дробный калькулятор с корнями
Вы искали дробный калькулятор с корнями? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и калькулятор дробей с корнями, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «дробный калькулятор с корнями».
Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как дробный калькулятор с корнями,калькулятор дробей с корнями,калькулятор дробей со степенями и корнями,калькулятор дробей со степенями онлайн с решением,калькулятор квадратов чисел,калькулятор корень уравнения,калькулятор онлайн корней уравнений,калькулятор онлайн с дробями и корнями онлайн калькулятор,калькулятор онлайн с дробями и с корнями калькулятор,калькулятор онлайн с корнями и дробями онлайн калькулятор,калькулятор радикалов,калькулятор с дробями и корнями и степенями,калькулятор с корнями дробный,калькулятор с корнями и дробями,калькулятор с корнями и дробями и степенями,калькулятор с корнями и дробями онлайн,калькулятор с корнями и степенями и дробями,калькулятор с корнями с решением,калькулятор с кубами и квадратами,калькулятор сокращения дробей с буквами и степенями онлайн,калькулятор степеней с дробями онлайн,калькулятор уравнений с корнями,найти значение выражения с дробями и степенями онлайн,онлайн калькулятор квадратов,онлайн калькулятор корней с решением,онлайн калькулятор корней уравнений,онлайн решение выражений с корнями,онлайн решение примеров с корнями,онлайн решить пример с корнями,решение выражений с корнями онлайн,решение примеров онлайн с корнями,решение примеров с корнями онлайн,решение примеров с корнями онлайн калькулятор с решением,решить выражение онлайн с корнями,решить выражение с корнями онлайн,решить онлайн пример с корнями,решить пример онлайн с корнями,сложение корней калькулятор,сократить дробь с корнями онлайн калькулятор.
Решить задачу дробный калькулятор с корнями вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.
Калькулятор квадратных корней онлайн
- Категория ~ Калькуляторы
- – Автор: Игорь (Администратор)
С помощью данного бесплатного онлайн калькулятора вы сможете узнать квадратный корень от числа (или любой иной степени). Преимуществом сервиса является то, что расчет осуществляется автоматически. Просто вводите значения в соответствующие поля.
Корень от числа
Число
Степень корня
Корень 0.000
Округлять до знаков после запятой (от 0 до 10)
Как пользоваться калькулятором корней?
Все очень просто. Рассмотрим на примере вычисления квадратного корня от числа.
1. Укажите степень корня — это 2, так как корень второй степени (выставляется по умолчанию).
2. Просто введите число. К примеру, 16
3. Результат автоматически отразится. Для 16 это будет 4
Теперь, у вас всегда есть под рукой удобный и легкий калькулятор для расчетов.
☕ Понравился обзор? Поделитесь с друзьями!
- Калькулятор расхода топлива на поездку и 100 км
- Площадь круга онлайн калькулятор
Добавить комментарий / отзыв
Присоединяйтесь
VK
Задать вопрос ⚑
- Модель и моделирование: что это такое? Что такое?
- Ошибка 503 Service Unavailable: что означает и как исправить? Что делать (ошибки и проблемы)
- Что такое Аналогия? Что такое?
- Ошибка 502 Bad Gateway: что означает и как исправить? Что делать (ошибки и проблемы)
Программы (Freeware, OpenSource. ..)
- Безопасность
- Интернет и Сеть
- Мультимедиа
- Оптимизация
- Офис
- Разработка
- Жесткий диск и файлы
- Система
-
✎
Перевод Фаренгейт в Цельсий и обратно Конвертеры -
✎
Перевод Кельвины в Цельсий и обратно Конвертеры -
✎
Перевод унций в граммы и обратно (Авердюпуа и Тройская) Конвертеры -
✎
Перевод дюймов в сантиметры и обратно Конвертеры -
✎
Перевод футов в метры и обратно Конвертеры -
✎
Перевод фунты в килограммы и обратно Конвертеры
Калькулятор корней — Получите n-й радикал числа
Создано Maciej Kowalski, кандидатом наук
Отзыв от Bogna Szyk и Jack Bowater
Последнее обновление: 28 октября 2022 г.
Содержание:- Что такое корень математика?
- Как вычислить квадратный корень
- Кубический корень, корень четвертой степени, корень n-й степени
- Пример: использование калькулятора корня
Добро пожаловать в калькулятор корня , где мы рассмотрим теорию и практику как вычислить n-й корень числа , также называемый n-й радикал , вместе. Мы начнем с краткого объяснения того, что такое корень в математике, и приведем несколько простых примеров, которые вы, возможно, уже видели, например, квадратный корень из 2, квадратный корень из 3 или кубический корень из 4. Но что, если это четвертый корень , который вы хотели бы найти? Предыдущие были довольно простыми, но что такое, скажем, корень 4-й степени из 81? Не беспокойтесь, мы покажем вам достаточно скоро! 9512×12×12×12×12=125
Где маленькое 555 называется показателем степени и означает, сколько копий большого числа (в данном случае 121212) мы берем. Мы также называем эту операцию , беря 555 -ю степень числа 121212. Вы можете изучить эту математическую операцию на калькуляторе экспоненты Omni.
Корень — это обратная операция. Чтобы связать это с биологическим смыслом, когда мы смотрим на взрослое дерево, мы видим его листья и ствол, но все это построено на его корнях 9n = abn=a
Например, давайте подробнее рассмотрим , что является квадратным корнем некоторого числа . Предположим, вы копаете бассейн на заднем дворе. Вы хотите, чтобы он был такой же длины, как и широкий, и в целом занимал площадь 256256256 квадратных футов. Как вычислить , какой длины должны быть стороны ? Правильно — путем расчета радикала! В данном случае это должен быть квадратный корень из площади, т. е. квадратный корень из 256256256.
А 9{\mathrm{th}}4-й корень из 818181 равен 333. Но сначала мы должны это узнать.
Итак, что мы можем сделать, если мы забудем нашу удобную таблицу первых ста чисел и их первых степеней дома? Это безнадежное дело? К счастью, нет. Не совсем, но мы вернемся к этому через секунду.
В качестве примера мы покажем , как вычислить квадратный корень из 727272. Нашим основным инструментом здесь будет простая факторизация, т. е. разбиение 727272 на мельчайшие возможные части.
В процедуре простой факторизации мы берем число (в нашем случае 727272) и находим наименьшее простое число, которое делит его на . Напомним, что простое число — это целое число, имеющее только два делителя: 111 и само себя. Несложно заметить, что для нас это будет 222, так как
722=36\small \frac{72}{2} = 36272=36
Следующим шагом является нахождение наименьшего простого числа результата деления числа на простое число, т. е. числа 363636. Если мы продолжим это до тех пор, пока мы достигнем 111, мы получим следующие простые числа: 222, 222, 222, 333, 333. Это простая факторизация числа 727272, и это означает, что
72=2×2×2×3×3\small72 = 2 \times 2 \times2 \times3 \times372=2×2×2×3×3
Что-то непонятно в простой факторизации? Не беспокойтесь, это довольно интересная математическая задача, которую иногда трудно решить даже на компьютере! Вы можете узнать больше (почти все) об этом на калькуляторе первичной факторизации Omni.
Теперь, если мы найдем пары среди одинаковых чисел, мы увидим, что у нас есть пара 222-х, пара 333-х и осталось одно 222-е. Это позволяет нам записать квадратный радикал числа 727272 как 9.2\раз2} \\ &= 2\times3 \times\sqrt{2} = 6\sqrt{2} \end{split}72
=2×2×2×3×3
=22×32×2
=2×3×2
= 62
A зоркий глаз заметит, что единственные числа, которые остаются под корнем, это ровно одиночек, которые не нашли пару .
А как же 222? Чему равен квадратный корень из 222 ? Ну, вот что значит « не совсем «. Квадратный корень из 222, квадратный корень из 333 или любого другого простого числа возвращает нас к игре в угадайку. К счастью, мы можем используйте наш калькулятор корня , чтобы вычислить, что 2≈1,4142\sqrt{2} \приблизительно 1,41422≈1,4142, что дает нам
72=62≈6×1,4142=8,4852\small\begin{split} \sqrt{72}&=6\sqrt{2}\приблизительно6\times1. 4142\\ &=8,4852 \end{split}72
=62
≈6×1.4142=8.4852
По сути, когда нас спрашивают: « чему равен квадратный корень из…, », мы должны сначала выполните простую факторизацию , чтобы решить проблему, и если (как указано выше) у нас останется какая-то маленькая цифра в конце, нам просто нужно использовать такой инструмент, как калькулятор корня , чтобы найти его.
