Вычислить 5: Mathway | Популярные задачи

Опубликовано
2

Вычисление среднего значения ряда чисел

Excel

Формулы и функции

Формулы

Формулы

Вычисление среднего значения ряда чисел

Excel для Microsoft 365 Excel для Интернета Excel 2021 Excel 2019 Excel 2016 Excel 2013 Excel 2010 Excel 2007 Еще…Меньше

Предположим, вам нужно найти среднее количество дней для выполнения задач разными сотрудниками. Или вы хотите вычислить среднюю температуру для определенного дня на основе 10-летнего промежутка времени. Существует несколько способов расчета среднего для группы чисел.

Функция СРЗНАЧ вычисляет среднее значение, то есть центр набора чисел в статистическом распределении. Существует три наиболее распространенных способа определения среднего значения:

  • org/ListItem»>

    Среднее значение    Это арифметическое и вычисляется путем с добавления группы чисел и деления на их количество. Например, средним значением для чисел 2, 3, 3, 5, 7 и 10 будет 5, которое является результатом деления их суммы, равной 30, на их количество, равное 6.

  • Медиана     Среднее число числа. Половина чисел имеют значения больше медианой, а половина чисел имеют значения меньше медианой. Например, медианой для чисел 2, 3, 3, 5, 7 и 10 будет 4.

  • Мода    Наиболее часто встречается число в группе чисел. Например, модой для чисел 2, 3, 3, 5, 7 и 10 будет 3.

При симметричном распределении множества чисел все три значения центральной тенденции будут совпадать. В акосимном распределении группы чисел они могут быть другими.

Выполните действия, описанные ниже.

  1. Щелкните ячейку снизу или справа от чисел, для которых необходимо найти среднее.

  2. На вкладке «Главная» в группе «Редактирование» щелкните стрелку рядом с кнопкой » «, выберите «Среднее» и нажмите клавишу ВВОД.

Для этого используйте функцию С AVERAGE.

Скопируйте приведенную ниже таблицу на пустой лист.

Формула

Описание (результат)

=СПБ(A2:A7)

Среднее значение всех чисел в списке выше (9,5).

=СПБ(A2:A4;A7)

Среднее значение 3-го и последнего числа в списке (7,5).

=С AVERAGEIF(A2:A7;»<>0″)

Среднее значение чисел в списке за исключением тех, которые содержат нулевые значения, например ячейка A6 (11,4).

Для этой задачи используются функции СУММПРОИВ ИСУММ. В этом примере вычисляется средняя цена за единицу для трех покупок, при которой каждая покупка приобретает различное количество единиц по разной цене.

Скопируйте приведенную ниже таблицу на пустой лист.

1

2

3

4

A

B

Цена за единицу

Количество единиц

20

500

25

750

35

200

Формула

Описание (результат)

=СУММПРОИВЕД(A2:A4;B2:B4)/СУММ(B2:B4)

Делит общую стоимость всех трех заказов на общее количество заказаных единиц (24,66).

Для этой задачи используются функции С AVERAGE и ЕСЛИ. Скопируйте приведенную ниже таблицу и имейте в виду, что при копировании на пустой лист может быть проще понять этот пример.

Формула

Описание (результат)

=С AVERAGEIF(A2:A7;»<>0″)

Среднее значение чисел в списке за исключением тех, которые содержат нулевые значения, например ячейка A6 (11,4).

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community или попросить помощи в сообществе Answers community.

См. также

СРЗНАЧ

С AVERAGEIF

СУММ

СУММПРОИЗВ

Факториал Калькулятор n!

Базовый калькулятор

Поделись этим калькулятором и страницей

Калькулятор Используйте

Вместо вычисления факториала по одной цифре используйте этот калькулятор для вычисления факториала n! числа н. Введите целое число длиной до 4 цифр. Вы получите длинный целочисленный ответ, а также научную запись для больших факториалов. Вы можете скопировать результат длинного целочисленного ответа и вставить его в другой документ, чтобы просмотреть его.

Формула факториала

n! = n × (n — 1) × (n — 2) × (n — 3) × … × 1

Фактор 10
10! = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 3 628 800

По определению факториал 0, 0! = 1

Что такое факториал?

