Число в квадрате как посчитать – Быстрое возведение чисел в квадрат без калькулятора

Опубликовано

Быстрое возведение чисел в квадрат без калькулятора

Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

1156 — это и есть квадрат 34.

Проблему данного способа можно описать двумя пунктами:

1) он требует письменного оформления;

2) в процессе вычисления очень легко допустить ошибку.

Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

Например, 28 можно представить в следующем виде:

\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

Аналогично представляем оставшиеся примеры:

\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

Аналогично выбираем варианты и для остальных примеров:

\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

Можете самостоятельно попробовать рассчитать оба разложения, и вы убедитесь, что разложение с наименьшим вторым слагаемым считается проще. А мы перейдем к примерам, которые посчитаем без калькулятора:

\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

\[{{50}^{2}}=2500\]

Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

\[{{51}^{2}}=2500+50+51=2601\]

И так со всеми числами, отличающимися на единицу.

Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

\[{{21}^{2}}=400+20+21=441\]

\[{{39}^{2}}=1600-40-39=1521\]

\[{{81}^{2}}=6400+80+81=6561\]

Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

Ключевые моменты

С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

Для начала запомните квадраты значений, кратных 10:

\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,…, \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

Далее — выкладки квадрата суммы или разности, в зависимости от того, к какому опорному значению ближе наше искомое выражение. Например:

\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

Как считать еще быстрее

Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

— это и есть формула.

\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

— аналогичная формула для чисел, больших на 1.

Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!

Смотрите также:

  1. Что такое числовая дробь
  2. Задача B1 — время, числа и проценты
  3. Пробный ЕГЭ 2012. Вариант 7 (без производных)
  4. Специфика работы с логарифмами в задаче B15
  5. Задача C1: тригонометрия и показательная функция — 1 вариант

www.berdov.com

Как возвести число в квадрат 🚩 возведение в квадрат онлайн 🚩 Школы

Возведение в нулевую степень в алгебре встречается очень часто, хотя само определение степени 0 требует дополнительных разъяснений. 
Определение нулевой степени включает в себя решение этого простейшего примера. Любое уравнение в нулевой степени равно единице. Это не зависит от того целое число или дробное, отрицательное или положительное. В данном случае есть только одно исключение: само число нуль, для которого действуют другие правила.
То есть, какое число вы не возводите в нулевую степень, в результате получится только единица. Любой ряд цифр от 1 до бесконечности, целое, дробное, положительное и отрицательное, рациональное и иррациональное при возведении в нулевую степень превращается в единицу.
Исключением для данного правила становится только сам нуль.

В математике не принято возводит нуль в нулевую степень. Дело в том, что такой пример невозможен. Возведение нуля в нуль не имеет смысла. В эту степень можно возводить любое число, кроме самого нуля.

В некоторых примерах встречаются случаи, когда приходится иметь дело с нулевыми степенями. Это происходит при упрощении выражения со степенями. В таком случае нулевую степень можно заменить единицей и дальше решать пример, не выходя за рамки правил математических упражнений.

Все несколько усложняется, если в результате упрощения появляется переменная или выражение с переменными в нулевой степени. В таком случае возникает дополнительное условие – основание степени необходимо сделать отличным от нуля и после этого продолжить решать уравнение.
Точный квадрат любого числа, в том числе и нуля, не может оканчиваться цифрами 2, 3, 7 и 8, а также нечётным количеством нулей. Второе свойство любого квадрата натурального числа – оно либо делится на 4, либо при делении на 8 дает остаток 1.
Существует также свойство для деления на 9 и на 3. Квадрат любого натурального числа либо делится на девять, либо при делении на три дает остаток 1. Таковы основные свойства точного квадрата натуральных чисел. Убедиться в них можно с помощью простых доказательств, а также с помощью реальных примеров.

Возведение нуля в квадрат – сложная задача, которая не изучается в школе. Нуль, умноженный на нуль, дает такой же результат, поэтому сам по себе пример является бессмысленным и редко встречается в классической математике.

www.kakprosto.ru

Как вычислить квадрат числа 🚩 число в квадрате 🚩 Математика

Автор КакПросто!

«Квадратом» числа обычно называют результат математической операции возведения этого числа во вторую степень, то есть однократного умножения его на само себя. С точки зрения геометрии результат этой операции можно представить как площадь квадрата (геометрической фигуры) со стороной, длина которой равна исходному числу. Очевидно, именно это обстоятельство лежало в основе возникновения такого названия операции возведения во вторую степень.

Статьи по теме:

Инструкция

Вспомните таблицу умножения, если под рукой нет никаких вспомогательных вычислительных инструментов, но есть необходимость вычислить квадрат какого-либо числа. Если сделать это удастся, то умножьте в уме или на бумаге (в столбик) интересующее вас число на само себя. Этот способ вычисления в наше время уже, пожалуй, можно причислить к разряду интеллектуальных развлечений или гимнастики для ума, так как его нельзя назвать ни самым быстрым, ни самым простым. Воспользуйтесь поисковой системой Google или Nigma, если вычислительных средств в вашем распоряжении нет, но есть доступ в интернет. Нет необходимости что-либо разыскивать в этих поисковиках — они сами являются калькуляторами. Просто введите соответствующий запрос и получите уже посчитанный результат. Например, чтобы узнать значение возведенного в квадрат числа 5,47 отправьте на сервер поисковой системы запрос 5,47*5,47, или 5,47^2, или «5,47 в квадрате» — в каждом случае поисковик покажет вам правильный ответ (29,9209).

Запустите программу, имитирующую обычный калькулятор, если описанные в предыдущих двух шагах способы почему-либо недоступны. Эта программа является частью стандартного набора приложений, устанавливаемых вместе с операционной системой. В ОС Windows любой версии открыть ее можно с помощью стандартного диалога запуска программ, вызываемого на экран одновременным нажатием клавиш Win и R. В единственном поле этого диалога наберите calc и нажмите клавишу Enter.

Введите число, квадрат которого надо вычислить — просто наберите его на клавиатуре или пощелкайте по соответствующим кнопкам интерфейса калькулятора. Затем введите команду умножения — нажмите на клавиатуре клавишу со звездочкой или щелкните по такой же кнопке в интерфейсе. Вводить второй раз число не требуется, просто нажмите клавишу Enter и калькулятор покажет результат умножения числа на само себя.

Совет полезен?

Распечатать

Как вычислить квадрат числа

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru

Как найти квадрат числа 🚩 как выучить таблицу квадратов 🚩 Образование 🚩 Другое

Автор КакПросто!

Учитель на уроке диктует математическое выражение для того, чтобы учащиеся записали его в тетрадь: «Три в квадрате минус пять…» Один ученик не успевая, просит: «Подождите, не говорите слишком быстро, я еще квадрат не нарисовал». Так вот, дабы не рисовать квадраты и кубы на математике, нужно знать, что квадратом числа является его вторая степень, то есть когда число умножается на себя два раза. Вычислять квадраты учат в еще школе: дважды два – четыре, пятью пять – двадцать пять.

Статьи по теме:

Вам понадобится

  • — таблицы умножения;
  • — таблица квадратов двузначных чисел;
  • — калькулятор.

Инструкция

Чтобы найти квадрат любого числа достаточно только это число умножить на себя. Пример 1. 6*6 =36; 4*4 = 16; 7*7 = 49. Произведение чисел до 10, состоящих из одной цифры, размещено в таблице, знакомой всем еще с начальной школы: таблицы умножения. В ней по диагонали можно увидеть квадраты чисел: 1*1=1, 2*2=4, 3*3=9,4*4=16,5*5=25,6*6=36,7*7=49,8*8=64,9*9=81. Вторая степень двузначных чисел (например, числа 16, 79, 54) определяется тем же способом: умножением числа на себя. Пример2. 20*20=400; 25*25=625; 40*40=1600. Существует специальная таблица квадратов двузначных чисел, размещенная в учебнике по алгебре для седьмого класса. В ней легко найти квадрат любого числа. Для этого разбейте число, возводимое в квадрат на десятки и единицы. Найдите пересечение строки-десятков и столбца-единиц по указанной таблице — ячейка на пересечении и будет содержать квадрат данного числа.

Если под рукой нет таблицы, квадрат числа можно найти произведением числа на само себя, выполненное в столбик. Этим способом находится и квадрат числа, состоящего из любого количества цифр. Однако квадрат большого числа лучше вычислить с помощью калькулятора. Для этого умножьте на нем заданное число само на себя. Сначала наберите нужное число с помощью цифровой клавиатуры, затем нажмите кнопку «*». После этого еще раз наберите это же число и в заключении кнопку «=». Калькулятор представит на экране точный ответ квадрата числа.

Совет полезен?

Распечатать

Как найти квадрат числа

Статьи по теме:

Не получили ответ на свой вопрос?
Спросите нашего эксперта:

www.kakprosto.ru

Таблица квадратов


Таблица квадратов или таблица возведения чисел во вторую степень. Интерактивная таблица квадратов и изображения таблицы в высоком качестве.


0
1 2 3 4 5 6 7 8 9
0 0 1 4 9 16 25 36 49 64 81
1 100 121 144 169 196
225
256 289 324 361
2 400 441 484 529 576 625 676 729 784 841
3 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4 1600 1681
1764
1849 1936 2025 2116 2209 2304 2401
5 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9 8100 8281 8464 8649 8836 9025
9216
9409 9604 9801



Таблица квадратов

02=0

12=1

22=4

32=9

42=16

52=25

62=36

72=49

82=64

92=81

102=100

112=121

122=144

132=169

142=196

152=225

162=256

172=289

182=324

192=361

202=400

212=441

222=484

232=529

242=576

252=625

262=676

272=729

282=784

292=841

302=900

312=961

322=1024

332=1089

342=1156

352=1225

36

2=1296

372=1369

382=1444

392=1521

402=1600

412=1681

422=1764

432=1849

442=1936

452=2025

462=2116

472=2209

482=2304

492=2401

502=2500

512=2601

522=2704

532=2809

542=2916

552=3025

562

=3136

572=3249

582=3364

592=3481

602=3600

612=3721

622=3844

632=3969

642=4096

652=4225

662=4356

672=4489

682=4624

692=4761

702=4900

712=5041

722=5184

732=5329

742=5476

752=5625

762=5776

772=5929

782=6084

792=6241

802=6400

812=6561

822=6724

832=6889

842=7056

852=7225

862=7396

872=7569

882=7744

892=7921

902=8100

912=8281

922=8464

932=8649

942=8836

952=9025

962=9216

972=9409

982=9604

992=9801



Теория

Квадрат числа – это результат умножения числа само на себя. Операция вычисления квадрата числа – это частный случай возведения числа в степень, в данном случае во вторую:

62 = 6 × 6 = 36

Данное выражение читается: «возвести в квадрат число 6» или «6 в квадрате».


Скачать таблицу квадратов

  • Нажмите на картинку чтобы посмотреть в увеличенном виде.
  • Нажмите на надпись «скачать», чтобы сохранить картинку на свой компьютер. Изображение будет с высоким разрешением и в хорошем качестве.


doza.pro

Таблица квадратов чисел от 1 до 210

Таблица квадратов чисел от 1 до 210
149162536496481100121144169196
225256289324361400441484529576625676729784
84190096110241089115612251296136914441521160016811764
18491936202521162209230424012500260127042809291630253136
32493364348136003721384439694096422543564489462447614900
50415184532954765625577659296084624164006561672468897056
72257396756977447921810082818464864988369025921694099604
980110000102011040410609108161102511236114491166411881121001232112544
1276912996132251345613689139241416114400146411488415129153761562515876
1612916384166411690017161174241768917956182251849618769190441932119600
1988120164204492073621025213162160921904222012250022801231042340923716
2402524336246492496425281256002592126244265692689627225275562788928224
2856128900292412958429929302763062530976313293168432041324003276133124
3348933856342253459634969353443572136100364813686437249376363802538416
3880939204396014000040401408044120941616420254243642849432644368144100

— версия для печати

Пояснение к таблице:

2209квадрат числа
[47] — само число
Определение
Квадрат числа — результат умножения числа на самого себя. Также квадратом числа называется результат его возведение в степень 2 (во вторую степень)
Пример:
972 = 97×97 = 9409
Дополнительно:
Таблица квадратов двузначных чисел
Если у вас есть мысли по поводу данной страницы или предложение по созданию математической (см. раздел «Математика») вспомогательной памятки, мы обязательно рассмотрим ваше предложение. Просто воспользуйтесь обратной связью.

© Школяр. Математика (при поддержке «Ветвистого древа») 2009—2016

scolaire.ru

Калькулятор для расчета площади

Данный онлайн-калькулятор позволяет рассчитать площадь различных геометрических фигур, таких как:

Для удобства расчетов вы можете выбрать единицу измерения (миллиметр, сантиметр, метр, километр, фут, ярд, дюйм, миля). Также полученный результат можно конвертировать в другую единицу измерения путем выбора её из выпадающего списка.


Полезные калькуляторы Конвертер единиц площади | Конвертер единиц длины

Расчет площади прямоугольника

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади треугольника

Способ нахождения площади треугольника: По трем сторонамПо одной стороне и высоте, опущенной на эту сторонуПо двум сторонам и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади круга

Рассчитать площадь круга, если известен:

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади параллелограмма

Способ нахождения площади параллелограмма:
По основанию и высоте параллелограммаПо двум сторонам и углу между нимиПо двум диагоналям и углу между ними

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади правильного многоугольника

Многоугольник с числом сторон n и длиной стороны аМногоугольник с числом сторон n, вписанный в окружность радиуса RМногоугольник с числом сторон n, описанный вокруг окружности радиуса r

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади эллипса

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля


Расчет площади сектора круга

Рассчитать площадь сектора круга, если известен:

r=

ммсммкмфутярддюйммиля

θ=

ммсммкмфутярддюйммиля

град.рад.

Вычислить

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Расчет площади трапеции

Способ нахождения площади трапеции: По двум основаниям a,b и высоте hПо двум основаниям a,b и боковым сторонам c,d

Результат:

S= 1111 кв.ммкв.смкв.мкв.кмкв.футкв.ярдкв.дюймкв.миля

Площадь — численная характеристика двумерной (плоской или искривлённой) геометрической фигуры.

Метрические единицы измерения площади:   
Квадратный метр, производная единица системы СИ 1 м2 =1 са (сантиар)
Квадратный километр — 1 км2 = 1 000 000 м2
Гектар — 1 га = 10 000 м2
Ар (сотка) — 1 а = 100 м2 (сотка как правило применяется для измерения земельных участков и равна 100 м2 или 10м х 10м)
Квадратный дециметр, 100 дм2 = 1 м2;
Квадратный сантиметр, 10 000 см2 =1 м2;
Квадратный миллиметр, 1 000 000 мм2 = 1 м2.

Данный онлайн-калькулятор удобен при расчете площадей помещений и земельных участков.

calc.by

Leave a Reply

Ваш адрес email не будет опубликован. Обязательные поля помечены *