» А как быть с высшими радикалами? А если мне нужен, например, корень четвертой степени из числа? » Ну как удобно с твоей стороны спросить! Это именно та проблема, с которой мы будем иметь дело в следующем разделе.
🙋 Для более подробного описания этой операции посетите калькулятор квадратного корня Omni!
Кубический корень, четвертый корень, n-й корень
Вспомните, как вы хотели вырыть бассейн в первой секции. Теперь предположим, что вы хотите, чтобы все это было кубом, вмещающим 1 7281 7281 728 кубических футов воды. (Не спрашивайте нас, почему. Возможно, все вышеперечисленное облагается налогом по-другому?)
Как найти сторону такого бассейна? Ага — вычислением кубического корня из числа (отсюда и название кубический корень ). Он скажет нам, что длина должна быть
17283=12 ft\small \sqrt[3]{1728} = 12\ \mathrm{ft}31728
=12 ft
Но как мы туда попали? К счастью, основной инструмент здесь тот же: простая факторизация . Если мы применим процедуру до 172817281728, мы получим это
1728 = 2 × × 2 × 2 × 2 × 2 × 2 × 3 × 3 × × 3\маленький 1728\!=\!2\!\раз\!2\!\раз\!2\!\раз\!2\!\раз\!2\!\раз\!2\!\раз\!3\ !\раз\!3\!\раз\!3 1728=2×2×2×2×2×2×3×3×3
Теперь дело обстоит иначе — вместо пар мы группируем числа в тройки . На это намекает маленькое 333 в корневом символе — нам нужно третьих степеней . Обратите внимание, что квадратные корни на самом деле являются радикалами 222-го порядка, но мы не пишем 222, потому что. .. Ну, , если нам не нужно делать это из одного типа корня, это вполне может быть самый простой . Это просто условность и традиция. Думайте об этом как о математическом эквиваленте запекания индейки на День Благодарения. 9{mathrm{th}}4mathrmth корень из 818181 равен 333. И если нам нужно n-й корень , мы берем группы из nnn элементов. И, если что-то останется после факторизации, мы просто найдем с помощью какого-нибудь внешнего инструмента, такого как наш калькулятор корня .
Хорошо, после стольких раз прочтения теории пришло время взглянуть на пример из реальной жизни и увидеть калькулятор корня в действии , вам не кажется?
🙋 Что касается квадратного корня, у нас есть инструмент, полностью посвященный кубическому корню: калькулятор кубического корня!
Пример: использование калькулятора корня
Поздравляем, это мальчик! Теперь, когда вы стали родителем, , вы решили начать пораньше и отложить немного денег, когда он пойдет в колледж. Вы решаете взять хороший кусок своих сбережений и оставить его в банке на следующие восемнадцать лет , чтобы сумма росла вместе с вашим ребенком.
Предположим, что вам удалось отложить солидные 8000$\text\textdollar8,0008000$ (назовем эту сумму start\mathrm{start}start). К сожалению, вы как-то забыли процентную ставку по вкладу, но что сделано, то сделано. Сумма в конце станет для вас таким же сюрпризом, как и для вашего сына .
Проходит время, идут годы, и, наконец, пришло время подарить вашему ребенку деньги, которые вы сэкономили . Вы звоните в банк, и выясняется, что на счету $12 477,27\text\textdollar12 477,27 $12 477,27 (назовем эту переменную end\mathrm{end}end). Не так уж и плохо, не так ли? Кажется, ты сможешь воплотить мечты своего сына в жизнь.
Но, просто для себя, просто из чистого любопытства, Можем ли мы рассчитать процентную ставку по имеющимся у нас цифрам?
Конечно можем , и калькулятор корня нам поможет!