Факториал — это функция, которая умножает число на каждое число под ним. Например, 5!= 5*4*3*2*1=120. Функция используется, помимо прочего, для определения количества способов расположения «n» объектов.

Факториал
Нет! способы расположения n различных объектов в упорядоченной последовательности.
п
набор или популяция

В математике их n! способы последовательного расположения n предметов. «Факториал n! дает количество способов перестановки n объектов».[1] Например:

  • 2 факториал равен 2! = 2 х 1 = 2
    — Есть два разных способа расставить числа от 1 до 2. {1,2,} и {2,1}.
  • 4 факториал равен 4! = 4 х 3 х 2 х 1 = 24
    — Существует 24 различных способа расстановки чисел от 1 до 4. {1,2,3,4}, {2,1,3,4}, {2,3,1,4}, {2,3 ,4,1}, {1,3,2,4} и т. д.
  • 5 факториал равен 5! = 5 х 4 х 3 х 2 х 1 = 120
  • 0 факториал — это определение: 0! = 1. Существует ровно 1 способ расположить 0 объектов.

Факториальная задача 1

Сколькими способами можно расположить буквы в слове «документ»?

Для этой задачи мы просто берем количество букв в слове и находим факториал этого числа. Это работает, потому что каждая буква в слове уникальна, и мы просто находим максимальное количество способов заказать 8 предметов.

8!=8*7*6*5*4*3*2*1= 40 320


Факториальная задача 2

Сколькими способами можно расположить буквы в слове «физика»?

Эта задача немного отличается, потому что в ней две буквы «s». Чтобы учесть это, мы делим на количество повторяющихся букв факториал. В слове «физика» 7 букв и две повторяющиеся буквы, поэтому мы должны найти 7!/2!. Если бы у слова было несколько дубликатов, как в слове «маленький», формула была бы 6!/(2! * 2!).

7!/2!=(7*6*5*4*3*2*1)/(2*1)= 2,520


Ссылки

[1] Для получения дополнительной информации о факториалах см. Страница факториала в Wolfram MathWorld.

См. также Многофакторный калькулятор для вычисления n! н!!!!!

 

Подписаться на CalculatorSoup:

Когда мы увидим премьеру вычислительного модуля Raspberry Pi 5 — ModBerry

//в вычислительном модуле 4, ModBerry, Raspberry Pi /от admin

Вычислительный модуль Raspberry Pi — это компьютер малого форм-фактора, разработанный для использования в качестве встроенного устройства. Последней версией вычислительного модуля является вычислительный модуль Raspberry Pi 4 , выпущенный в июне 2020 года. сохранив малый форм-фактор и низкое энергопотребление, которые сделали вычислительный модуль популярным. Это может включать процессоры и память последнего поколения, а также улучшенные возможности подключения и расширенные возможности хранения.

Кроме того, Raspberry Pi Foundation выпускает новые версии вычислительного модуля каждые два-три года, поэтому вполне возможно, что следующий вычислительный модуль может быть выпущен где-то в 2023 или 2024 году . В целом, вычислительный модуль Raspberry Pi продолжает развиваться и совершенствоваться, предлагая компактную и универсальную платформу для широкого спектра встроенных вычислительных приложений. Следите за будущими обновлениями от Raspberry Pi Foundation .

Трудно предсказать точные характеристики будущего вычислительного модуля Raspberry Pi, поскольку они могут меняться в зависимости от различных факторов, включая достижения в области технологий и требования рынка. Однако, исходя из текущих тенденций и последних выпусков, следующий вычислительный модуль может включать:

  • Процессор: Следующий вычислительный модуль может иметь более мощный процессор, например, новое поколение чипов на базе ARM или даже специальный чип, разработанный специально для Raspberry Pi. Процессор может иметь улучшенную производительность и энергоэффективность, обеспечивая более быструю и эффективную работу с компьютером.
  • Память: Следующий вычислительный модуль может поставляться с увеличенными вариантами памяти, такими как ОЗУ LPDDR5 или вариантами большей емкости, предоставляя больше места для больших приложений и нескольких задач.
  • Возможности подключения: Следующий вычислительный модуль может иметь улучшенные возможности подключения, такие как более быстрый Ethernet, поддержка Wi-Fi 6 или подключение 5G. Это сделало бы устройство более подходящим для приложений, которым требуется быстрое и надежное подключение к Интернету.

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *