Что лучше газобетон или керамзитобетон: Сравнение керамзитобетонных и газобетонных блоков

Опубликовано

Содержание

Сравнение керамзитобетонных и газобетонных блоков

Бытует мнение, что керамзитобетон – материал чуть ли не гаражного производства. Это устаревшая информация. Сегодня на рынке есть серьёзные компании, которые производят качественные керамзитобетонные блоки, лишённые недостатков, о которых часто упоминают в интернете. И геометрия, и теплозащитные свойства у этих блоков намного лучше, чем у их предшественников.

Тем не менее у газобетонных блоков есть целый ряд преимуществ над керамзитобетонными:

  1. Низкая цена. Если вы хотите купить качественные стеновые блоки, то м3 газобетона обойдётся на 20-30% дешевле, чем м3 керамзитобетона.
  2. Лучше теплозащитные свойства. Любой из этих материалов даёт возможность строить однослойные (не утеплённые) наружные стены, которые будут соответствовать требованиям строительных норм для европейской части России. Однако в зависимости от материала толщина стен будет разной.

Стены из популярных на нашем рынке газобетонных блоков

YTONG (Xella Россия) с маркой по плотности D400 при толщине 375 мм обеспечивают сопротивление теплопередаче R=3,45 Вт/(м2·°С). Нормативные требования для средней полосы России – 3,15 Вт/(м2·°С), так что показатели газобетона даже превышают их. В то время как стены из керамзитобетона «вписываются» в требования только при толщине 400 мм. Иными словами, стены из газобетона можно делать тоньше и при этом они будут «теплее». 

  1. Выше морозостойкость. Величина морозостойкости напрямую говорит о сроке службы каменного стенового материала. Чем она выше – тем долговечнее материал. Марка по морозостойкости газобетонных блоков – F100, в то время как у лучших образцов керамзитобетона – F50, а чаще она ещё меньше – F25-F35. В принципе даже F35 – хороший показатель для стенового материала. Но в любом случае газобетонные блоки долговечнее даже самых качественных керамзитобетонных.
  2. Выше огнестойкость.
    Согласно испытаниям, конструкция из газобетона YTONG сохранит несущую способность в течение 360 минут, а керамзитобетонные конструкции – максимум 180 минут.
  3. Удобство и быстрота укладки. В сравнении с газобетоном у керамзитобетона выше плотность (D800-D1200), и потому изделия из него оказываются очень тяжёлыми. Чтобы керамзитобетонные блоки было легче укладывать, их габариты делают меньше. Но из-за этого, во-первых, уменьшается скорость укладки (приходится чаще подносить блоки). Во-вторых, появляется больше швов между блоками, а, как известно, швы – это мостики холода, через которые из дома улетучивается драгоценное тепло. В-третьих, столь плотные блоки сложно резать или штробить, для этого нужна, например, болгарка с дорогостоящим алмазным диском по бетону.

Газобетон лишён этих недостатков. Блоки заметно крупнее и при этом незначительно тяжелее (примерно на 5 кг). Скорость укладки выше. Швов меньше, а значит, меньше и мостиков холода. Резать и штробить газобетон можно даже ручным не моторизированным инструментом, и делать это можно очень быстро.

  1. Есть доборные элементы, которых нет у производителей керамзитобетона. В линейке YTONG есть элементы для надёжного и быстрого обустройства стандартно сложных узлов здания. Например, есть U-блоки, дугообразные блоки, О-блоки для дымоходов и вентканалов, готовые перемычки для оконных и дверных проёмов, комплектующие для устройства сборно-монолитных перекрытий, на которые проходит акция у наших партнеров. Все они заметно упрощают и ускоряют монтаж, а также делают конструкцию дома более долговечной.

Ещё несколько нюансов:

  • На рынке есть керамзитобетонные блоки, которые прочнее газобетонных. Однако блоки YTONG даже низкой плотности (D400) имеют класс прочности В2,5 и обладают достаточной несущей способностью, чтобы строить дома высотой в три этажа. А из блоков D500 можно сооружать пятиэтажные здания. Это подтверждено
    независимыми испытаниями
    .

Говорят, что из-за высокой прочности керамзитобетон не требуется армировать. Но рядовые участки кладки из газобетона тоже не требуется армировать. Усиливать необходимо лишь подоконный ряд блоков. И это нужно, прежде всего, для компенсации усадки здания. То есть чтобы не появлялись волосяные трещины на штукатурном слое. В этом плане и кладке из керамзитобетона не помешало бы такое армирование.

  • У керамзитобетонных блоков бюджетного сегмента неидеальная геометрия, поэтому их приходится укладывать на толстослойный цементный раствор. При этом через растворные швы стены будут промерзать. Избежать этого можно, только если использовать дорогостоящий раствор с улучшенными теплозащитными характеристиками или утеплять фасад. Газобетонные и качественные керамзитобетонные блоки укладывают на тонкошовный клей и иногда на пеноклей. В этом случае промерзание через швы сведено к минимуму.

· Производители керамзитобетона утверждают, что это экологически чистый материал. Но известно, что керамзит, входящий в его состав, может иметь небольшой радиационный фон. Поэтому перед покупкой таких блоков попросите у производителя сертификат, подтверждающий их экологическую безопасность. Что же касается газобетона, то в его составе нет никаких вредных компонентов. И он гарантированно не «фонит», что, впрочем, также подтверждено протоколом испытаний.

Газобетон или керамзитобетон: выбор мудрого строителя

Большинство из нас мечтает о собственном доме, в котором были бы реализованы наши идеи архитектора и строителя. Многие из нас воплощают эту мечту в реальность. О том, какие современные стеновые материалы лучше использовать, читайте в этой статье.

Увидеть и оценить

«Планирую строительство дома в ближайшее время, поэтому присматриваюсь к материалам для стен: что лучше выбрать? — рассказывает тюменец

Виктор Дзюин. — Побывал в доме со стенами из керамзитобетона и в доме, построенном из блоков газобетона, — разница ощутима. Когда заходишь в дом из газобетонных блоков — дышится по-настоящему легко, воздух приятный, сухой, как в деревянном доме, а вот в доме из керамзитобетона — влажновато, воздух тяжелый, сырой. Хотя, конечно, у каждого из этих материалов есть свои достоинства и недостатки, выбор — за строителем. Я для себя, скорее всего, выберу газобетонный блок „Поревит“: при кладке стен он удобен — ровные, крупные блоки, и клея уходит немного, в целом строительство получается очень экономичным. А главное — жить в таком доме всей нашей семье будет комфортно», — делится Виктор Дзюин.

Названные преимущества газобетонного блока определяются особенностями производства этого продукта. «В составе газобетона — песок, известь, цемент и алюминиевая пудра, которые в процессе термической обработки под большим давлением (автоклавированием) вступают в реакцию между собой и образуют прочный искусственный камень, — комментирует

Дмитрий Ярускин, технический специалист завода стеновых материалов «Поревит». — При производстве также достигается идеальная геометрическая точность размеров блоков. Это позволяет класть блоки на тонкий слой клея и упрощает процесс облицовки. Стена из блоков «Поревит» получается ровной, эстетичной. А комфортный микроклимат в доме обеспечивается пористой структурой газобетона. Блоки обладают отличной паропроницаемостью и позволяют стенам свободно дышать, пропуская наружу пар, вредные вещества и излишки углекислоты, а внутрь — свежий воздух, насыщенный кислородом. В доме из газобетонных блоков будет тепло всю зиму, а летом он будет сохранять прохладу. Газобетон — рекордсмен среди материалов, используемых в малоэтажном строительстве. Он способен выдержать до 100 циклов замораживания и оттаивания. Это означает, что срок эксплуатации здания из газобетона составляет несколько десятков лет — он послужит еще внуками и правнукам нынешних строителей.

Сравнить и выбрать

Керамзитобетон, как и газобетон, также экологичный и прочный материал. Он изготавливается из керамзита, песка, цемента и воздухововлекающих добавок. Керамзитобетон промышленного производства по своим размерам чуть больше обычного кирпича, но значительно мельче блоков из газобетона (для сравнения — размер стенового блока «Поревит» — 625×250×400 мм). При этом керамзитобетон весит больше, чем ячеистые бетоны. Очевидно, что большой вес стенового материала — это, во-первых, увеличение нагрузки на фундамент дома, во-вторых, увеличение расходов на транспортировку блоков к месту строительства дома, в-третьих, необходимость применения специализированной техники для погрузки-разгрузки материала. Кроме того, небольшой размер блоков увеличивает количество операций по кладке стен.

Коэффициент теплопроводности у керамзитобетона выше, чем у газобетона, что в будущем увеличит расходы на обогрев дома, построенного из керамзитобетонных блоков. Для сравнения — расчетная теплопроводность кладки из газобетона составляет 0,09−0,126 Вт/(м-°С), а керамзитобетона — от 0,21 Вт/(м-°С) до 0,5 Вт/(м-°С). Соответственно, необходимая толщина стены из газобетона для дома, строящегося в климатических условиях нашего региона, составляет 0,4 м, а толщина стены из керамзитобетона — от 0,9 до 1,5 метров. Помимо необходимости в дополнительном утеплении дома, это снова говорит и об удорожании строительства. Любому строителю на основании этих простых данных легко посчитать, что для возведения домов одинаковой высоты, этажности и площади потребуется примерно в 5 раз больше блоков керамзитобетона, чем блоков газобетона. И даже учитывая тот факт, что стоимость кубического метра газобетона несколько дороже кубического метра керамзитового блока, в итоге постройка из газобетона обходится значительно дешевле. Кроме того, можно экономить на отоплении в процессе эксплуатации дома, если построить его из газобетонных блоков.

Что касается влажности воздуха в доме из керамзитобена, о которой говорит тюменец Виктор Дзюин, то она объясняется уровнем паропроницаемости, который ниже, чем у газобетона. Стены же из газобетона не боятся сырости, поскольку атмосферная влага проникает на глубину лишь 2−3 см и быстро испаряется из материала.

«При выборе материала для дома я определил самые важные требования: дом должен быть теплым, экономичным, долговечным, и чтобы возвести его можно без специальной техники, так как решили с сыном строить самостоятельно, — делится своим мнением Иван Васильевич, уже построивший дом из блоков „Поревит“. — Приятно удивили практически идеально ровные стороны блоков, да и клея понадобилось совсем немного, швы получились тонкие, до 3 мм. Блоки использовали толщиной 400 мм, кладку выполняли в один слой, этого достаточно при нашем климате, уверен, дом будет теплым, поэтому дополнительно утеплять не планирую. А для облицовки выбрали декоративную плитку, она хорошо ляжет на ровную поверхность стен».

Итак, выбирая материалы для стен дома, который должен будет согревать и радовать вашу семью много лет, делайте обдуманный выбор.

_Адреса представительств завода «Поревит» в регионе:_
_Тюмень — ул. Холодильная, 114, тел. (3452) 500−605;_
_Ялуторовск — ул. Ишимская, 149._

_Интернет-магазин www.porevit.ru_

Газобетон или керамзитобетон: особенности, плюсы и минусы?

Прежде чем приступить к возведению дома, следует выбрать строительные материалы и провести сравнение их технических характеристик. Рынок предлагает огромное количество материалов для возведения зданий и сооружений, и начинающие строители задаются вопросом: Выберу ли я строительный материал с высокими качественными характеристиками из такого множества предлагаемой продукции? Ответ, безусловно: Да! Однако стоит внимательно ознакомиться со свойствами каждого материала. При выборе между газобетоном и керамзитобетоном, берут во внимание не только их преимущества, но и недостатки, которые помогут определить, какой из них лучше подходит для определенного вида постройки. Данные материалы используют для строительства несущих элементов, для возведения коробки дома.

Где применяются?

Газобетонные блоки с гладкой поверхностью применяются для возведения перегородок внутри домов и установки несущих стен. Нашли применение в строительстве заборов, домов, беседок и гаражей.

Керамзитобетонные элементы используются для возведения стен, в местах, где требуется повышенная теплоизоляция стяжки. Из керамзитобетонных конструкций возводят наружные стены зданий с малым количеством этажей. Они нашли применение в облицовки поверхности и установке естественной системы вентиляции. Применяют керамзитобетон для монтажа фундамента деревянного сруба и в качестве ограждающих конструкций, столбов и декора.

Вернуться к оглавлению

Особенности материалов

Перед выбором строительного материала следует ознакомиться с его особенностями. Таким образом, газобетон представляет собой разновидность ячеистого бетона, в состав которого входит искусственный прочный камень, песок, цемент, известь и алюминиевая пудра. В процессе приготовления смеси ее обрабатывают определенным образом, который позволяет приобрести прочность камня.

Керамзитобетон получают за счет соединения песка с цементом, керамзитом и добавками. Сухие компоненты заливают водой и доводят смесь до однородной консистенции. Отличительной особенностью керамзитобетонных блоков является возможность их качественного изготовления своими руками без использования дорогостоящего специального оборудования.

Вернуться к оглавлению

Керамзитобетон

Для изготовления керамзитобетона используют предварительно обработанную глину, которую помещают в печи для термического воздействия на ее структуру. Используемые материалы обеспечивают керамзитобетонной конструкции высокие теплоизоляционные свойства и улучшенную механическую прочность.

Вернуться к оглавлению

Преимущества

Керамзитобетон обладает следующими преимуществами:

  • Небольшой вес.
  • Экономичность. На изготовление керамзитоблоков не требуется больших затрат.
  • Отсутствуют трещины и усадка.
  • Морозостойкость. Керамзитобетон имеет высокую стойкость к воздействию отрицательных температур.
  • Шумоизоляция.
  • Огнестойкость и влагостойкость. Керамзитоблоки не поддаются воздействию огня и не пропускают влагу.
  • Высокая прочность. Керамзитобетонные конструкции способны удерживать предметы с большим весом и не деформироваться под их нагрузкой.
  • Экологичность. Материал не несет вреда для человека и окружающей среды.
Вернуться к оглавлению

Недостатки

К недостаткам керамзитобетона относят:

  • Хрупкость материала.
  • Низкую теплоизоляцию. Керамзитобетонные конструкции имеют высокую теплопроводность, что снижает сохранность тепла в помещении. Такие сооружения требуют дополнительное утепление и затрат на приобретение высококачественных теплоизоляционных материалов.
  • Стены из керамзита нуждаются в дополнительном выравнивании.
  • Сложность обработки. Для разрезания материала нужен специальный инструмент.
  • Несет большую нагрузку на фундамент.
  • Низкая паропроницаемость. Этот недостаток приводит к задержке лишней влаги, которая находится внутри помещения, что приводит к повышенной влажности.
Вернуться к оглавлению

Газобетон

Газобетон – это легкий ячеистый бетон, который включает в себя большое количество пузырьков воздуха. Для его изготовления потребуется цемент, песок, известь и алюминиевая пудра, которая образует в газобетоне воздушные поры.