Предположим, что проценты начислялись на счет в конце каждого года и что деньги вообще не облагались налогом (да, мы понимаем, что здесь мы немного преувеличиваем). {18}конец=начало×(1+процентная ставка)18 9{18}1,5597=(1+процентная ставка)18
Итак, если у нас есть 18-я 28\mathrm{th}18-я степень справа, нам нужно найти 18-й 28\mathrm{th}18-й радикал числа на слева**. Это нечто немного более сложное, чем квадратный корень из 333, не так ли?
Обратимся к нашему калькулятору корня . Там у нас есть два числа: aaa и nnn. Когда мы смотрим на символическое изображение там, мы видим, что nnn — это порядка корня , поэтому мы вводим n=18n = 18n=18. В свою очередь, ааа равно число под радикалом , поэтому мы принимаем a=1,5597a = 1,5597a=1,5597. Это заставляет калькулятор корня выдать ответ:
1+процентная ставка=1,025\small 1+\mathrm{процентная\ставка} =1,0251+процентная ставка=1,025
Если мы переведем десятичную дробь в проценты, мы получим :
процентная ставка=0,025=2,5%\small\mathrm{процентная\ставка} = 0,025=2,5\%процентная ставка=0,025=2,5%
Это кажется довольно маленьким, но о, как оно выросло за восемнадцать лет!
Хорошо, любопытство удовлетворено , пора вернуться к праздничному торту. Будем надеяться, что ваш сын с пользой воспользуется деньгами и продолжит учебу.
Maciej Kowalski, кандидат в PhD
Результат
Проверьте 61 аналогичные арифметические калькуляторы ➗
Absolute ValueAdditionAssociative свойства… 58 еще
цифровой корневой калькулятор
Let Spart’s Start с наиболее интересным применением цифрового корня0003
- Магический трюк !
Во-первых, вам нужен такой же занудный друг, как и вы. Попросите их мысленно выбрать число от 1 до 10. Теперь попросите их умножить его на 9 и найти сумму цифр кратного. Теперь притворитесь, что читаете их мысли, и скажите им, что они получили 9 в качестве ответа. Вы можете проделать этот трюк и с гораздо большими числами, однако вашему другу может потребоваться немного больше времени, чтобы вычислить цифровой корень из больших чисел, не зная этого трюка. Обратитесь к Свойству 1, упомянутому ниже, для получения дополнительных разъяснений по этому вопросу.
А теперь время откровений! Например, ваш друг выбрал 5. Умножив 5 на 9, он получит 45. «4+5=9», что не должно быть слишком сложно вычислить. Вы можете усложнять фокус, добавляя дополнительную драму, например, попросив друга перетасовать цифры.
- Цифровые корни можно использовать как примитивный способ проверки точности арифметических операций, таких как вычитание, умножение и сложение.
Давайте посмотрим, как мы можем использовать цифровой корень для проверки правильность умножения . Чтобы проверить правильность умножения или нет, перед выполнением умножения вычислите цифровой корень чисел в обеих частях уравнения. Затем умножьте цифровые корни и вычислите цифровой корень произведения. Цифровой корень в обеих частях уравнения должен быть равен, чтобы умножение было правильным. Давайте рассмотрим пример:
456*376= 398765
.
Давайте сначала посмотрим на левую часть уравнения и найдем сумму цифр в этой части. Цифровой корень из 456
это 6
. Цифровой корень 376
равен 7
. Перемножив 6
и 7
, мы получим 42
. Цифровой корень 42
равен 6
. Теперь цифровой корень правой части выглядит как 2
. Поскольку цифровые корни, полученные по обе стороны от знака равенства, различны, это умножение неверно.
Аналогичным образом давайте посмотрим, как мы можем использовать цифровой корень для проверки правильности задачи на вычитание . Например, рассмотрим 340-172=168
. Цифровой корень 340
равен 7
. Цифровой корень 172
равен 1
. Вычитая эти два, мы получаем 6
. Теперь давайте проверим цифровой корень правой стороны. Цифровой корень 168
равен 6
, так что это вычитание верно.
- Цифровые корни также могут помочь обнаружить ошибки округления в последовательности Фибоначчи .