–5) + 2
Наверное, самое простое — это преобразовать все в сложение, сгруппировать положительные и отрицательные стороны, объединить и упростить.Выглядит это так:
18 — (–16) — 3 — (–5) + 2
= 18 + 16 — 3 + 5 + 2
= 18 + 16 + (–3) + 5 + 2
= 18 + 16 + 5 + 2 + (–3)
= 41 + (–3)
= 41 — 3
= 38
«Стоп! Погодите!» Я слышу, как вы говорите.«Как перейти от« — (–16) »к« +16 »на первом этапе? Как« минус минус 16 »превратился в« плюс 16 »?»
На самом деле это довольно важная концепция, и, если вы спрашиваете, я предполагаю, что объяснение вашего учителя не имело для вас особого смысла. Поэтому я не буду давать вам «правильного» математического объяснения этого правила «минус минус — плюс». Вместо этого вот мысленная картина, с которой я столкнулся много лет назад в группе новостей по алгебре:
Представьте, что вы готовите тушеное мясо в большой кастрюле, но не на плите.Вместо этого вы контролируете температуру рагу с помощью волшебных кубиков. Эти кубики бывают двух типов: горячие и холодные.
Если вы добавите в кастрюлю горячий кубик (добавьте положительное число), температура тушеного мяса повысится. Если добавить холодный кубик (добавить отрицательное число), температура снизится. Если убрать горячий куб (вычесть положительное число), температура снизится. А если убрать холодный куб (вычесть отрицательное число), температура поднимется! То есть вычитание отрицательного значения равносильно добавлению положительного.
Теперь предположим, что у вас есть двойные и тройные кубики. Если вы добавите три кубика двойного обжига (добавьте два кубика с плюсом), температура повысится на шесть. И если вы удалите два кубика с тройным охлаждением (вычтите дважды отрицательные три), вы получите тот же результат. То есть –2 (–3) = + 6.
Вот еще одна аналогия, которую я видел. Допустим, что «хороший» будет «позитивным», а «плохой» будет «негативным», вы можете сказать:
хорошего, что происходит с хорошими людьми: хорошее дело
хорошие вещи случаются с плохими людьми: плохие вещи
плохие вещи происходят с хорошими людьми: плохие вещи
плохих вещей происходит с плохими людьми: хорошо
Для конкретного примера:
семья из четырех человек в минивэне возвращается домой в целости и сохранности: хорошее дело
пьяный водитель в угнанной машине, свернувший на всю дорогу, не пойман и не остановлен: плохо
Семья из четырех человек убита пьяным водителем, в то время как пьяный без единой царапины убегает с места происшествия: плохо
пьяный водитель пойман и заперт, прежде чем он кого-нибудь обидит: хорошо
Приведенные выше аналогии не являются техническими объяснениями или доказательствами, но я надеюсь, что они сделают правила «минус минус — плюс» и «минус, умноженный на минус — плюс» кажутся немного более разумными.
По какой-то причине кажется полезным использовать термины «плюс» и «минус» вместо «сложить», «вычесть», «положительный» и «отрицательный». Так, например, вместо слов «вычитание отрицательного» «, вы бы сказали» минус-минус «. Я понятия не имею, почему это так полезно, но я знаю, что эта словесная техника помогла негативу» щелкнуть «и со мной.
Партнер
Давайте рассмотрим еще несколько примеров:
Упростить –43 — (–19) — 21 + 25.
–43 — (–19) — 21 + 25
= –43 + 19 — 21 + 25
= (–43) + 19 + (–21) + 25 *
= (–43) + (–21) + 19 + 25 *
= (–64) + 44
= 44 + (–64)
Технически, я могу перемещать числа так, как я это делал, между двумя отмеченными звездочкой шагами выше, только после , я преобразовал все в сложение.Я не могу отменить вычитание, я могу только отменить сложение; только сложение коммутативно. На практике это означает, что я могу перемещать числа вокруг , только если я также перемещаю их знаки вместе с ними . Если я буду перемещать только числа, а не их знаки, я изменю значения и получу неправильный ответ. Продолжая …
Поскольку 64 — 44 = 20, тогда 44 — 64 = –20.
Упростить 84 + (–99) + 44 — (–18) — 43.
84 + (–99) + 44 — (–18) — 43
= 84 + (–99) + 44 + 18 + (–43)
= 84 + 44 + 18 + (–99) + (–43)
= 146 + (–142)
= 146–142
= 4
URL: https: // www.purplemath.com/modules/negative2.htm
Вычитание положительных и отрицательных чисел
Вычесть положительные числа, такие как 4–2, очень просто. Когда мы вычитаем отрицательные числа или вычитаем отрицательные числа из положительных, все становится сложнее.
Вот несколько простых правил вычитания отрицательных чисел.