Вернуться к оглавлению

Плюсы

Преимущества газобетонных изделий:

  • Легкость. Газобетону присуща легкость и идеальность форм, что упрощает строительный процесс. При использовании газоблоков не потребуется укрепление фундамента и приобретение мощной техники для транспортировки, погрузки и разгрузки.
  • Простота монтажа. Работа с газоблоками несложная и не требует дополнительного выравнивания поверхности. Кладка изделий осуществляется на специальный клей.
  • Теплопроводность. Газобетонные конструкции отлично удерживают тепло, позволяют экономить на отоплении помещений и дополнительном оборудовании.
  • Высокая паропроницаемость. Материал способен выводить лишнюю влагу из стен, что улучшает микроклимат в помещении.
  • Простота обработки. Газоблоки с легкостью поддаются шлифовке, резке и другим видам обработки. Это преимущество упрощает строительные работы и финансовые затраты на приобретение дополнительного оборудования.
  • Экологичность. Газобетон не несет вреда окружающим и не выделяет токсичных веществ.
Вернуться к оглавлению

Минусы

К недостаткам газобетона относят:

  • Трудности фиксации. На газобетонные конструкции не рекомендуют крепить тяжелые предметы, если такая необходимость неизбежна, тогда используют специальные крепления.
  • Хрупкость. В процессе длительной эксплуатации газобетон может подвергаться трещинам и усадке.
  • Слабая гидроизоляция. Газобетон нуждается в дополнительной гидроизоляции, так как он способен быстро впитывать влагу.
  • Возможность появления в стенах из газобетона грызунов.
  • Сложности при строительстве стен. При возведении одноэтажного дома потребуется укрепление армирующими поясами каждого этажа, если этого не сделать, дом даст усадку. Таким образом, газобетон не используют для возведения несущих стен, его рекомендуют применять при строительстве небольших построек.
  • Дополнительные финансовые расходы на утепление зданий.
Вернуться к оглавлению

Советы по выбору

Дом из газобетона обладает высокими теплозащитными свойствами.

За счет большого количества преимуществ одного и второго строительного материала, возникают сложности при выборе нужного. И часто начинающие строители не могут определиться с выбором и обращаются за помощью к специалистам с вопросом: какой бы материал выбрали вы? Опытные строители знают, что газобетонные дома дешевле, если соблюдать рекомендации по возведению стен и их толщине. Дом из газобетона легче. При строительстве сооружений в местности с постоянными холодами, также следует стать на сторону газобетона, так как его теплопроводность в разы меньше, чем у керамзитобетона. Это означает, что стены из газоблоков смогут сохранять тепло лучше.

При выборе керамзитобетона следует учитывать, что стены из этого материала требуют отделки, это значит, что времени на возведение дома потребуется больше. Но если этот нюанс не пугает хозяина дома, тогда он смело может выбирать керамзитобетон, который в свою очередь еще и прочнее газобетона. Более того, керамзитобетонные стены обладают повышенной шумоизоляцией и не требуют дополнительной гидроизоляции. Прочностные свойства керамзитобетона превышают прочностные характеристики газобетона.

Но прежде чем определиться со строительным материалом, нужно учесть некоторые условия:

  • расположение строительного участка;
  • высоту постройки;
  • размеры здания;
  • климатические условия.
Вернуться к оглавлению

Выводы

От выбора строительного материала напрямую зависит качество, прочность и долголетие будущего дома. Поэтому, выбирая стройматериалы, нужно предусмотреть нюансы и ознакомиться с преимуществами и недостатками каждого из них. Когда выбор становится между керамзитобетоном и газобетоном, следует учитывать их качественные свойства, исходя из условий будущей постройки.

Нужно взять во внимание местность расположения дома, климат и размеры сооружений, и только потом проводить сравнительные характеристики. Не будет лишним обратиться к опытным специалистам.

Керамзитоблок или газобетон — что лучше выбрать?

При строительстве дома важное значение имеет стеновой материал. Наиболее популярными считаются керамзитный и газобетонный блоки. Они легкие, обладают высокими звуко- и теплоизоляционными характеристики, экологичны, дают минимум усадки. Что лучше – керамзитобетон или газобетон? Надеемся, эта статья поможет вам определиться.

Разница в составе

В первую очередь следует знать особенности производства каждого материала. В состав газобетонного блока входит кварцевый песок, цемент, известь, вода, немного алюминиевой пасты. Для лучших показателей прочности данная смесь обрабатывается горячим паром под высоким давлением.

В состав керамзита входит керамзит и смесь цемента. Далее раствор тщательно перемешивается и переливается в формы с последующей утрамбовкой. После того как смесь отвердеет, полученные блоки извлекаются из форм и отправляются сушиться в течение месяца.

Свойства блоков

По показателям прочности керамзитоблок превосходит газобетон. Плотность первого составляет D800-D1200, в то время как блок из газобетона по плотности равен D400-D600. Прочность у керамзитобетонных блоков 50-150 кг/см2, у газобетонных – 35-65 кг/см2.

Пустотелые керамзитобетонные блоки обладают сниженной несущей способностью. Чтобы улучшить этот показатель, следует укладывать пустоты перпендикулярно основной опорной стороне.

Качественные и тяжелые керамзитоблоки используются даже для строительства многоэтажных домов (12 этажей). А вот газобетонные применяют для строительства трехэтажных зданий, не выше.

Зато для строительства цоколя или устройства фундамента керамзитобетон не подойдет. Все дело в среде повышенной влажности, на которую они реагируют не слишком хорошо.

Теплоизоляция

Какой материал лучше держит тепло в доме? Газобетонный блок обладает достойными показателями теплостойкости за счет пористой структуры, внутри которой циркулирует воздух. Керамзит в составе блока известен как хороший изоляционный материал при утеплении чердачных перекрытий, полов и пустот между стен.

Чем выше плотность материала, тем меньшей теплоизоляцией он обладает и требует дополнительного утепления.

Исходя из вышеперечисленного, газобетон можно укладывать в один ряд без использования утеплителя. Керамзитоблок удерживает тепло внутри на 1/3, что потребует использования экструдированного пенополистирола и других теплоизоляционных материалов.

Морозостойкость

По этому показателю оба изделия примерно равны.

Размеры блоков

Для чего нужно знать размеры блоков перед покупкой? Чем больше и легче блок, тем быстрей и проще будут выполнены строительные работы. Блок из газобетона больше по размеру, но и тяжелей. Поэтому скорость строительства дома из этого материала выше. Но для работы с ним понадобится приложить больше физических усилий.

Керамзитоблок легче, но меньше. Укладывать его проще, но сам процесс длится дольше.

Пожаростойкость

Керамзито- и газобетон являются негорючими материалами. Так, при возникновении огня керамзитные блоки остаются прочными еще 3 часа, в то время как газоблок – целых 7 часов.

Паропроницаемость

По показателю влагостойкости эти материалы имеют весомые различия. Газобетон впитывает до 25% влаги, керамзитобетон – до 10%. Однако за счет большего веса на выходе состав влаги будет примерно одинаковым. А вот паропроницаемость у керамзита ниже и значительно. Правда, многие считают, что дышащие стены более экологичны и создают благоприятный микроклимат. Но в таком случае стоит быть готовым к дополнительному утеплению.

Срок усадки

Дом из блоков хорош тем, что дает минимальную усадку. При использовании газобетона этот показатель составляет 0,3 мм/м, керамзитоблока– 0,4 мм/м. А значит, влияние будет минимальным.

Но что делать, если по стенам пошли трещины? Известны и такие ситуации. Здесь все дело не в самом материале, а в технологии строительства. Например, при неправильном устройстве фундамента.

Экологичность

Иногда можно услышать, что в составе ячеистого бетона содержится вредный алюминий. А значит, такие блоки никак не могут быть безопасны. На самом деле концентрация этого вещества настолько мала, что никак не может угрожать нашему здоровью.

При покупке газобетона очень важно довериться надежной компании. Дело в том, что низкокачественные ячеистые блоки частично содержат вместо песка шлаки и золу. Избежать этого можно, если серьезно подойти к выбору продавца, а также проверить сертификаты качества.

Цена

Керамзитобетонные блоки стоят выше. Однако, если брать стоимость коробки целиком, то на выходе итоговая сумма может стать примерно одинаковой. Например, чтобы минимизировать неровную кладку, берется больше раствора и штукатурки, но в то же время нет дополнительных затрат на покупку специальных анкеров. Стоимость доставки также имеет значение. Привезти на участок газоблоки обойдется дешевле, поскольку из расчета на куб итоговый вес материала будет меньше.

Что же лучше – керамзитоблок или газобетон? Каждый вариант имеет свои плюсы и минусы. Поэтому опираться стоит на бюджет, количество этажей, требования теплоизоляции и другие факторы.

Компания «Время строить» поставляет данные материалы напрямую с завода-изготовителя. Мы рады предложить доступные цены, консультации и помощь в расчете, доставку. Звоните прямо сейчас!

 

Сравнение керамзитобетона, плюсы и минусы материала

Керамзитобетон отличается хорошими теплоизоляционными характеристиками, так как основным наполнителем данного материала является лёгкий пористый керамзит. В то же время, стены из данного вида лёгких бетонов имеют значительно меньший вес, чем кирпичные. При этом прочность конструкции из керамзитобетонных блоков достаточно высокая, чтобы обеспечивать безопасность и комфортность эксплуатации дома в течение многих десятилетий.

Однако, керамзитобетон — это не единственный вид лёгкого бетона, который применяется для изготовления стеновых блоков. В современном частном строительстве используются также газосиликатные, газобетонные, пенобетонные и другие виды блоков. Чтобы определиться, какой материал лучше выбрать для возведения дома по конкретному проекту, нужно знать плюсы и минусы блоков из того или иного вида лёгких бетонов.

Газосиликат

Начнём сравнение с того, что лучше, газосиликат или керамзитобетон. Если говорить о прочности, то керамзитобетонные блоки более предпочтительны, чем ГС. Преимущество бетона с керамзитом в том, что он даёт достаточно прочную структуру материала. Это позволяет, например, не беспокоиться о надёжности крепления на стены каких-либо тяжелых объектов. Несущая способность дюбеля, установленного в стену из газосиликатных блоков, будет гораздо ниже, в сравнении с КБ.

Однако, есть у газосиликата и своё преимущество — это хорошая теплоудерживающая способность. Низкая теплопроводность данного пористого бетона делает его более предпочтительным для использования в очень холодных районах. Поэтому точно можно сказать, что теплее газосиликат, а не КБ. Также сам ГС блок значительно легче резать, что упрощает процесс его кладки. По весу в среднем легче будет керамзитобетонный блок, но и газосиликатный можно подобрать такой, чтобы подходил по массе для комфортной укладки.

Газобетон и пенобетон

Если говорить о выборе между керамзитобетоном и газо- или пенобетоном, то следует ориентироваться на технологию их изготовления. Керамзитобетон изготавливается как классический тяжелый бетон с единственным отличием — здесь основной заполнитель не щебень, а лёгкий пористый керамзит. Ячеистые бетоны, к которым относятся пено- и газобетон, которые не содержат крупнофракционных наполнителей. Их готовят на основе цемента, мелкофракционных заполнителей и материалов-порообразователей.

Исходя из этого можно сказать, что лучше, пеноблок, или газоблок, или керамзитобетон. Теплоизоляционные свойства блоков из ячеистых бетонов выше, в сравнении с керамзитовыми. Показатели прочности лучше у КБ блоков, однако паропроницаемость такого дома будет ниже. Если вы делаете ставку на оптимальный микроклимат внутри, выбирая газобетон или керамзитобетон, останавливайтесь на первом. Отзывы специалистов говорят, что ячеистые бетоны лучше пропускают и отдают влагу, создавая комфортную атмосферу внутри помещений.

Сравниваем керамзитобетон и газобетон — АлтайСтройМаш

Многие думают, что керамзит и газобетон мало чем отличаются, и их характеристики близки. Да, конечно, и керамзитные блоки, и газобетонные имеют композитную основу, но их состав отличается.

Основа керамзита – обожжённая глина. Она плотно заполняет основу блока, благодаря чему керамзитобетон имеет высокую прочность.

Неавтоклавные газобетонные блоки состоят из цемента, песка, алюминиевой пудры, воды. Они имеют более пористую и воздушную структуру. Именно наличие внутри воздуха делает теплопроводность газобетона очень низкой.

Керамзитобетон или газобетон: что лучше?

Строительство дома из керамзита или газобетона имеет как ряд преимуществ, так и ряд недостатков.

Преимущества керамзитобетона:

  • высокая прочность,
  • низкая цена,
  • высокая морозостойкость,
  • отличная шумоизоляция,
  • влагостойкость, 
  • пожаробезопасность,
  • экологичность.

Дома из керамзита не подвержены воздействию плесени или грибка. К тому же, в стенах из керамзита, благодаря прочности материала, не образовываются трещины. Не нужно дополнительное армирование стен. Но керамзит имеет ряд существенных недостатков:

  • Высокая теплопроводность.
  • Обязательная наружная штукатурка и облицовка.
  • Для работы нужны специальные инструменты.
  • Керамзитобетон кладется на цементно-песчаный раствор, толщиной до 10 мм. Из-за этого образуются большие мостики холода. Значит потребуется много утеплителя, иначе будут большие затраты на отопление дома.

Сильные стороны газобетона:

  • Низкая теплопроводность. Благодаря наличию в порах воздуха, дом можно построить даже без утеплителя.
  • Простота кладки. Блоки газобетона имеют ровные пропорции, поэтому их просто класть. Плюс, газоблок имеет сравнительно небольшой вес.
  • Тонкий шов на клеевой основе. Блоки кладутся на специальный клей, толщина которого 2-3 мм. Поэтому мостики холода практически не образуются.
  • Низкая стоимость итоговой постройки. Цена на куб газоблока гораздо ниже, чем на куб кирпича.
  • Простота обработки. Резать блоки можно подручными инструментами, которые есть в наличии.
  • Огнестойкий.
  • Абсолютно экологичен.

Недостатки газобетона:

  • Хрупкость материала. Из газобетона не рекомендуют возводить постройки выше 2-3-х этажей.
  • Повышенная влагопроницаемость. Газоблок обязательно нужно защитить от воздействия воды.
  • Облицовка здания с применением вентилируемых фасадов или вентзазоров.

Нет четкого ответа, какой материал однозначно лучше. Оба вида композитных блоков обладают своими достоинствами и недостатками. Для начала определитесь, какие показатели для вас важнее всего, и на основе этого принимайте решение. Хотите, чтобы дом был теплый зимой, а летом не нагревался? Тогда выбирайте газобетон. Не хотите заниматься армированием? Тогда можете использовать керамзит.

Смешанные стены: газобетон и керамзитобетон        

Бывают случаи, когда неопытные строители хотят совместить два популярных материала: снаружи керамзит, для надежности конструкции, а внутри газобетон в качестве утеплителя. Но данный метод очень затратный.

Керамзитобетон – пористый и паропроницаемый материал, как и газоблок. Чтобы конденсат не скапливался внутри смешанной стены, керамзит нужно обязательно утеплить снаружи + сделать облицовку фасада, чтобы защитить его от осадков. Поэтому утеплять стену из керамзитоблоков и внутри, и снаружи – дорого и не выгодно.

Гораздо проще будет сделать основную стену из блоков, например, газобетонных, далее положить слой утеплителя и сделать снаружи красивый и практичный вентилируемый фасад.

Компания «АлтайСтройМаш» предлагает готовое оборудование для изготовления газобетона. Менеджеры компании помогут рассчитать перспективы бизнеса в Вашем регионе. Каталог оборудования и отзывы клиентов из России, Узбекистана и Казахстана можно посмотреть в соответствующих разделах сайта.

Что выбрать газобетон или керамзитобетон: особенности, плюсы и минусы

Дата: 29 сентября 2018

Просмотров: 4839

Коментариев: 0

Люди живут с мечтой о постройке собственного дома. Они желают воплотить в жизнь замыслы по строительству прочного здания. Отдавая предпочтение материалу для дома, приходится делать выбор: газобетонные блоки или керамзитобетонные. Ведь на протяжении десятилетий стены семейного очага обязаны приносить радость и согревать теплом.

Для производства керамзитобетона используют обожженную глину, именуемую керамзитом или керамзитовым гравием

Что лучше использовать в качестве основы: газобетонные блоки или керамзитобетонные? Они популярны на рынке сырья для обустройства домов. Перед закладкой фундамента определите, какой композитный блок целесообразно использовать.

Выбрать материал нелегко, следует учитывать характеристики и отличительные свойства этих, пользующихся спросом, композитов. Произведите сравнение газобетона и керамзитобетона, проанализировав рекламируемые достоинства и подтвержденные опытом недостатки.

Общие черты

Что лучше газобетон или керамзитобетон, которые относятся к ячеистому сырью? Материалы используются при строительных работах, возведении капитальных стен, перегородок. Керамзитобетонные блоки и основа с газовыми порами имеют наполнитель. Концентрация полостей составляет 70% суммарного объема. Это уменьшает массу блоков возводимых конструкций.

Отличия

Несмотря на схожесть характеристик, газобетонные блоки или керамзитобетонные отличаются:

  • Сферой применения. Керамзитобетон распространен при строительных работах, как монолитная основа и блочки. При возведении конструкций монолитного типа использование газобетона ограничено. Материал «формуется» в блок, имеющий различные размеры.

    Чтобы отлить керамзитоблок, керамзит просеивают для получения камешков одного размера, смешивают с цементом и песком, добавляют воду

  • Прочностными характеристиками цельных и блочных конструкций. Керамзит обеспечивает дополнительную прочность в отличие от воздуха, заполняющего полости в газобетоне, пустоты которого повышают хрупкость. Ударное воздействие на изделие, способно нарушить целостность. Объединённые кладкой, керамзитобетонные блоки, способны выдержать огромные нагрузки. Они обладают запасом прочности. Газобетон имеет аналогичные показатели только при высоких марках сырья, что, соответственно, потребует немалых финансовых затрат.
  • Устойчивостью к образованию трещин. Газонаполненные поверхности склонны к появлению трещин. Они проявляются при сдаче новостроек.
  • Уровнем тепловой изоляции. Изделие, содержащее керамзит, обладает меньшей теплоизоляцией. При равной толщине стен тепло лучше удерживается в помещении из газобетонного материала.
  • Способностью поглощать влагу, которой обладают оба материала. Но пористый блок от ее воздействия разрушается, что не позволяет использовать его без дополнительной штукатурки.
  • Размерами готовых изделий. Идеальную форму имеют газобетонные изделия. Их проще укладывать, что ускоряет процесс кладки. Также готовое сооружение из газобетона имеет более эстетичный внешний вид.
  • Составом. Изготовление пористого сырья осуществляется с использованием песка, извести, цемента, алюминиевой пудры, способствующей газообразованию. При производстве керамзитобетона применяется смесь цемента, фракций керамзита и песка. Связующий компонент – вода, на основе которой осуществляется смешивание.
  • Особенностями производства. Специальное технологическое оборудование задействовано при изготовлении газобетона. Керамзитобетонные блоки обладают отличным качеством и могут изготавливаться самостоятельно.

    Газобетон имеет малый вес, идеальную поверхность и форму отливаемого блока или монолитного сооружения

  • Технологией изготовления. Последовательность различных операций сопровождает процесс изготовления ячеистого композита.
  • Особенностями кладки. Блоки из керамзитобетона кладутся на раствор из цементно-песчаной смеси. Размер шва составляет более 10 миллиметров. Формирование стен газоблоками осуществляется с применением специальной клеевой основы, связывающей материал. Расстояние между блоками не превышает 2 миллиметров. Это уменьшает толщину «мостиков холода», способствует сохранению температуры.
  • Спецификой отделочных мероприятий. Легче выполнять штукатурку керамзитобетонных поверхностей, к которым хорошо прилипает цементно-песчаный раствор. Гладкая структура поверхности газобетона создает проблемы при штукатурке. Нанесение шпаклевки либо штукатурки тонким слоем обеспечивает товарный вид.
  • Необходимостью укрепленного фундамента. Не допускается пренебрежительное отношение к фундаменту. Не экономьте на обустройстве, производя монтаж конструкций. Учитывая повышенную хрупкость газонаполненного композита, основа здания должна обладать надежностью и прочностью.

Бетон, наполненный керамзитом (керамзитобетон): технологические нюансы изготовления

Керамзит или обожженная глина – основа изделий. Технология изготовления предусматривает вспенивание компонентов, отжиг. Отливке основы предшествует сепарирование керамзитной фракции, обеспечивающее однородность. Воду смешивают с песком и цементом до однородности. Полученным раствором наполняют герметичную опалубку или литформы блочков. Вибропрессование – заключительная операция. Спустя 4 недели после заливки, керамзитобетонные блоки приобретают монолитность. Материал отличается экологическими характеристиками. Он распространен на европейском континенте.

Теплозащитные свойства керамзитобетонного сооружения невысоки

Как получают газовый композит

Газоблок или газобетон создают технологией автоклавного твердения. Применяемые компоненты – кварцевый песок, вода, наполнитель на основе извести или цемента, алюминиевая пудра. Ингредиенты до однородного состояния перемешивают, помещают смесь в камеру с повышенной влажностью, куда под давлением нагнетается насыщенный пар. В этих условиях оксиды кальция и алюминия взаимодействуют с кварцевым песком. Смесь циркулирует в ходе реакции с образованием воздушных пор. Итог химического процесса – получение искусственного стойкого минерала, наполненного газом. Затвердевание рабочей смеси происходит естественным образом. Полученный пласт разрезается на панели или заготовки требуемых размеров.

Достоинства керамзитобетона

Применяемый при возведении зданий материал на базе керамзита наделен следующими плюсами:

  • увеличенными теплозащитными характеристиками, повышенной прочностью;
  • дешевизной;
  • возросшим коэффициентом шумовой изоляции;
  • повышенным запасом прочности;
  • продолжительным периодом эксплуатации, устойчивостью к отрицательным температурам;
  • способностью противодействовать накоплению влаги;

Блоки из газобетона хорошо режутся, шлифуются. Транспортировка блоков не создает особых проблем

  • легкой массой;
  • экологичностью;
  • противодействием образованию трещин и усадке объектов;
  • использованием при строительстве капитальных стен, формировании проемов, обустройстве перегородок здания;
  • влагостойкостью, пожарной безопасностью;
  • невозможностью образования плесени, появления грибка;
  • простотой обработки;
  • долговечностью;
  • уменьшенной себестоимостью возведения постройки по сравнению со строительством кирпичного объекта.

Слабые стороны

Несмотря на плюсы, керамзитобетон отличается недостатками:

  • Повышенной хрупкостью.
  • Низким коэффициентом тепловой изоляции.
  • Необходимостью дополнительной отделки поверхности, предназначенной для облицовки.
  • Керамзитобетонные блоки требуют специального обрабатывающего и распиловочного оборудования.

На поверхности керамзитобетона не образуется плесень и не появляются грибки

Газобетон: преимущества

К положительным характеристикам газобетона относятся следующие факторы:

  • масса, чистота поверхности монолитной конструкции или изделия;
  • легкость выполнения монтажных операций, соединение с помощью клеящего состава;
  • повышенные теплоизоляционные свойства;
  • возможность шлифования и обработки;
  • чистота помещения при кладке;
  • возможность погрузки и разгрузки вручную, обусловленная небольшим весом, который имеют плиты или газобетонные блоки;
  • проницаемость паром с выводом лишней влажности;
  • экологическая чистота, связанная с отсутствием токсических компонентов;
  • возведение конструкций, не требующих специального утепления;
  • применение для обустройства перегородок дома;
  • нецелесообразность дополнительной обработки поверхности, которая гарантирует чистоту и плоскостность.

Недостатки газонаполненной основы

К отрицательным моментам газобетона относятся:

  • Недостаточная прочность.
  • Легкая проницаемость паром.

Готовые стены и перегородки из газобетонных блоков требуют обустройства гидроизоляции

  • Увеличенная хрупкость газобетона под воздействием нагрузки.
  • Образование трещин, проседание здания.
  • Необходимость дополнительной гидроизоляции перегородок и стен.
  • Потребность в специальной крепежной фурнитуре основы, фиксирующей тяжелые предметы.
  • Невозможность использования материала при строительстве капитальных опор. Практические данные подтверждают, что базовый коэффициент сбережения тепла конструкций с воздушным наполнителем обеспечивается при толщине 650 миллиметров. Это вызывает сверхнормативный расход смеси для монолитных конструкций. Возникает необходимость усиления фундамента. Если возводится многоэтажная постройка, то установите укрепляющий контур армопояс. Несоблюдение этого требования вызывает разрушение объекта и усадку. Монолитная газовая основа или газобетонные блочки с толщиной 300 миллиметров, пригодные для возведения бани.
  • Создание благоприятных условий грызунам, заполняющим полости конструкций.

Экономические аспекты

Что выбрать, задумываясь о предстоящем строительстве? Стоит ли следовать рекомендациям рекламных буклетов производителей? Самостоятельно произведите сравнение газобетона и керамзитобетона. Ведь не обязательно, что дешевый материал – лучше остальных. Необходим тщательный экономический анализ непредвиденных расходов. Не ограничивайтесь сравнением затрат на газобетонные блоки или керамзитобетонные изделия.

Для крепления на стене из газобетона или блоков из него тяжелых предметов необходим специальный крепеж

Обратите внимание на следующие моменты:

  • капитальные стены из керамзитобетона выдерживают серьезные нагрузки при толщине 20 см, которая недостаточна для газобетонных элементов;
  • избежать появления возможных трещин можно при использовании перекрытий плит из газонаполненного состава, имеющего повышенную марку;
  • газовый бетон нуждается во внешней отделке, надежном утеплении;
  • армированный пояс, смонтированный по контуру здания, не обязателен для керамзитобетона, но без этого усиления не допускается выполнение стен из состава, наполненного газом.

Рекомендации по выбору

Решая, что выбрать, прислушайтесь к советам профессионалов. Произведите сравнение газобетона и керамзитобетона. Выбирая материал для строительства дома, сделайте акцент на главном:

  • Сохранение тепла в здании.
  • Долговечность дома.
  • Рациональность бюджета.

Выбирая, что лучше газобетон или керамзитобетон, не следует основывать решение на отдельно взятом факторе. Первый – лучше сохраняет тепло, но, вместе с тем, он менее прочен. Учтите вероятность возникновения проблемных ситуаций, связанных с внутренней и внешней отделкой помещения.

Без предварительного калькулирования затрат на отдельные стадии строительства: выполнения фундаментов, отделочных мероприятий, армирования не целесообразно оценивать затраты на приобретение.

Люди боятся покупать строительные материалы, опасные для здоровья людей. Если вы хотите выбрать строительный композит, безопасный окружению и обладающий экологической чистотой, то это – керамзитобетон и газонаполненные бетонные изделия, которые выпускаются с соблюдением технологического процесса, обеспечивающего безопасность здоровья и экологичность.

Если вы планируете постройку здания, рекомендуем детально изучить свойства материалов и произвести сравнение газобетона и керамзитобетона. Каждый из них наделен достоинствами, однако имеет минусы. Что выбрать – серьезная задача! Важно обеспечить комфортный микроклимат помещения, где поддерживается тепло в зимний период и прохладно летом. Приняв правильное решение, вы достигнете экономии на отоплении и передадите дом детям и внукам!

На сайте: Автор и редактор статей на сайте pobetony. ru
Образование и опыт работы: Высшее техническое образование. Опыт работы на различных производствах и стройках — 12 лет, из них 8 лет — за рубежом.
Другие умения и навыки: Имеет 4-ю группу допуска по электробезопасности. Выполнение расчетов с использованием больших массивов данных.
Текущая занятость: Последние 4 года выступает в роли независимого консультанта в ряде строительных компаний.

Изучить влияние керамзита и микрокремнезема на свойства легкого бетона

Основные моменты

Получен энергоэффективный бетон с воздействием на окружающую среду.

Керамзит и пена использовались для производства термобетона.

Легкий бетон показал более высокие свойства теплового комфорта в помещениях.

Изготовленный бетон обеспечивает баланс между тепловыми и структурными характеристиками.

Реферат

Это исследование было сосредоточено на разработке самотечного и энергоэффективного пенобетона с легким заполнителем (LAFC), который будет использоваться в качестве теплоизоляции, теплоизоляции и конструкционного материала. Бетонные смеси низкой плотности (для значений плотности от 800 до 1300 кг / м 3 ) были приготовлены путем изменения объема легкого керамзитового заполнителя (ЭКА) с 49,4% до 20,1%. Текучесть бетонных смесей улучшена с помощью стабильной пены.Обычный портландцемент (OPC) был заменен на 5% и 10% микрокремнезем (SF), чтобы изучить влияние SF на свойства LAFC. Прочность на сжатие и предел прочности смесей LAFC были увеличены соответственно с 6,5 МПа до 24,30 МПа и от 0,52 МПа до 1,63 МПа за счет уменьшения объема ЭКА с 49,4% до 20,1%. Смесь LAFC (800-0SF) с самой низкой плотностью показала самые высокие значения пористости и коэффициента сорбции 70,63% и 2,56 кгм -2 мин -0,5 . Теплопроводность, объемная удельная теплоемкость и температуропроводность смесей LAFC находились в диапазоне 0. 23–0,45 Вт · м −1 K −1 , 1136–1631 кДж / м 3 .K и 0,20–0,275 мм 2 / с соответственно. Анализ SEM показал, что уменьшение объема ECA и добавление SF уплотняют микроструктуру LAFC. Наконец, смеси LAFC были классифицированы на бетоны класса I, класса II и класса III по конструкции и изоляционным целям в соответствии с функциональной классификацией RILEM.

Ключевые слова

Пенобетон

Керамзитовый заполнитель

Пористость

Сорбционная способность

Теплопроводность

Рекомендуемые статьи Цитирующие статьи (0)

Полный текст

© 2019 Elsevier Ltd.Все права защищены.

Рекомендуемые статьи

Ссылки на статьи

Влияние летучей золы, золы и легкого керамзитового заполнителя на бетон

Разработка новых методов укрепления бетона ведется десятилетиями. Развивающиеся страны, такие как Индия, используют обширные армированные строительные материалы, такие как летучая зола, зольный остаток и другие ингредиенты при строительстве RCC. В строительной отрасли основное внимание уделяется использованию летучей золы и зольного остатка в качестве заменителя цемента и мелкого заполнителя.Кроме того, для облегчения веса бетона был введен легкий керамзит вместо крупного заполнителя. В данной статье представлены результаты работ, выполненных в режиме реального времени для формирования легкого бетона, состоящего из летучей золы, зольного остатка и легкого керамзитового заполнителя в качестве минеральных добавок. Экспериментальные исследования бетонной смеси М 20 проводят путем замены цемента летучей золой, мелкого заполнителя шлаком и крупного заполнителя легким керамзитом из расчета 5%, 10%, 15%, 20%, 25 %, 30% и 35% в каждой смеси, их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7, 28 и 56 дней, а прочность на изгиб обсуждалась для 7, 28 и 56 дней в зависимости от оптимальной дозировки. замены бетона по прочности на сжатие и раздельному разрыву.

1. Введение

Бетон с высокими эксплуатационными характеристиками указывает на исключительную форму бетона, наделенную удивительными характеристиками и прочностью, которые не требуют регулярной периодической оценки с помощью традиционных материалов и стандартных методов смешивания, укладки и отверждения [1] . Обычный портландцемент (OPC) занял незавидную и непобедимую позицию в качестве важного материала в производстве бетона и тщательно выполняет свои задуманные обязательства в качестве необычного связующего для соединения всех собранных материалов.Для достижения этой цели остро необходимо сжигание гигантской меры топлива и гниение известняка [2]. Некоторые марки обычного портландцемента (OPC) доступны по индивидуальному заказу, чтобы соответствовать классификации конкретного национального кода. В этом отношении Бюро индийских стандартов (BIS) прекрасно справляется с задачей классификации трех отдельных классов OPC, например, 33, 43 и 53, которые хронически широко использовались в строительной отрасли [3]. Прочность, стойкость и различные характеристики бетона зависят от свойств его ингредиентов, пропорции смеси, стратегии уплотнения и различных мер контроля при укладке, уплотнении и отверждении [4].Бетон, содержащий отходы, может способствовать управляемому качеству строительства и способствовать развитию области гражданского строительства за счет использования промышленных отходов, минимизации использования природных ресурсов и производства более эффективных материалов [5]. В портландцементном бетоне используется летучая зола, когда характеристики потери при возгорании (LOI) находятся в пределах 6%. Летучая зола содержит кристаллические и аморфные компоненты вместе с несгоревшим углеродом. Он охватывает различные размеры несгоревшего углерода, который может достигать 17% [6].Летучая зола часто упоминается как прудовая зола, и в течение длительного времени вода может стекать. Обе методики позволяют сбрасывать летучую золу на свалки в открытом грунте. Химический состав летучей золы по-прежнему изменяется в зависимости от типа угля, используемого для сжигания, условий горения и производительности откачки устройства контроля загрязнения воздуха [7]. Для воздействия летучей золы и замены всего вытоптанного песчаника на бетонные и мраморные разбрасыватели использовались сборные бетонные блокирующие квадраты [8].Принимая во внимание мощность бетонных зданий, современная бетонная методология устанавливает экстраординарные меры для снижения температуры на высшем уровне и разницы температур за счет использования материалов с минимальным уровнем выделения тепла, чтобы избежать или снова снизить тепловое расщепление, что приведет к предотвращению теплового расщепления. разложение бетона [9]. Производство бетона осуществляется при чрезвычайно высоких и незаметно низких температурах бетона, чтобы понять удобоукладываемость и качество сжатия [10].Статистическая модель и кинетические свойства изгиба, разрыва при растяжении, а также модуль гибкости по устойчивости к сжатию проистекают из неоправданного коэффициента корреляции [11]. Известно, что бетон, полученный из мельчайших общих и превосходных пустот, обогащен блестящими знаниями по исключению материалов [12]. В Индии энергетическое подразделение, сосредоточенное на угольных тепловых электростанциях, производит колоссальное количество летучей золы, оцениваемое примерно в 11 крор тонн ежегодно.Потребление летучей золы оценивается примерно в 30% для обеспечения различных инженерных свойств [13]. При зажигании угля для выработки энергии в котле выделяется около 80% несгоревшего материала или золы, которая уносится с дымовыми газами и улавливается и утилизируется в виде летучей золы. Остаточные 20% золы помогают высушить базовую золу [14]. В момент сжигания пылевидного угля в котле с сухим днищем от 80 до 90% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы.Остаточные 10–20% золы предназначены для сушки шлаков, песка, материала, который собирается в заполненных водой контейнерах у основания печи [15]. Зольный шлак в бетоне создается методом фракционного, почти агрегатного и тотального замещения мелкозернистых заполнителей в бетоне [16]. С другой стороны, из легкого бетона неудобно относить корпус к уникальной категории материалов. Однако у LWC (легкого бетона) четкие края, и падение общих расходов, вызванное более низкими статическими нагрузками, постоянно перекрывается повышенными производственными затратами [17].Фактически, легкий бетон стал приятным фаворитом по сравнению со стандартным бетоном с точки зрения множества непревзойденных свойств. Снижение собственного веса обычно приводит к сокращению производственных затрат [18]. Самоуплотняющийся бетон на заполнителях с нормальным весом (SCNC) должен стать фаворитом при разработке. Рост затрат на строительство SCLC положительно согласуется с ростом расходов на SCNC [19]. Собственный вес бетона из легкого заполнителя оценивается примерно на 15% ~ 30% легче, чем у стандартного бетона, что в достаточной степени соответствует механическим характеристикам, которые требуются для дорожной опоры при указанной степени плотности [20].Растущее использование легкого бетона (LWC) привело к необходимости производства искусственного легкого бетона в целом, что может быть выполнено с помощью методологии сборки холодного склеивания. Производство искусственных легких заполнителей методом холодного склеивания требует гораздо меньших затрат энергии по сравнению со спеканием [21]. Легкий бетон, изготовленный из натуральных или искусственных легких заполнителей, доступен во многих частях мира. Его можно использовать как часть создания бетона с широким диапазоном удельного веса и подходящего качества для различных применений [22].Бетон из легких заполнителей повышает его эффективность, предотвращая близлежащие повреждения, вызванные баллистической нагрузкой. Более низкий модуль упругости и более высокий предел деформации при растяжении обеспечивают легкий бетон, противоположный стандартному бетону, с превосходной ударопрочностью [23]. Строители все чаще рекомендуют легкий бетонный материал для достижения приемлемого улучшения из-за его высоких прочностных и термических свойств [24]. Сила адгезии достигается за счет прочности связующего и сцепления агрегатов, которые постоянно сосредоточены вокруг угловатости, ровности и протяженности [25].Легкий керамзитовый заполнитель (LECA), как правило, включает крошечные, легкие, вздутые частицы обожженной глины. Сотни и тысячи крошечных, заполненных воздухом углублений успешно наделяют LECA своей безупречной прочностью и теплоизоляционными качествами. Считается, что среднее водопоглощение всего LECA (0–25 мм) связано с 18 процентами объема в состоянии насыщения в течение 3 дней. Обычный портландцемент (OPC) частично заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) по весу 5%, 10%, 15%, 20%, 25 %, 30% и 35% по отдельности.Прочность на сжатие, прочность на разрыв и прочность на изгиб успешно оцениваются с помощью определенных входных значений при одновременном исследовании.

2. Экспериментальная программа

Целью работы является оценка прочности на сжатие (CS), прочности на разрыв (STS) и прочности на изгиб (FS) бетона. В этой бетонной смеси обычный портландцемент () заменяется летучей золой, мелкий заполнитель заменяется зольным остатком, а крупный заполнитель заменяется легким керамзитом (LECA) массой 5%, 10%, 15%. , 20%, 25%, 30% и 35% соответственно.Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств бетона со всеми материалами. Каждый вес (5%, 10%, 15%, 20%, 25%, 30% или 35%) материала проводил испытание в течение 7 дней, 28 дней и 56 дней. Параметрами, участвующими в оценке характеристик бетона, являются прочность на сжатие (CS), прочность на разрыв (STS) и прочность на изгиб (FS), которые достигаются в ходе экспериментов в реальном времени.Затем определение прочности на изгиб обсуждалось в течение 7, 28 и 56 дней в зависимости от нагрузки для оптимальной дозировки замены по прочности на сжатие и разделенной прочности бетона на растяжение.

2.1. Используемые материалы

В этом разделе перечислены названия материалов, использованных в данном исследовании, и их характеристики. Ресурсы: обычный портландцемент, летучая зола, зольный остаток, мелкий заполнитель, крупный заполнитель и легкий керамзитовый заполнитель (LECA).

2.1.1. Обычный портландцемент

Обычный портландцемент — это основная форма цемента, где 95% клинкера и 5% гипса, который добавляется в качестве добавки для увеличения времени схватывания цемента до 30 минут или около того.Гипс контролирует время начального схватывания цемента. Если гипс не добавлен, цемент затвердеет, как только вода будет добавлена ​​в цемент. Различные сорта (33, 43,53) OPC были классифицированы Бюро индийских стандартов (BIS). Его производят в больших количествах по сравнению с другими типами цемента, и он превосходно подходит для использования в общем бетонном строительстве, где отсутствует воздействие сульфатов в почве или грунтовых водах. В этом исследовании цемент () имеет удельный вес 3.15, а также время начального и окончательного схватывания цемента 50 минут и 450 минут.

2.1.2. Летучая зола

Самый распространенный тип угольных печей в электроэнергетике, около 80% несгоревшего материала или золы уносится с дымовыми газами, улавливается и восстанавливается в виде летучей золы. Летучая зола была собрана на тепловой электростанции Тотукуди, Тамил Наду, Индия. Растущая нехватка сырья и острая необходимость защиты окружающей среды от загрязнения подчеркнули важность разработки новых строительных материалов на основе промышленных отходов, образующихся на угольных ТЭЦ, которые создают неуправляемые проблемы утилизации из-за их потенциального загрязнения окружающей среды. .Поскольку стоимость утилизации летучей золы продолжает расти, стратегии утилизации летучей золы имеют решающее значение с экологической и экономической точек зрения. В качестве исходных материалов используются две новые области переработки угольной летучей золы, как показано на Рисунке 1 (а).

2.1.3. Нижняя зола

Оставшиеся 20% несгоревшего материала собираются на дне камеры сгорания в бункере, заполненном водой, и удаляются с помощью водяных струй под высоким давлением в отстойник для обезвоживания и восстанавливаются в виде зольного остатка. как показано на рисунке 1 (b).Зольный остаток угля был получен с тепловой электростанции Thoothukudi, Тамил Наду, Индия. Летучая зола была получена непосредственно из нижней части электрофильтра в мешок из-за ее порошкообразной и пыльной природы, в то время как зола угольного остатка транспортируется со дна котла в зольную емкость в виде жидкой суспензии, где была собрана проба. Зола более легкая и хрупкая, это темно-серый материал с размером зерна, аналогичным песчанику.

2.1.4. Мелкозернистый заполнитель

В соответствии с индийскими стандартами природный песок представляет собой форму кремнезема () с максимальным размером частиц 4.75 мм и использовался как мелкий заполнитель. Минимальный размер частиц мелкого заполнителя составляет 0,075 мм. Он образуется при разложении песчаников в результате различных атмосферных воздействий. Мелкозернистый заполнитель предотвращает усадку раствора и бетона. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,67 и 2,3.

Мелкий заполнитель — это инертный или химически неактивный материал, большая часть которого проходит через сито 4,75 мм и содержит не более 5 процентов более крупного материала. Его можно классифицировать следующим образом: (а) природный песок: мелкий заполнитель, который является результатом естественного разрушения горных пород и отложился ручьями или ледниками; (б) щебневый песок: мелкий заполнитель, полученный при дроблении твердого камня; (в) ) щебень из гравийного песка: мелкий заполнитель, полученный путем измельчения природного гравия.

Уменьшает пористость конечной массы и значительно увеличивает ее прочность. Обычно в качестве мелкого заполнителя используется натуральный речной песок. Однако там, где природный песок экономически недоступен, в качестве мелкого заполнителя можно использовать мелкий щебень.

2.1.5. Грубый заполнитель

Грубый заполнитель состоит из природных материалов, таких как гравий, или является результатом дробления материнской породы, включая природную породу, шлаки, вспученные глины и сланцы (легкие заполнители) и другие одобренные инертные материалы с аналогичными характеристиками. с твердыми, прочными и прочными частицами, соответствующими особым требованиям этого раздела.

В соответствии с индийскими стандартами измельченный угловой заполнитель проходит через сито IS 20 мм и полностью удерживает сито IS 10 мм. Удельный вес и модуль крупности крупнозернистого заполнителя составляли 2,60 и 5,95.

2.1.6. Легкий наполнитель из вспененной глины (LECA)

LECA показан на Рисунке 1 (c). он имеет сильную стойкость к щелочным и кислотным веществам, а pH около 7 делает его нейтральным в химической реакции с бетоном. Легкость, изоляция, долговечность, неразложимость, структурная стабильность и химическая нейтральность собраны в LECA как лучшем легком заполнителе для полов и кровли.Размер заполнителя составляет 10 мм, а максимальная плотность не превышает 480 кг / м. 3 . LECA состоит из мелких, прочных, легких и теплоизолирующих частиц обожженной глины. LECA, который является экологически чистым и полностью натуральным продуктом, не поддается разрушению, негорючий и невосприимчив к воздействию сухой, влажной гнили и насекомых. Легкий бетон обычно подразделяется на два типа: газобетон (или пенобетон) и бетон на легких заполнителях.Газобетон имеет очень легкий вес и низкую теплопроводность. Тем не менее, процесс автоклавирования необходим для получения определенного уровня прочности, что требует специального производственного оборудования и потребляет очень много энергии. Напротив, бетон из легких заполнителей, который производится без процесса автоклавирования, имеет более высокую прочность, но показывает более высокую плотность и более низкую теплопроводность бетона.

2.1.7. Conplast Admixture SP430 (G)

Conplast SP430 (G) используется там, где требуется высокая степень удобоукладываемости и ее удержания, когда вероятны задержки в транспортировке или укладке, или когда высокие температуры окружающей среды вызывают быстрое снижение осадки.Это облегчает производство высококачественного бетона. Conplast SP430 (G) соответствует тому факту, что он был специально разработан для обеспечения высокого снижения воды до 25% без потери удобоукладываемости или для производства высококачественного бетона с пониженной проницаемостью. Когезия улучшается за счет диспергирования частиц цемента, что сводит к минимуму сегрегацию и улучшает качество поверхности. Оптимальная дозировка лучше всего определяется испытаниями бетонной смеси на объекте, что позволяет измерить эффекты удобоукладываемости, увеличения прочности или уменьшения цемента.Этот тип ингредиентов добавляется в бетон для придания ему определенных улучшенных качеств или для изменения различных физических свойств в его свежем и затвердевшем состоянии. Оптимальная дозировка цемента 0,6–1,5 л / 100 кг. Добавление добавки может улучшить бетон в отношении его прочности, твердости, удобоукладываемости, водостойкости и так далее.

2.1.8. Структурные характеристики балки

Структурные характеристики балки — это диаметр верхней арматуры 8 мм, диаметр нижней арматуры 12 мм и хомуты 6 мм (рис. 2).Общая длина балки, используемой для отклонения, составляет 1 метр. Эта спецификация используется в бетонной конструкции, и весь процесс выполняется в спецификации бетона.


2.1.9. Конструкционный легкий бетон

Бетон изготавливается из легкого грубого заполнителя. Легкие заполнители обычно требуют смачивания перед использованием для достижения высокой степени насыщения. Основное использование конструкционного легкого бетона — уменьшить статическую нагрузку на бетонную конструкцию.В обычном бетоне различная градация заполнителей влияет на необходимое количество воды. Добавление некоторых мелких заполнителей приводит к увеличению необходимого количества воды. Это увеличение воды снижает прочность бетона, если одновременно не увеличивается количество цемента. Количество крупного заполнителя и его наибольший размер зависят от требуемой удобоукладываемости бетонной смеси. Также в легком бетоне этот результат существует среди градации, требуемого количества воды и полученной прочности бетона, но есть и другие факторы, на которые следует обратить внимание.В большинстве легких заполнителей по мере увеличения размера заполнителя прочность и объемная плотность заполнителя уменьшаются. Использование легкого заполнителя очень большого размера с меньшей прочностью приводит к снижению прочности легкого бетона; поэтому максимальный размер легкого заполнителя должен быть ограничен максимум 25 мм.

3. Методология

Пропорция бетонной смеси для марки M 20 была получена на основе рекомендаций согласно индийским стандартным техническим условиям (IS: 456-2000 и IS: 10262-1982).В данном исследовании экспериментальное исследование бетонной смеси M 20 проводится путем замены цемента летучей золой, мелкого заполнителя на зольный остаток и крупного заполнителя легким керамзитом (LECA) в дозах 5%, 10%, 15%, 20%, 25%, 30% и 35% соответственно. Эти материалы следует добавлять для увеличения прочности цемента. В экспериментальном исследовании бетонный куб или цилиндр используется для анализа свойств OPC со всеми материалами. Их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28 дней, 56 дней, а прочность на изгиб балки обсуждалась в течение 7, 28 и 56 дней в зависимости от оптимальной дозировки замены по прочности на сжатие и разделенному растяжению. прочность бетона.Как правило, летучая зола и зольный остаток имеют аналогичные физические и химические свойства по сравнению с обычным портландцементом (OPC) и мелким заполнителем, и нет большого количества отклонений для замены друг друга. В этом сценарии легкий керамзитовый заполнитель (LECA) был заменен на крупнозернистый заполнитель на основе его объема, поскольку плотность каждого материала не такая же, как у другого материала, и невозможно заменить его на основе его массы. Для повышения удобоукладываемости бетона добавлен суперпластификатор.

Соотношение бетонной смеси марки М 20 составило 1: 1,42: 3,3. Контролируемый бетон марки M 20 был изготовлен с заменой 0% летучей золы, зольного остатка и легкого керамзитового заполнителя (LECA) в каждой смеси, и их прочность на сжатие и прочность на разрыв бетона обсуждались для 7, 28, и 56 дней, а прочность бетона на изгиб обсуждалась в течение 7, 28 и 56 дней. В связи с этим замена цемента на зольную пыль, мелкого заполнителя на зольный остаток и крупнозернистого заполнителя на легкий керамзитовый заполнитель (LECA) из расчета 5%, 10%, 15%, 20%, 25%, 30% и Было проведено 35% испытаний в каждой смеси, и их прочность на сжатие и прочность на разрыв бетона обсуждались в течение 7 дней, 28, дней, 56 дней, а прочность на изгиб балки в течение 7, 28 и 56 дней зависит от оптимальной дозировки замены при сжатии. прочность и разделенная прочность бетона на растяжение.

Водопоглощение легкого заполнителя со слишком большим количеством пор намного больше, чем у обычных заполнителей (речных заполнителей). Определение степени водопоглощения в агрегатах такого типа затруднено из-за различного количества поглощенной воды. Агрегат LECA производит вращающуюся печь, и из-за его гладкой поверхности водопоглощение заполнителя LECA почти равно или несколько больше, чем у обычного заполнителя; поэтому создание легкой бетонной смеси с заполнителем LECA так же сложно, как и с обычным заполнителем.Для определения количества каждого ингредиента в легкой бетонной смеси (наряду с количеством абсорбированной воды в легких заполнителях, особенно со слишком большими порами с шероховатой и угловатой поверхностью, путем приготовления различных смесей) можно использовать общие методы проектирования: обычная бетонная смесь.

4. Результаты и обсуждение

Из таблицы 1 видно, что для контрольных образцов прочность бетона увеличивается с возрастом. При замене 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя LECA прочность на сжатие бетона такая же, как у контрольного бетона.Прочность на разрыв при растяжении немного снижается в раннем возрасте и достигает той же прочности контрольного бетона через 56 дней.


0 17.94
0 17.94 2,59 30. 24 9015 9015

1,92

Замена в процентах Сухой вес образца (куб) в кг / м 3 Прочность на сжатие бетона (Н / мм 2 ) Сухой вес образца (цилиндр) в кг Разделенная прочность на разрыв бетона (Н / мм 2 )
7 дней 28 дней 56 дней 7 дней 28 дней 56 дней

9.45 17.96 26.93 26.95 14.35 1.60 2.54 2.57
5 9.18 9.18
10 8,89 17,17 25,73 25,76 13,85 1,5 2,32 2,33
80 15.54 16,06 24,09 24,11 13,60 1,44 2,17 2,18
20 8,41 13,41 8,41 13,41 20,10 2,12
25 8,31 11,32 16,96 16,97 13,15 1,35 2,05 2,06
30 10,19 15,26 15,23 12,72 1,31 1,96 1,98
35 8,13 9,73 9015 9015 9015 9015 9015 9,73

Также наблюдается, что при увеличении замены материала прочность на сжатие и прочность на разрыв при растяжении уменьшаются.Сухой вес образцов куба и цилиндра уменьшается по отношению к большему количеству замен материалов.

4.1. Анализ прочности в зависимости от возраста бетона

В таблице 1 прочность бетона на сжатие и прочность на разрыв бетона при разделении оцениваются с помощью различных процентных соотношений смешивания, применяемых для образования кубического образца сухой массы и цилиндрического образца сухой массы, соответственно, по отношению к разным дней.

Для бетона марки M 20 учитывается следующее предложенное процентное смешивание для различных образцов сухой массы, примененных к кубической форме, для определения прочности на сжатие по отношению к 7, 28 и 56 дням, таким образом, чтобы образец сухой массы был нанесен на цилиндрической формы по отношению к вышеупомянутым дням для определения прочности на разрыв.Для обоих анализов на упрочнение используется бетон марки М 20 . Из Таблицы 1 заявленные результаты показывают, что процент смешивания увеличивается с уменьшением веса образца, но с точки зрения прочности увеличение процента смешивания, безусловно, снизит достигаемую прочность как на сжатие, так и на разрыв при разделении, или, с другой стороны, когда смешивание пропорция не участвует в этом (т. е. когда она равна «нулю»), тогда вес образца высок по сравнению с тем, что весит пропорция смешивания, которая смешивается. В обоих случаях анализа прочности продление дней, безусловно, будет соответствовать прогнозируемой прочности этих анализов, как четко указано в таблице 1.

На рисунке 3 показан анализ прочности на сжатие куба, который проводится в трех этапах последовательных дней 7, 28 и 56. основанный на различных предложениях смешивания. Достигнутые результаты показывают, что процесс, выполненный для последовательных 56-дневных результатов испытаний, показывает лучшую прочность на сжатие при несмешивании, тогда как постепенное увеличение процента смешивания, безусловно, снизит прочность на сжатие образцов во все дни испытаний.В случае веса увеличение процента смешивания снизит вес.


(a) Испытание на сжатие на кубе
(b) Прочность на сжатие
(a) Испытание на сжатие на кубе
(b) Прочность на сжатие

На рис. дней. Более того, в этом анализе прочности на разрыв при раздельном растяжении увеличение процента смешивания, безусловно, уменьшит вес, а также снизит факторы упрочнения.


(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении
(a) Прочность на разрыв при разделении на цилиндре
(b) Прочность на разрыв при разделении

Из двух вышеупомянутых форм (кубической и формы цилиндра) прогнозируемые результаты анализа прочности на сжатие и анализа прочности на разрыв при растяжении практически аналогичны. Давайте посмотрим на экспоненциальное поведение и его уравнение регрессии для прочности на сжатие и прочности на разрыв.

Экспоненциальный график, основанный на процентном соотношении смешивания для прочности на сжатие. Рис. 5 моделирует экспоненциальную кривую на основе регрессии для анализа прочности на сжатие для различных процентных соотношений смешивания. Из рисунка 5 последовательные испытания образцов в течение 28 и 56 дней дали почти одинаковые значения, тогда как экспоненциальное уравнение прочности на сжатие в таблице 2 колеблется от 0 до 35 Н / мм 2 во всех четырех оценочных уравнениях, вызывая увеличение процента смешивания, которое будет снизить все четыре параметра сухой массы на 7, 28 и 56 дней. В четырех случаях, кроме сухого веса, производительность снижается, тогда как в случае увеличения сухого веса процент смешивания, безусловно, снижает вес.

На Фигуре 6 график показывает экспоненциальное изменение сухой массы и для различных последовательных дней, таких как 7, 28 и 56. В этой сухой массе, имеющей предел прочности на разрыв почти, обозначает процент смешивания; в дополнение к этому, экспоненциальная кривая, основанная на всех других последовательных днях, уменьшается, и они почти похожи друг на друга, имея диапазон (0–15) Н / мм 2 .


Таблица 2 включает данные о сухом весе и образце для последовательных дней, таких как 7, 28 и 56 дней, начиная с сухого веса в прочности на сжатие, которая начинается с более низких значений регрессии и продолжает увеличиваться в течение 7, 28 и 56 дней. , тогда как в случае разделения прочности на разрыв значение регрессии сухого веса больше, чем значение регрессии прочности на сжатие.В случае анализа по дням значения регрессии увеличиваются с увеличением количества дней в модели регрессионного анализа прочности на растяжение.

4.2. Анализ прочности на изгиб

Одним из показателей прочности бетона на растяжение является прочность на изгиб. Это расчет неармированной бетонной балки или плиты на устойчивость к разрушению при изгибе (рис. 7). Разработчики дорожных покрытий используют теорию, основанную на прочности на изгиб; поэтому может потребоваться разработка лабораторной смеси, основанная на испытании на прочность на изгиб.В Таблице 3 использованы процентные значения замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) с коэффициентами 0% и 5%.

9019 9015 901 9015

Подробные сведения Экспоненциальная регрессия для прочности на сжатие Экспоненциальная регрессия для разделенной прочности на растяжение

28 дней
56 дней

процент замены цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) в размере 5% лучше, чем 0%. Сухой вес образца снижается до 5%, а прочность балки на изгиб в течение 7 дней составляет 1.67% больше 0%, а через 28 дней это 1,52% больше 0%, а через 56 дней 1,46% больше 0%.

В таблице 4 испытательная нагрузка прикладывается от 0 до 86,32 кН с различными интервалами, и мы попытались найти прогиб M 20 в левой, средней и правой части балки. Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет около 1,71 мм, в то время как в среднем отклонении оно составляет около 2,961 мм, а в правой части отклонение составляет около 1. 810 мм.


Тип образца Сухой вес образца в кг Предел прочности при изгибе балки (Н / мм 2 )
7 дней 28 дней 56 дней

Control 56.25 16,65 24,7 25,83
5% замена 55,13 17,58 26,03 27,13

9015 9015 9015 9015 1,972 9015 9015 9015 9015

Нагрузка (кН) Отклонение (мм)
(0% замена летучей золы, золы и LECA)
Левый Средний Правый

0 0 0
3,92 0,21 0,252 0,194
7.84 0,284 0,324 0,284
11,77 0,42 0,54 0,5
15,69 0,756 0,756 0,756 9015 0,785
23,54 1,031 1,234 1,016
27,46 1,202 1,512 1.198
31,39 1,382 1,962 1,391
35,32 1,594 2,264 1,624
1 3 1,624
39,24 2,936 1,986
47,03 2,052 3,142 2,034
51,01 2. 21 3,364 2,198
54,94 2,352 3,724 2,346
58,86 2,41 4,125
4090
66,71 2,625 4,96 2,618
70,63 2,715 5,146 2,708
74.56 2,86 5,476 2,846
78,48 3,14 5,742 3,008
82,41 3,46 4,07

В таблице 5 испытательная нагрузка приложена к M 20 от 0 до 86,32 кН с различными интервалами, а прогибы были измерены в левой, средней и правой части балки. .Прогибы на всех уровнях постепенно увеличиваются при увеличении приложенной нагрузки. Среднее отклонение в левой части балки составляет примерно 1,782 мм, в то время как в средней части отклонение составляет примерно 2,960 мм, а в правой части отклонение составляет примерно 1,78 мм. Из Таблицы 5 доказано, что прогиб 5% замены прочности на изгиб выше, чем 0% замены.

92

80 0,45 0,49 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015 9015

Нагрузка (кН) Прогиб (мм)
(5% замена летучей золы, зольного остатка и LECA)
Левый Средний Правый

0 0 0 3 0,205 0,25 0,207
7,84 0,29 0,321 0,285
11,779 0,59 0,535
19,62 0,81 1,02 0,793
23,54 1,037 1,231 1,037
27. 46 1,198 1,507 1,20
31,39 1,375 1,96 1,379
35,32 1,816
43,16 2,05 2,937 2,02
47,03 2,07 3,14 2,05
51.01 2,15 3,361 2,17
54,94 2,38 3,72 2,38
58,86 2..467 4,118 2..467 4,118 2..467 4,118 2..46 2,56 4,587 2,54
66,71 2,61 4,95 2,615
70,63 2,69 5,14360 74159 2,69 5,14360 74159
2,84 5,472 2,838
78,48 3,11 5,74 3,115
82,41 3,4 4,05

На рисунке 8, M 20 сорт 0% и 5% замена летучей золы, шлака и LECA проанализированы для проверки их прочности на изгиб. На графике четко указано, что при увеличении нагрузки прогиб также увеличивается на 0% и 5% среди (23), а средние значения прогиба аналогичны как 0%, так и 5%, но 0% они немного выше 5%. , тогда как на этом графике есть сумма всех уровней прогиба в 1 единице. Например, здесь тот факт, что рассматриваемая длина балки составляет 1 метр для экспериментального исследования путем приложения «» единицы нагрузки, вызовет величину отклонения в обоих случаях (0% и 5%) в отношении увеличения нагрузка, чтобы обязательно увеличить прогиб.


5. Заключение

В документе показана максимально возможная прочность бетона LECA, отмечена передовая технология производства легкого бетона. Результаты показывают, что замена 5% цемента летучей золой, мелкого заполнителя золой и крупного заполнителя легким керамзитом (LECA) показала хорошие показатели прочности на сжатие, прочности на разрыв и прочности балки на изгиб. 56 дней по сравнению с 28 днями силы.При этом прочность 28 суток также примерно равна нормальному обычному бетону; то есть замена на 0% и уменьшение сухого веса образца. В будущем методы мягких вычислений приведут к тому, что в основных областях мы сможем достичь лучшей производительности за короткий промежуток времени, поскольку время является основным фактором, участвующим в этой исследовательской работе.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов в отношении публикации данной статьи.

Взвешивание различий

Легкий бетон имеет ряд преимуществ для строительной отрасли — меньший вес на структурную нагрузку здания, большее звукопоглощение, лучшее поглощение ударов и гибкость, улучшенные изоляционные свойства — по сравнению со стандартными бетонными смесями.Тем не менее, это также подозревается в увеличивающихся случаях разрушения полов из-за влажности. Знание преимуществ и недостатков легкого бетона может стать основой для принятия более правильных решений на этапах проектирования и монтажа.

Различия в бетонных смесях

Основное различие между стандартными бетонными смесями и легкими бетонными смесями заключается в заполнителе, который используется в бетонной смеси.

В стандартных бетонных смесях в качестве крупного заполнителя обычно используется щебень из природного камня (наряду с портландцементом, водой и песком).Фактический вес может незначительно отличаться в зависимости от местного камня, который доступен, но, как правило, натуральный камень относительно плотный для своего размера, что увеличивает вес бетонной смеси. (Это также увеличивает расходы на транспортировку и оборудование.)

Вместо этого в легком бетоне используются различные альтернативные заполнители, которые могут включать более пористые породы, такие как пемза, побочные продукты производства, такие как летучая зола или шлак, или глина, сланец или сланец, обработанные термическим процессом, который расширяет материал и создает ряд внутренних пор в совокупности.Фактически, эти материалы обеспечивают меньшую массу на единицу объема в совокупности. Легкий бетон можно также «вспенить» путем смешивания цементного раствора с предварительно сформированной пеной или AAC (автоклавный газобетон) в процессе, при котором в смесь вводится увлеченный воздух для уменьшения конечного веса бетона.

Хотя изменение заполнителя для легкого бетона, похоже, не оказывает значительного влияния на прочность конечного бетона на сжатие, у любого типа легкого бетона есть существенный компромисс в двух областях: преимущество снижения веса конструкции после его высыхания и недостаток удержания влаги, что значительно увеличивает время сушки.

Различия при испытаниях бетона на влажность

Преимущество легкого бетона в весе может обеспечить наилучшие преимущества, но та же особенность, которая уменьшает вес — поры в заполнителе или пене, или в воздухе, вводимом во время смешивания, — также становится дополнительным пространством в бетоне, которое может улавливать и удерживать влага.

Если не будет добавлен самовсыхающий или другой химический материал, удерживающий влагу в плите, вода из начального процесса смешивания и гидратации должна в конечном итоге найти свой путь к поверхности, чтобы испариться.Некоторые примеси, такие как летучая зола, удерживают влагу в течение более длительных периодов времени, и огромный объем множества дополнительных пор заполнителя также увеличивает количество удерживаемой воды, а также вес, который дополнительная влага будет вызывать до тех пор, пока она не будет высвобождена.


Поскольку легкий бетон обладает повышенной способностью впитывать влагу, для его высыхания может потребоваться в два-три раза больше времени, чем у обычного бетона с заполнителем. Это может создать реальные проблемы для строителя или подрядчика, которым поручено придерживаться графика строительства в соответствии с графиком и в рамках бюджета, если эта характеристика легкого бетона не была учтена на стадии проектирования и планирования.Задержки могут быть значительными сбоями в графике или дополнительными затратами на процессы и оборудование осушения.

Это также означает, что методы определения влажности бетона на поверхности имеют крайне невыгодное положение при попытке измерить уровень влажности в легкой бетонной плите. Фактически, это стало очевидным, поскольку связанные с влажностью поломки полов стали более распространенными по мере увеличения использования легкого бетона, и, основываясь на полученных данных, ASTM специально запретил проведение испытаний на хлорид кальция (CaCl) для легкого бетона.


Бесплатная загрузка — 4 причины, по которым бетон постоянно сохнет

Итак, как можно смягчить недостатки способности легкого бетона удерживать влагу при укладке полов или отделке плиты?

  1. Дайте время.
    Как уже отмечалось, для высыхания легкого бетона требуется значительно больше времени. Поняв это на этапе планирования, расписание можно скорректировать, чтобы максимально увеличить время сушки.
  2. Оптимизируйте условия окружающей среды.
    На время высыхания бетона влияет ряд факторов окружающей среды. Наличие плиты в рабочем состоянии или регулировка уровня воздушного потока, относительной влажности (RH) и температуры для максимизации процесса сушки может оптимизировать перемещение влаги от плиты к поверхности и дальше.
  3. Тест с тестированием относительной влажности.
    Только испытание на относительную влажность, такое как Rapid RH ® , может точно измерить влажность легкой бетонной плиты. Поскольку Rapid RH® размещает датчики в плите на оптимальной глубине, результаты испытаний дадут точную картину относительной влажности в плите и позволят принять обоснованные решения о графиках установки, выборе клея или отделки и мерах по устранению недостатков, если это необходимо.Rapid RH ® обеспечивает быструю и простую в использовании технологию для немедленного обновления состояния плиты. Он также соответствует стандарту ASTM F2170, что позволяет при необходимости документировать информацию о гарантии.

Легкий бетон имеет явные преимущества и недостатки в строительной отрасли. Знание того, что они собой представляют, позволяет профессионалам в области строительства и напольных покрытий принимать обоснованные решения и включает в себя необходимость точного тестирования относительной влажности для подтверждения и документирования готовности плиты.Rapid RH ® поможет вам быть уверенным, что плита готова к следующему шагу на пути к долговечному и красивому полу.

Джейсон имеет более чем 20-летний опыт продаж и управления продажами в различных отраслях промышленности и успешно выпустил на рынок ряд продуктов, включая оригинальные испытания на влажность бетона Rapid RH®. В настоящее время он работает с Wagner Meters в качестве менеджера по продажам продукции Rapid RH®.

Последнее обновление: 10 февраля 2021 г.

Aircrete vs.

Бетон: что лучше?

Воздушный бетон против бетона: что лучше?

Aircrete — это экологически чистый строительный материал с равномерно распределенными стабильными воздушными ячейками и меньшей плотностью, что делает его легким для комфортной работы. С другой стороны, бетон, содержащий крупные и плотные традиционные заполнители, является прочным, что делает его идеальным для несущих конструкций. Итак, что лучше?

И Aircrete, и бетон обладают неоспоримыми преимуществами перед другими.Преимущество газобетона по сравнению с бетоном заключается в его легкости, доступности и высокой теплоизоляции. С другой стороны, бетон отлично подходит для тяжелого строительства. Он оснащен каменными агрегатами для прочности и может выдерживать большие веса.

В этом руководстве будут сравниваться и противопоставляться различные характеристики, которые придают бетону и газобетону универсальные свойства в качестве строительных материалов. В этом случае пользователь должен решить, какой из них лучше всего подходит для него. Читайте и узнайте.

Aircrete vs.Бетон

Aircrete, также известный как газобетон, относится к семейству легких цементных кладочных материалов, известных как формованный бетон. Это популярный строительный материал в Европе и Азии, на его долю приходится треть всех бетонных блоков, используемых в Соединенном Королевстве.

Газобетон — самый легкий из семейства бетонных блоков. Газобетонные блоки состоят из песка, цемента, извести, пылевидной топливной золы (PFA) и воды. К суспензии добавляется небольшое количество сульфата алюминия, который вступает в реакцию с известью с образованием пузырьков водорода.Смесь расширяется, образуя «лепешку», и водород диффундирует при замене воздухом.

Правильное соотношение воды и цемента для цементного раствора составляет от 1 до 2 и может изменяться в зависимости от требований конкретного проекта. Когда смесь частично застывает, ее разрезают на блоки и переносят в автоклав для отверждения паром под высоким давлением для затвердевания и придания прочности.

При производстве газобетона в основном используется мало или отсутствует крупнозернистый заполнитель. Замена добавок полностью или частично меняет плотность газобетона от 400 кг / м3 до 1600 кг / м3.

Напротив, бетон — это композитный материал, который включает мелкие и крупные заполнители в сочетании с жидким цементом, который со временем затвердевает. Суспензия смешивается с сухим портландцементом и водой для получения смеси, которая принимает формы при заливке или формовании.

Отверждение — это необходимый процесс, который обеспечивает достижение конечной полной прочности бетона. Этот метод позволяет происходить гидратации и позволяет образовывать гидрат силиката кальция. За четыре недели бетонная смесь достигает более 90 процентов своей концентрации.

В течение первых трех дней гидратация и твердение бетона имеют решающее значение. При испарении воды может произойти быстрое высыхание и усадка, что приведет к увеличению растягивающих напряжений, когда она не набрала достаточной прочности.

Отверждение бетона помогает поддерживать достаточное количество влаги, что способствует гидратации цемента. Если отверждение происходит при правильной температуре, это будет способствовать затвердеванию бетона. Отверждение играет жизненно важную роль в поддержании прочности бетона, что делает его пригодным для тяжелого строительства.

Однако, поскольку бетон имеет слабую прочность на разрыв, армирующие материалы, такие как сталь, могут обеспечивать прочность на разрыв для несущих конструкций. И наоборот, поскольку правильное отверждение бетона приводит к увеличению прочности, оно также снижает проницаемость и уменьшает образование трещин в местах преждевременного высыхания поверхности.

Под удобоукладываемостью бетона понимается его способность правильно заполнять форму без снижения качества и выполнения желаемой работы. Технологичность зависит от количества воды, размера и формы заполнителя.

Кроме того, вяжущее содержание может определять удобоукладываемость бетона. Когда в амальгаме объединяется больше воды и химических примесей, улучшается удобоукладываемость бетона.

Контраст и сравнение газобетона и бетонных свойств

Газобетон и бетон сравниваются и различаются по своим свойствам. Каждый из этих строительных материалов имеет различное применение в строительстве. Давайте посмотрим на эти свойства.

Плотность

Aircrete включает любой тип портландцемента и смеси летучей золы.Из 90-фунтового мешка цемента получается 40-50 галлонов газобетона. Газобетон имеет низкую плотность и относительно более низкую общую прочность по сравнению со стандартным бетоном.