Правило 1. Вычитание положительного числа из положительного — это обычное вычитание.
Например: это то, что вы узнали раньше. 6-3 — два положительных числа. Решите это уравнение, как всегда: 6 — 3 = 3.
Правило 2: Вычитание положительного числа из отрицательного числа — начните с отрицательного числа и считайте в обратном порядке.
Например: Допустим, у нас есть задача -2 — 3. Используя числовую линию, давайте начнем с -2.
Теперь сосчитайте назад на 3 единицы. Так что продолжайте отсчитывать три пробела от -2 в числовой строке.
Ответ: -2 — 3 = -5.
Правило 3: Вычитание отрицательного числа из отрицательного числа — знак минус, за которым следует отрицательный знак, превращает два знака в знак плюс.
Итак, вместо вычитания отрицательного числа вы добавляете положительное. Обычно — (-4) становится +4, а затем вы складываете числа.
Например, у нас есть проблема -2 — –4. Это будет выглядеть как «два отрицательных минус 4 отрицательных». Итак, мы меняем два отрицательных знака на положительные, и теперь уравнение принимает вид -2 + 4.
На числовой строке он начинается с -2.
Затем продвигаемся на 4 единицы: +4.
class = «green-text»> Ответ -2 — (-4) = 2.
Правило 4: Вычитание отрицательного числа из положительного — превратите знак вычитания, за которым следует отрицательный знак, в знак плюс.
Итак, вместо того, чтобы вычитать отрицательное, вы добавляете положительное. Таким образом, уравнение превращается в простую задачу сложения.
Например: допустим, у нас есть проблема 2 — (-3). Это читается как «два минус три минус». — (-3) превращается в +3.
На числовой прямой мы начинаем с 2.
Далее продвигаемся на три единицы: 2 + 3.
Ответ 2 — (-3) = 5.
Рабочие листы сложения и вычитания отрицательных чисел
Рабочие листы для сложения отрицательных чисел и вычитания отрицательных чисел.
Отрицательные числа: сложение и вычитание 1
Отрицательные числа: сложение и вычитание 2
Отрицательные числа: сложение и вычитание 3
Отрицательные числа: три члена: сложение и вычитание 4
Отрицательные числа
: Сложение и вычитание 5
Отрицательные числа: четыре члена: сложение и вычитание 6
Отрицательные числа: четыре члена: сложение и вычитание 7
Отрицательные числа: порядок операций Круглые скобки: сложение и вычитание 8
Числа: порядок операций Скобки: сложение и вычитание 9
Уловки для сложения и вычитания отрицательных чисел
Поначалу сложение и вычитание чисел может сбивать с толку, потому что идея отрицательного количества чего-либо может показаться странной даже для человека. Шестиклассник.
Вместо этого введите понятие отрицательных чисел, используя измерения, которые могут убедительно дать отрицательные результаты. Хорошим примером является температура, где значения могут опускаться ниже нуля (это особенно хорошо, если температура по Цельсию понимается как ноль, имеет здесь очень четкое значение). Другим хорошим выбором будет высота над или под уровнем моря.
Работа с числовой прямой — еще одна отличная стратегия для визуализации того, как вычитание может создавать отрицательные целые числа в более абстрактном контексте.
Отслеживание знаков
Часть проблемы сложения и вычитания отрицательных чисел состоит в том, чтобы выяснить, что делать со знаками. Мы изучаем наши факты вычитания и приучаемся к тому символу минус, который немедленно означает убрать второе число справа. С отрицательными числами это часто бывает неверно.
Вот правила сложения или вычитания отрицательных чисел:
- Добавление положительного числа — это сложение (например, 4 + (+2) = 4 + 2 = 6
- Вычитание отрицательного числа — это сложение, (например, 4 + (+2) = 4 + 2 = 6)
- g., 4 — (-2) = 4 + 2 = 6
- Добавление отрицательного числа — это вычитание (например, 4 + (-2) = 4-2 = 2
- Вычитание положительного числа — это вычитание, (например, , 4 — (+2) = 4-2 = 6
Обычно, конечно, мы не показываем знаки положительных чисел, поэтому два из приведенных выше правил выглядят так же, как стандартное сложение и вычитание! Два других правила являются ключевыми, о которых следует помнить при объединении отрицательных чисел … Вычитание отрицательного значения — это то же самое, что и сложение, а добавление отрицательного значения — то же самое, что вычитание.Если учащиеся смогут помнить об этих двух новых поворотах, сложение и вычитание с отрицательными числами будет проще простого!
Сложение и вычитание целых чисел — методы и примеры
Целые числа — это целые числа , используемые при подсчете, включая отрицательные, положительные и нулевые числа. Концепция целых чисел впервые появилась в древнем Вавилоне и Египте.
Целые числа могут быть представлены в строке чисел, при этом положительные целые числа занимают правую часть нуля, а отрицательные целые числа — левую часть нуля.В математике целые числа обычно представлены символом « Zahlen », то есть Z = {…, -4, -3, -2, -1,0,1,2,3, 4…}.
Арифметические операции, такие как сложение, вычитание, умножение и деление, применимы к целым числам. Сложение и вычитание целых чисел помогает определить сумму или сумму и разницу целых чисел. Точно так же умножение и деление используются для сравнения и деления целых чисел на равные части. В этой статье мы сосредоточимся на том, как выполнять сложение и вычитание с целыми числами.
Целые числа — это особая группа положительных, отрицательных и нулевых чисел, которые не являются дробями. Правила сложения и вычитания одинаковы для всех, будь то натуральное число или целое число, потому что натуральные числа сами по себе являются целыми числами
Как складывать целые числа?
Есть три возможности сложения целых чисел. Их:
- Сложение двух положительных целых чисел
- Сложение двух отрицательных целых чисел
- Сложение положительного и отрицательного целого числа.
Сложение двух натуральных чисел дает положительный ответ. Например, +4 + (+3) = +7. Положительные целые числа никогда не записываются с положительным знаком, и в этом случае ответ будет равен 7.
При сложении положительного и отрицательного целого числа числа вычитаются без знаков, и ответу присваивается знак большего целого числа. Например, чтобы добавить 10 + (-15) = -5, большее число в этом случае будет 15 без знака. Поэтому вычтите 15 и 10, чтобы получить 5, и присвойте ответу знак 15, который равен -5.
При сложении отрицательных целых чисел числа складываются, и сумма принимает знак исходных целых чисел. Например, — 5 + (-1) = — 6.
. Как вычесть целые числа?
Как и сложение, есть также три возможности вычитания целых чисел:
- Вычитание двух целых положительных чисел
- Вычитание двух целых отрицательных чисел
- Вычитание целого положительного и отрицательного числа.
Для простоты вычитания задачи, связанные с вычитанием целых чисел, можно смоделировать в виде следующего преобразования:
- Знак вычитания преобразуется в знак сложения
- Возьмем число, обратное целому числу, которое стоит после сложения знака.
Например, чтобы вычесть (-6) — (8), используя приведенное выше преобразование:
Шаг 1:
Заменить знак вычитания на знак сложения
⇒ (- 6) + (8)
Шаг 2:
Возьмем число, обратное целому числу после знака сложения. Число, обратное 8, равно -8.
⇒ — 6 + (- 8)
Сложите целые числа и присвойте знак большему целому числу
⇒ — 6 + (-8) = -14
Пример 1
Оценить:
(-1) — (-2)
Решение
(-1) — (-2)
Преобразование знака вычитания в знак сложения
⇒ (-1) + (-2)
Вычтем и поставим знак большего целого
⇒ (-1) + (2)
Следовательно,
(-1) — (-2) = 1
Пример 2
Складываем -10 и -19.
Решение
-10 и -19
Поскольку оба целых числа отрицательны;
Сложите целые числа и поставьте знак исходных чисел в результат.
(-10) + (- 19) = -10-19
= -19
Пример 3
Вычтем -10 — (-19).
Решение
(-10) — (-19)
В этом случае два отрицательных знака станут положительными, поэтому;
-10 + 19 = 19-10
= 9
Пример 4
Оценить 9-10 + (- 5) + 6
Решение
Начните с раскрытия скобок.
= 9-10-5 + 6
Отдельно сложите положительные и отрицательные целые числа.
= (9 + 6) — 10-5
= 15–15
= 0
Практический вопрос
- Целое число на 6 больше другого целого числа. Если их сумма равна 16, каковы два целых числа?
- Мужчина перерасходовал рупий. 38 на его текущий счет. Банк снял с него чрезмерную комиссию в размере рупий. 20. Позже мужчина внес депозит в размере рупий. 150. Рассчитать его текущий баланс?
- Температура в определенном месте в полдень была 13 0 Если к полуночи температура упала до -31 0 C.Рассчитать изменение температуры?
- Сумма двух целых чисел x и y равна — 11, а их разница равна 5. Найти два целых числа?
- В матче по гольфу между Педро и Азизом их результаты -6 и +24 соответственно. В чем разница между оценками Педро и Азиза?
- Целое число — это дважды другое целое число. Если их разница +9, какие два целых числа?
- Ахмед пошел в продуктовый магазин со 100-долларовой банкнотой в кармане. Он купил три предмета на сумму 12, 19 и 16 долларов.Какую сдачу он должен получить за прилавок?
- У человека 30 лотерейных билетов. Он продал 5 штук в один день и купил 3 на следующий день. Если он будет повторять это и в течение следующих четырех дней, сколько у него лотерейных билетов?
- Акула находится на высоте 120 футов ниже уровня моря.