Типичный диапазон плотности от 20 до 60 фунтов / куб. Фут соответствует полному диапазону прочности от 50 до 930 фунтов на квадратный дюйм. Для увеличения прочности газобетона можно добавить мелкую пену, которая имеет высокую плотность, что приводит к более прочному воздухобетону.

Газобетон низкой плотности — менее 300 кг / м3. Однако специализированное оборудование для производства, смешивания и перекачивания пены улучшило продукт, что позволило изготавливать блоки плотностью 75 кг / м3.Плотность в сухом состоянии от 25 фунтов / фут3 до 100 фунтов / фут3 составляет пенобетон. Однако он варьируется в зависимости от области применения от 12,5 фунт / фут3 до 100 фунтов / фут3.

Напротив, бетон различается по плотности и составляет около 150 фунтов / куб. Фут, что обеспечивает относительно более высокую общую прочность, чем пористый бетон. Кроме того, бетон с низкой прочностью включает 14 МПа (2000 фунтов на квадратный дюйм), а бетон для повседневного использования включает 20 МПа (2900 фунтов на квадратный дюйм).

Типичные высокопрочные бетонные блоки имеют прочность от 40 МПа (5800 фунтов на квадратный дюйм) до 410 МПа (59,00 фунтов на квадратный дюйм).Кроме того, очень жесткие коммерческие конструкции включают бетон с плотностью 130 МПа (18900 фунтов на квадратный дюйм).

Изоляционные свойства

Газобетон обладает отличными изоляционными свойствами как летом, так и зимой. Aircrete состоит из миллионов крошечных закрытых ячеек с воздухом, которые дают ему иное применение, чем обычный бетон.

В обычных бетонных конструкциях от 40 до 50 процентов потерь энергии происходит вокруг тепловых мостов, где пол и крыша встречаются со стеной.Aircrete обеспечивает бесшовную интеграцию в полы, стены и потолки, устраняя тепловой мост, что упрощает обогрев и охлаждение купольного дома.

Контраст и сравнение преимуществ газобетона по сравнению с бетоном

Газобетон, как и стандартный бетон, дает много преимуществ. Вот как эти два продукта сравниваются и контрастируют.

Экономичный

Aircrete — это высококачественный недорогой материал, который устраняет необходимость в таких заполнителях, как гравий, песок и камни.И наоборот, бетон — это композитный материал, в котором для повышения прочности используются крупные заполнители, что делает его более дорогим, чем газобетон.

Кроме того, смешивание стандартного бетона — не такой простой процесс, как кажется. Объединение бетонных заполнителей — сложный процесс, который занимает много места на строительной площадке и требует много места для работы с материалами. Сборные изделия из газобетона доставляются на строительную площадку и собираются, чтобы сформировать желаемую конструкцию.

Газобетон обеспечивает гладкую отделку, позволяющую сэкономить на штукатурных работах и ​​трудозатратах, связанных с покраской.С другой стороны, бетонные поверхности имеют тенденцию быть пористыми и иметь относительно неинтересный вид.

Таким образом, можно применять различные виды отделки для улучшения внешнего вида и предотвращения появления пятен, проникновения воды и замерзания на поверхность. Например, декоративные камни, такие как кварцит, речные камни или битое стекло на бетонной поверхности, создают декоративную отделку.

Другие виды отделки, достигаемые долблением, окраской или обычными методами, позволяют получить отличную отделку бетона. Таким образом, строительство и отделка бетонных конструкций обходятся дороже, чем дома из газобетона.

Энергоэффективный

Хотя использование изоляционных материалов не является широко распространенным, несмотря на их долгосрочную финансовую выгоду, Aircrete предлагает отличный теплоизоляционный эффект и экономит энергию. Газобетон помогает домовладельцу сэкономить значительную сумму денег на счетах в течение года.

Бетон, который является самым популярным строительным материалом в мире, не является хорошим изолятором из-за его сопротивления тепловому потоку.Таким образом, бетонная конструкция не снизит потребление электроэнергии из-за системы кондиционирования воздуха; следовательно, это не экономично. Однако для объединения и производства сырья требуется мало энергии.

В то время как изоляция сводит к минимуму потери энергии через ограждающую конструкцию здания, как и в случае с воздушным бетоном, тепловая масса использует стены для хранения и выделения энергии в бетоне. Тем не менее, бетон обладает высокими тепловыми массами, что делает его идеальным для изготовления электрических ночных аккумуляторов.

Кроме того, хорошо спроектированные и бетонные тротуары и дороги более экономичны для движения и служат дольше, чем другие покрытия.

Простота в эксплуатации и обращении

Aircrete включает легкие сборные конструкции, такие как блоки, стены, крыши, полы, перемычки и облицовочные панели. Готовые изделия легко транспортировать и собирать в желаемые конструкции. Кроме того, вы можете сделать газобетон самостоятельно с помощью небольшой машины Aircrete, которая называется — маленький дракон.

С другой стороны, бетон требует тщательной подготовки перед использованием на стройплощадке. Предварительно необходимо продумать конструкцию смеси, качество бетона, процессы укладки, снятие формы с поверхности и отверждение.

Кроме того, бетон может показаться простым в обращении, но для достижения наилучших результатов он требует выравнивания почвы, что требует расчистки земли и удаления верхнего слоя почвы. Кроме того, выравнивание грунта имеет решающее значение для адекватной поддержки и придания формы конструкции.

Еще нужно помнить об ограниченном временном интервале для работы с бетоном. Следовательно, отказ подходящих инструментов может привести к некачественной установке и потере времени, денег и усилий. Также он быстро сохнет, не оставляя времени на внесение изменений.

Экологически опасный

Сегодня мы уделяем все больше внимания защите окружающей среды. Aircrete оказывает меньшее воздействие на окружающую среду по сравнению с бетоном, поскольку состоит из экологически чистых материалов. К ним относятся: летучая зола, известь, цемент, гипс, алюминиевый порошок и вода.

При производстве газобетона цемент расширяется в шесть раз по сравнению с исходным объемом с помощью воздуха, что снижает углеродный след. Кроме того, по мере того, как клеи с меньшим углеродным следом станут широко доступными, можно будет сделать воздухобетон более экологически чистым.К тому же утилизация газобетона не наносит вреда окружающей среде.

Основным компонентом бетона является цемент, который выделяет в атмосферу значительное количество парниковых газов — CO2. Портландцемент составляет восемь процентов глобальных выбросов углекислого газа из-за спекания известняка и глины при 2700 F.

И наоборот, шлифование бетона может привести к образованию опасной пыли, а длительное воздействие цемента может привести к заболеванию почек, силикозу, раздражению кожи и другим последствиям.

Национальный институт охраны труда и здоровья рекомендует прикреплять кожухи местной вытяжной вентиляции к электрическим шлифовальным станкам для бетона для борьбы с пылью. Кроме того, при работе с влажным бетоном всегда необходимо использовать соответствующие средства защиты.

Вторичная переработка бетона — это стандартный метод утилизации бетонных конструкций.

Амортизатор

В тренировках по огнестрельному оружию американских военных используется пористый бетон с высокой интенсивностью. Емкость поглощения энергии в газобетоне варьируется от 4 до 15 М.Дж. / М3, в зависимости от плотности. Кроме того, панели из ячеистого бетона имеют структуру с непрерывными порами, обеспечивающую возможность звукопоглощения в офисах, рядом с дорогами, системами отопления, вентиляции и кондиционирования воздуха и т. Д.

Кроме того, газобетон может плавать, что делает его пригодным для плавания на море, хотя он должен быть в защитной мембране.

С другой стороны, бетон является плохим амортизатором и не подходит для покрытия полов в местах, где проводятся занятия физическими упражнениями, например, в тренажерных залах и спортзалах. Однако он идеально подходит для гаражей и складских помещений, где прочный пол имеет решающее значение.

Водонепроницаемость

Газобетон водонепроницаем, не гниет и не разлагается в воде. Он может стать идеальным выбором для крыши. Это позволяет без проблем иметь растительность и опрыскивать ее.

Напротив, обычные бетонные поверхности не так водонепроницаемы, поскольку становятся пористыми по мере высыхания. По мере того, как вода просачивается в бетон, она начинает изнашиваться и создавать более крупные карманы, в которых вода может скапливаться и вызывать дальнейшие повреждения.

Однако есть продукты, которые при смешивании с бетоном делают его менее пористым.Кроме того, покрытие поверхности, которое наносится в процессе отверждения, создает водонепроницаемую отделку.

Прочность

Разработка Aircrete в первую очередь предназначалась для использования во внутренней обшивке пустотелых стен вместо ветрозащитных блоков. Изначально некоторые постройки из газоблоков через несколько месяцев после строительства давали трещины из-за пузырей нестабильной формы.

Газобетон с очень низкой плотностью не подходит для несущих конструкций и подвержен ударным повреждениям.Чем выше объем добавляемого воздуха, тем более хрупким становится газобетон. Следовательно, воздух, вовлеченный в газобетон, должен содержать крошечные, стабильные и равномерно распределенные пузырьки, которые остаются неповрежденными и изолированными.

Кроме того, конструкции из газобетона обернуты армирующей сеткой так же, как стекловолоконная мембрана покрывает доску для серфинга. В недавнем прошлом в коммерческих зданиях, жилых домах, шоссе, школах и других ненесущих конструкциях широко использовался пенобетон.

С другой стороны, бетон обеспечивает превосходную комплексную прочность при применении в несущих конструкциях. По мере созревания он набирает силу, что делает его отличным строительным материалом для использования в плотинах, дорожных проектах и ​​т. Д. Кроме того, железобетон, в состав которого входят стальные арматурные стержни, углеродные волокна, стекловолокно, стальные волокна или углеродные волокна, может нести растягивающие нагрузки.

Однако, когда бетон не армирован прочными на растяжение материалами (часто сталью), возникает растрескивание матрицы.Все бетонные конструкции растрескиваются из-за усадки и жесткости.

Трещины в бетоне могут быть поверхностными — шириной менее нескольких миллиметров и глубиной или структурными — крупнее 0,25 дюйма. Плохие методы строительства вызывают поверхностные трещины, циклы замораживания-оттаивания и реакционную способность щелочных заполнителей.

Структурные трещины, которые распространяются глубже через стену или плиту, возникают в результате эрозии заполняющего материала, поддерживающего бетонную конструкцию. Кроме того, бетон имеет низкий коэффициент теплового расширения и дает усадку по мере созревания.Поэтому бетон, подверженный длительным нагрузкам, склонен к ползучести.

Огнестойкий

Aircrete пожаробезопасен и может без горения изготавливать уличные печи и костровые ямы. Широкое применение газобетонных блоков не горит и сдерживает распространение огня внутри здания. Газобетонный блок толщиной 100 мм может противостоять возгоранию до четырех часов. Однако бетонные конструкции обладают высокой степенью огнестойкости благодаря свойствам структурной формы.

Бетонные конструкции обладают более высокой степенью огнестойкости, чем конструкции из бетона и стали, из-за низкой теплопроводности. Бетон — негорючее вещество и имеет низкую скорость теплопередачи. Это гарантирует сохранение структурной целостности и сводит к минимуму риск возгорания.

В большинстве случаев бетон не требует дополнительной противопожарной защиты, так как имеет встроенную стойкость. Его можно использовать как противопожарную защиту для стальных рам или как противопожарный щит для пусковой площадки ракеты.

Применения, подходящие для Aircrete

Большинство сборных блоков из газобетона бывают разных форм и размеров.Изделия из воздухобетона могут быть изготовлены с любой прочностью в зависимости от области применения.

  • Плиты перекрытия
  • Сборные блоки, стеновые элементы и панели
  • Жилищные системы
  • Изоляция подземных труб
  • Наливные утепленные настилы крыши и пола
  • Замена для неустойчивых грунтов
  • Акустические покрытия для пола и амортизация
  • Заливка для заброшенных резервуаров, шахт, пустотелых блоков и трубопроводов
  • Заливка для снижения нагрузки над подземным сооружением
  • Свалки
  • Мостовой подход заполняет

Применения, подходящие для бетона

Бетон предназначен для различных применений, таких как восстановление, ремонт и строительство.Он может использовать различные приложения, в том числе:

  • Плотины, мосты, бассейны
  • Коммерческие и жилые дома
  • Тротуары, дороги, путепроводы и автостоянки
  • Фонарные столбы, балки и настил
  • Подвалы
  • Изоляционные бетонные формы
  • Строительство плит перекрытия промышленных, коммерческих и жилых помещений
  • Трубы
  • Сливы
  • Стены среди других приложений

Заключение

В нижних диапазонах плотности газобетон более хрупкий и имеет меньшую общую прочность, чем стандартный бетон.Хотя это может быть недостатком для несущих конструкций, это выгодно для конструкций из газобетона, таких как купола, крыши и полы. Кроме того, газобетон экологичен, водонепроницаем, прост в обращении и экономичен.

Бетон идеально подходит для тяжелых строительных объектов. Он выдерживает вес и гравитацию.

Следует отметить, что каждая форма бетона обладает уникальным набором характеристик и характеристик. Таким образом, независимо от того, используете ли вы газобетон или бетон, применение будет зависеть от типа проекта.

Источники

Использование керамзитобетона в экологически безопасном легком геополимерном бетоне

  • 1.

    Сингх Б., Ишвария Г., Гупта М., Бхаттачарья С.К. (2015) Геополимерный бетон: обзор некоторых недавних разработок. Строительный материал 85: 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036

    Статья Google Scholar

  • 2.

    Posi P, Thongjapo P, Thamultree N, Boontee P, Kasemsiri P, Chindaprasirt P (2016) Прессованный геополимерный бетон с легкой летучей золой и OPC, содержащий переработанный легкий заполнитель бетона.Материал сборки 127: 450–456. https://doi.org/10.1016/j.conbuildmat.2016.09.105

    Статья Google Scholar

  • 3.

    Posi P, Teerachanwit C, Tanutong C, Limkamoltip S, Lertnimoolchai S, Sata V, Chindaprasirt P (2013) Легкий геополимерный бетон, содержащий заполнитель из переработанного легкого блока. Mater Des (1980–2015) 52: 580–586. https://doi.org/10.1016/j.matdes.2013.06.001

    Статья Google Scholar

  • 4.

    Medri V, Papa E, Mazzocchi M, Laghi L, Morganti M, Francisconi J, Landi E (2015) Производство и характеристика легких панелей на основе вермикулита / геополимера. Mater Des 85: 266–274. https://doi.org/10.1016/j.matdes.2015.06.145

    Статья Google Scholar

  • 5.

    Mo KH, Yeoh KH, Bashar II, Alengaram UJ, Jumaat MZ (2017) Поведение при сдвиге и механические свойства легкого заполнителя бетона на основе цемента и геополимерной оболочки масличной пальмы, армированного стальной фиброй. Строительный материал 148: 369–375. https://doi.org/10.1016/j.conbuildmat.2017.05.017

    Статья Google Scholar

  • 6.

    Ислам А., Аленгарам У. Дж., Джумаат М.З., Башар II, Кабир С.А. (2015) Технические характеристики и углеродный след измельченного гранулированного доменного шлака и пальмового масла на основе структурного геополимерного бетона на основе золы. Строительный материал 101: 503–521. https://doi.org/10.1016/j.conbuildmat.2015.10.026

    Статья Google Scholar

  • 7.

    Kupaei RH, Alengaram UJ, Jumaat MZ, Nikraz H (2013) Расчет смеси для легкого геополимерного геополимерного бетона на основе масличной пальмы на основе зольной пыли. Строительный материал 43: 490–496. https://doi.org/10.1016/j.conbuildmat.2013.02.071

    Статья Google Scholar

  • 8.

    Ханхадже Э., Хусин М.В., Мирза Дж., Рафиизоноз М., Салим М.Р., Сионг Х.С., Варид М.Н. (2016) О смешанных цементных и геополимерных бетонах, содержащих золу топлива из пальмового масла. Mater Des 89: 385–398.https://doi.org/10.1016/j.matdes.2015.09.140

    Статья Google Scholar

  • 9.

    Nematollahi B, Ranade R, Sanjayan J, Ramakrishnan S (2017) Термические и механические свойства устойчивых легких геополимерных композитов с деформационным упрочнением. Arch Civ Mech Eng 17 (1): 55–64. https://doi.org/10.1016/j.acme.2016.08.002

    Статья Google Scholar

  • 10.

    Новаис Р.М., Асенсан Дж., Буруберри Л.Х., Сенфф Л., Лабринча Дж. А. (2016) Влияние вспенивателя на свойства легких геополимеров в свежем и затвердевшем состоянии.Mater Des 108: 551–559. https://doi.org/10.1016/j.matdes.2016.07.039

    Статья Google Scholar

  • 11.

    Санджаян Дж. Г., Назари А., Чен Л. , Нгуен Г. Х. (2015) Физические и механические свойства легкого аэрированного геополимера. Строительный материал 79: 236–244. https://doi.org/10.1016/j.conbuildmat.2015.01.043

    Статья Google Scholar

  • 12.

    Хаджимохаммади А., Нго Т., Кашани А. (2018) Устойчивые однокомпонентные геополимерные пенопласты с мелкими частицами стекла по сравнению с песком в качестве заполнителей.Строительный материал 171: 223–231. https://doi.org/10.1016/j.conbuildmat.2018.03.120

    Статья Google Scholar

  • 13.

    Zhu W, Rao XH, Liu Y, Yang EH (2018) Легкий аэрированный геополимер на основе метакаолина, содержащий зольную пыль от сжигания твердых бытовых отходов в качестве газообразующего агента. J Clean Prod 177: 775–781. https://doi.org/10.1016/j.jclepro.2017.12.267

    Статья Google Scholar

  • 14.

    Wongsa A, Sata V, Nuaklong P, Chindaprasirt P (2018) Использование измельченного глиняного кирпича и заполнителей пемзы в легком геополимерном бетоне. Строительный материал 188: 1025–1034. https://doi.org/10.1016/j.conbuildmat.2018.08.176

    Статья Google Scholar

  • 15.

    Абдулкарим О.А., Аль Бакри А.М., Камарудин Х., Низар И.К., Алаэддин А.С. (2014) Влияние повышенных температур на термическое поведение и механические характеристики геополимерной пасты, строительного раствора и легкого бетона летучей золы.Строительный материал 50: 377–387. https://doi.org/10.1016/j.conbuildmat.2013.09.047

    Статья Google Scholar

  • 16.

    Mermerdaş K, Algın Z, Oleiwi SM, Nassani DE (2017) Оптимизация легких геополимерных растворов GGBFS и FA методом поверхности отклика. Материал сборки 139: 159–171. https://doi.org/10.1016/j.conbuildmat.2017.02.050

    Статья Google Scholar

  • 17.

    Пейн Дж., Готрон Дж., Дудо Дж., Россиньол С. (2018) Разработка низкотемпературного легкого геополимерного заполнителя из промышленных отходов в сравнении с заполнителями, подвергающимися высокотемпературной обработке. J Clean Prod 189: 47–58. https://doi.org/10.1016/j.jclepro.2018.04.038

    Статья Google Scholar

  • 18.

    Top S, Vapur H (2018) Влияние добавления базальтовой пемзы на свойства материала легкого геополимерного бетона на основе летучей золы.J Mol Struct 1163: 10–17. https://doi.org/10.1016/j.molstruc.2018.02.114

    Статья Google Scholar

  • 19.

    Wongsa A, Sata V, Nematollahi B, Sanjayan J, Chindaprasirt P (2018) Механические и термические свойства легкого геополимерного раствора, включающего резиновую крошку. Дж. Чистый продукт 195: 1069–1080. https://doi.org/10.1016/j.jclepro.2018.06.003

    Статья Google Scholar

  • 20.

    Рашад А.М. (2018) Легкий керамзит как строительный материал — обзор. Материал сборки 170: 757–775. https://doi.org/10.1016/j.conbuildmat.2018.03.009

    Статья Google Scholar

  • 21.

    Habert G, De Lacaillerie JD, Roussel N (2011) Экологическая оценка производства бетона на основе геополимеров: обзор текущих тенденций исследований. J Clean Prod 19 (11): 1229–1238. https://doi.org/10.1016/j.jclepro.2011.03.012

    Артикул Google Scholar

  • 22.

    Гурсель А.П., Масанет Э., Хорват А., Штадел А. (2014) Инвентаризационный анализ жизненного цикла производства бетона: критический обзор. Cem Concr Compos 51: 38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

    Статья Google Scholar

  • 23.

    Ван ден Хеде П., Де Бели Н. (2012) Оценка воздействия на окружающую среду и жизненного цикла традиционных и «зеленых» бетонов: обзор литературы и теоретические расчеты. Cem Concr Compos 34 (4): 431–442. https://doi.org/10.1016/j.cemconcomp.2012.01.004

    Статья Google Scholar

  • 24.

    Вейл М., Домбровски К., Бухвальд А. (2009) Анализ жизненного цикла геополимеров. В кн .: Геополимеры. Издательство Woodhead Publishing, Кембридж, стр. 194–210. https://doi.org/10.1533/9781845696382.2.194

  • 25.

    Müller HS, Haist M, Vogel M (2014) Оценка потенциала устойчивости бетонных и бетонных конструкций с учетом их воздействия на окружающую среду, характеристик и срока службы.Строительный материал 67: 321–337. https://doi.org/10.1016/j.conbuildmat.2014.01.039

    Статья Google Scholar

  • 26.

    Бхогаята А.К., Арора Н.К. (2019) Утилизация металлизированных пластиковых отходов пищевых упаковочных изделий в геополимербетон. J Mater Cycles Waste Manag 1: 1–3. https://doi.org/10.1007/s10163-019-00859-9

    Статья Google Scholar

  • 27.

    Комитет ACI 544 (1989) Измерение свойств фибробетона (ACI 544.2R-89) (утверждено повторно в 2009 г.). Американский институт бетона, Фармингтон-Хиллз

  • 28.

    Индийский стандарт IS. 2386-1963 (Часть-IV). Метод испытания заполнителей для бетона Бюро стандартов Индии, Манак Бхаван

  • Легкий бетон

    Легкие бетоны могут быть из легкого заполнителя, пенобетона или автоклавного ячеистого бетона (AAC). В домостроении часто используются блоки из легкого бетона.

    Бетон на легких заполнителях

    Бетон из легких заполнителей можно производить с использованием различных легких заполнителей.Легкие заполнители происходят от:

    • Натуральные материалы, например вулканическая пемза.
    • Термическая обработка природного сырья, такого как глина, сланец или сланец, например, Leca.
    • Производство из побочных промышленных продуктов, таких как летучая зола, например Lytag.
    • Переработка побочных промышленных продуктов, таких как гранулированные вспененные плиты, например пеллит.

    Требуемые свойства легкого бетона будут зависеть от того, какой тип легкого заполнителя лучше всего использовать.Если требуются небольшие структурные требования, но высокие теплоизоляционные свойства, можно использовать легкий и слабый заполнитель. В результате получится бетон с относительно низкой прочностью.

    Пенобетон

    Пенобетон — это хорошо поддающийся обработке материал с низкой плотностью, который может содержать до 75% увлеченного воздуха. Как правило, он самовыравнивающийся, самоуплотняющийся и может перекачиваться. Пенобетон идеально подходит для заполнения лишних пустот, таких как вышедшие из употребления топливные баки, канализационные системы, трубопроводы и водопропускные трубы, особенно там, где доступ затруднен.Это признанное средство восстановления временных дорожных траншей. Хорошие теплоизоляционные свойства делают пенобетон также подходящим для стяжки, заполнения пустот под полом и изоляции на плоских бетонных крышах.

    Легкий конструкционный бетон

    Бетоны из легких заполнителей могут использоваться в конструкциях, их прочность эквивалентна бетону с нормальным весом.

    Преимущества использования бетона на легком заполнителе:

    • Снижение статических нагрузок, позволяющее сэкономить на фундаменте и арматуре.
    • Улучшенные термические свойства.
    • Повышенная огнестойкость.
    • Экономия на транспортировке и погрузке-разгрузке сборных железобетонных изделий на месте.
    • Уменьшение опалубки и подпорок.

    Модуль упругости легкого бетона ниже, чем у бетона с нормальным весом эквивалентной прочности, но, учитывая прогиб плиты или балки, этому противодействует уменьшенный собственный вес.

    Базовая конструкция для легкого бетона описана в Еврокоде 2, часть 1-1, с разделом 11, содержащим особые правила, необходимые для легких бетонов из заполнителя. Бетон считается легким, если его плотность составляет не более 2200 кг / м 3 (предполагается, что плотность бетона с нормальным весом составляет от 2300 кг / м 3 до 2400 кг / м 3 ), а также пропорцию заполнитель должен иметь плотность менее 2000 кг / м. 3 . Легкий бетон может быть указан с использованием обозначения LC для класса прочности, например LC30 / 33, который обозначает легкий бетон с прочностью цилиндра 30 МПа и кубической прочностью 33 МПа.

    Чем легче бетон, тем больше различий в его свойствах. Прочность на растяжение, предельные деформации и сопротивление сдвигу ниже, чем у обычного бетона с такой же прочностью цилиндра. Легкие бетоны также менее жесткие, чем аналогичный бетон нормальной прочности. Однако это смягчается уменьшением собственного веса, поэтому общий эффект имеет тенденцию к небольшому уменьшению глубины балки или плиты.

    Ползучесть и усадка легких бетонов выше, чем у аналогичного бетона с нормальным весом, и это следует учитывать при проектировании конструкции.

    Дозирование легкого бетона обычно производится производителями товарного бетона. При низкой удобоукладываемости бетон легко укладывается с помощью скипа или желоба. Перекачка легкого бетона возможна, но необходимо соблюдать осторожность, чтобы бетонная смесь не расслаивалась. Для перекачиваемых смесей обычно используется натуральный песок, т.е.е. не иметь легкого заполнителя для мелкой части смеси и иметь высокую удобоукладываемость, чтобы избежать повышенного трения насоса и засорения. Это достигается применением добавок. Чрезмерная вибрация легкого бетона имеет тенденцию вызывать сегрегацию, поэтому текучий бетон лучше всего использовать при перекачивании, поскольку он требует минимальной вибрации. Более подробную информацию можно найти в Concrete Quarterly Winter 2015.

    Газобетон автоклавный (AAC)

    AAC был впервые серийно произведен в 1923 году в Швеции.С тех пор строительные системы AAC, такие как кирпичная кладка, армированные пол / крыша, стеновые панели и перемычки, используются на всех континентах и ​​в любых климатических условиях. AAC также можно распиливать вручную, лепить и пробивать гвоздями, шурупами и креплениями.

    Leca Asia — Легкий керамзитовый заполнитель

    Уважаемые покупатели Leca

    Как и все вы, мы в Leca очень внимательно следим за глобальной ситуацией с COVID-19. Здоровье и безопасность наших клиентов и сотрудников всегда являются для нас приоритетом, особенно в эти непредсказуемые времена.Мы желаем всего наилучшего всем, кто был или болен, или кто заботится о членах семьи. Желаем скорейшего возвращения к крепкому здоровью.

    Мы в равной степени стремимся предоставить вам бесперебойное и бесперебойное обслуживание на протяжении этих обстоятельств и в дальнейшем. С первых дней возникновения ситуации Leca активно принимает меры не только для обеспечения максимальной защиты всех, но и для того, чтобы мы продолжали предоставлять такой же высокий уровень обслуживания, чтобы вы могли поддерживать свои собственные бизнес-операции.

    Наши сотрудники, которые в настоящее время работают по всей Азии, всегда были полностью оснащены и имеют опыт работы удаленно в случае сбоев, таких как рекомендованное или принудительное социальное дистанцирование. Кроме того, наше программное обеспечение размещено в облачной среде и поэтому не подвержено физическому воздействию. Также будьте уверены, что мы реализовали все необходимые меры безопасности для удаленного доступа.

    У нас не было перебоев в повседневной работе, и мы ожидаем, что так будет и дальше.Как описано, мы принимаем агрессивные меры предосторожности, чтобы поддерживать это, и играем свою роль как хорошие корпоративные граждане, чтобы помочь сгладить кривую.

    Если у вас есть дополнительные вопросы ко мне или к нашей команде, не стесняйтесь обращаться к нам. Мы находимся в постоянном контакте, чтобы отслеживать ситуацию и следовать рекомендациям местных, региональных и глобальных органов здравоохранения. Ниже вы найдете дополнительную информацию в ответ на ваши вопросы.

    Leave a Reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *