габариты, высота, длина, ширина и глубина радиатора, фото и видео подсказки
Нестандартные размеры радиаторов
Помимо стандартных приборов отопления на рынке широко представлены радиаторы и других типоразмеров. Они предназначены для использования в нетиповых зданиях или в целях придания помещению особенного стиля.
Различают следующие виды и габариты радиаторов
Низкие или маленькие радиаторы отопления отличаются высокой теплоотдачей на единицу площади поверхности, их вполне возможно разместить под низко расположенными подоконниками или в зданиях с витражным остеклением. К ним относят все отопительные приборы с межосевым расстоянием менее 400 мм. По материалу исполнения они могут быть как чугунные, так и алюминиевые или биметаллические.
Чугунные радиаторы отопления низкие горизонтальные преимущественно имеют размеры секций (Ш х Г х В) 93 х 140 х 388 мм, их теплоотдача составляет 106 ВТ при рабочем давлении 9 атм. Зарубежные производители выпускают и более компактные модели с межосевым расстоянием 200 и 350 мм. Биметаллические компактные отопительные приборы выпускаются с широким спектром межосевых расстояний, ширина такой секции стартует с 40 мм, высота находится в пределах 150-450 мм. Глубина компенсирует компактность остальных габаритов и составляет 180 мм. Тепловая мощность варьируется от 80 до 140 ватт при рабочем давлении 25-35 атмосфер.
Алюминиевые радиаторы имеют схожие с биметаллическими размеры с подсоединительными расстояниями от 150 до 400 мм с шагом габарита 500 мм, тепловая мощность колеблется от 50 до 160 Вт.
Нормальное рабочее давление для них – 16 атмосфер, которое при опрессовке можно повышать до 24 атм. Следует отметить, что такие биметаллические и алюминиевые радиаторы отопления узкие горизонтальные не имеют протока воды по средним секциям, они прогреваются лишь за счёт теплопроводности от коллекторов, циркуляция при этом обеспечивается за счёт крайней проточной секции.
Встречаются радиаторы отопления высокие и узкие, которые используются в случаях потребности в большой теплоотдаче при невозможности в силу различных причин занять значительную длину стены. Чугунные высокие радиаторы отопления встречаются только среди продукции зарубежных производителей, ширина их секции 76 мм. при возможной высоте в границах 661-954 мм, глубина таких приборов достигает 203 мм. Рабочее давление составляет 10 атмосфер, а у наиболее крупногабаритных не может превышать 6 атм. теплоотдача же в зависимости от размеров составляет от 270 до 433 ватт.
Биметаллические радиаторы отопления узкие представляют собой в основном дизайнерские конструкции с нестандартными размерами и не предназначены для систем центрального отопления, их используют в частных домах с индивидуальным отоплением. Как правило, это не секционные, а монолитные конструкции. Если же брать секцию, то примером её размера может быть (Ш х Г хВ) 80 х 95 х 880 мм. при рабочем давлении 4 атмосферы. При опрессовке не рекомендуется превышать этот показатель более 6 атм.
Для желающих наиболее эффективно использовать площадь помещения на рынке представлены радиаторы отопления плоские, отличающиеся меньшей глубиной. Их выбор не так велик, как у вышеперечисленных отопительных приборов. Продаваемые тонкие радиаторы отопления могут быть только алюминиевыми. Их глубина начинается от 52 мм при тепловой мощности от 105 до 161 Вт. К плоским радиаторам можно отнести и панельные, глубина которых составляет 60 мм.
Размеры стандартных радиаторов
В зависимости от материала, из которого изготовлены радиаторы, различаются и их габариты. Наиболее часто встречающиеся типоразмеры отопительных приборов считаются как основные, относятся к межосевому расстоянию 500 мм и бывают:
- Стандартные размеры чугунных радиаторов отопления по спецификации составляют для одной секции (ширина х глубина х высота) 93 х 140 х 588 мм. В различных модификациях глубина может так же составлять 85, 90 и 110 мм, а ширина – 108 мм. Для экзотических чугунных радиаторов в стиле «ретро» типоразмеры ещё разнообразнее. Определить размеры собранного из них прибора отопления несложно – к каждой секции прибавляют 10 мм толщины паронитовой прокладки. Также, в случае монтажа радиатора в нишу или в стеснённых условиях, следует учесть длину в обязательном порядке устанавливаемого промывочного крана. Теплоотдача одной секции составляет порядка 160 Вт. при разнице в температуре воздуха помещения и теплоносителя 70 С, максимально допустимое рабочее давление в системе – 9 атмосфер.
- Принятые за стандарт размеры биметаллических радиаторов отопления (ширина х глубина х высота), ввиду широкого ассортимента и значительного количества производителей, таковы: 80-82 х 75-100 х 550-580 мм. Средняя величина теплового потока от секции такого прибора составляет порядка 160-200 Вт, благодаря наличию стального сердечника в конструкции рабочее давление в системе может достигать 25-30 атм. а при опрессовке возможно испытание давлением до 35-50 атмосфер.
- Алюминиевые радиаторы отопления горизонтальные даже при одинаковых размерах могут значительно различаться в технических параметрах. Стандартные габариты их секций составляют (Ш х Г х В) 80 х 80-100 х 575-585 мм. Теплоотдача секции такого вида прибора отопления зависит от оребрения и глубины конструкции, находясь в пределах 180-200 ватт при предельном рабочем давлении системы 16 атмосфер. Опрессовывают такие радиаторы под давлением до 24 атм.
ВНИМАНИЕ! При монтаже системы отопления важным условием является использование труб равной с радиаторами прочности, иначе возможно создание аварийных ситуаций
Отопительные приборы однотрубных систем
Важная особенность горизонтальной «ленинградки» — постепенное снижение температуры в основной магистрали из-за подмеса охлажденного батареями теплоносителя. Если 1 кольцевая линия обслуживает более 5 приборов, разница в начале и конце раздающей трубы может достигать 15 °C. Результат – последние радиаторы выделяют меньше теплоты.
Однотрубная схема закрытого типа — все обогреватели подключены к 1 трубе
Чтобы дальние батареи передавали помещению нужное количество энергии, при расчете отопительной мощности сделайте следующие поправки:
- Первые 4 радиатора подбирайте согласно вышеприведенным инструкциям.
- Мощность 5-го прибора увеличьте на 10%.
- К расчетной теплоотдаче каждой последующей батареи прибавляйте еще 10 процентов.
Классификация отопительных приборов
В зависимости от материала, использованного для изготовления, радиаторы отопления могут быть:
- стальные;
- алюминиевые;
- биметаллические;
- чугунные.
Каждый из этих типов радиаторов имеет свои достоинства и недостатки, поэтому необходимо более подробно изучить их технические характеристики.
Чугунные батареи – отопительные приборы, проверенные временем
Основными достоинствами этих приборов является высокая инертность и достаточно неплохая теплоотдача. Чугунные батареи долго нагреваются и также долго способны отдавать накопленное тепло. Теплоотдача чугунных радиаторов, составляет 80-160 Вт на одну секцию.
Недостатков у этих приборов достаточно много, среди которых наиболее серьезными являются:
- большая разница между проходным сечением стояков и батарей, вследствие чего теплоноситель по радиаторам движется медленно, что приводит к их быстрому загрязнению;
- низкое сопротивление гидроударам, рабочее давление 9 кг/см2;
- большой вес;
- требовательность к регулярному уходу.
Алюминиевые радиаторы
Батареи из алюминиевых сплавов имеют массу достоинств. Они привлекательны, нетребовательны к регулярному уходу, лишены хрупкости, вследствие чего лучше противостоят гидроударам, чем их чугунные аналоги. Рабочее давление варьируется в зависимости от модели и может быть от 12 до 16 кг/см2. Еще одним неоспоримым достоинством алюминиевых батарей является проходное сечение, которое меньше или равно внутреннему диаметру стояков. Благодаря этому, теплоноситель движется внутри секций с большой скоростью, что делает практически невозможным отложение грязи внутри устройства.
Многие считают, что небольшое сечение радиаторов ведет к низкой теплоотдаче. Это утверждение неверно, так как теплоотдача алюминия выше, чем, к примеру, у чугуна, а малое сечение в батареях с лихвой компенсируется площадью оребрения радиатора. Согласно таблице, представленной ниже, теплоотдача алюминиевых радиаторов зависит от модели и может составлять от 138 до 210 Вт.
Но, несмотря на все достоинства, большинство специалистов не рекомендуют их для установки в квартиры, так как алюминиевые батареи могут не выдержать резких скачков давления при тестировании центрального отопления. Еще одним недостатком алюминиевых батарей является быстрое разрушение материала при использовании в паре с ним других металлов. Например, подключение к стоякам радиатора через латунные или медные сгоны может привести к окислению их внутренней поверхности.
Биметаллические отопительные приборы
Эти батареи лишены недостатков их чугунных и алюминиевых «конкурентов». Конструктивной особенностью таких радиаторов является наличие стального сердечника в алюминиевом оребрении радиатора. В результате такого «слияния» устройство может выдерживать колоссальное давление 16-100 кг/см2.
Проходное сечение устройства, как правило, меньше, чем у стояков, поэтому биметаллические радиаторы практически не загрязняются.
Несмотря на сплошные достоинства, у этого изделия есть существенный недостаток – его высокая стоимость.
Стальные радиаторы
Стальные батареи прекрасно подходят для обогрева помещений, запитанных от автономной системы теплоснабжения. Тем не менее, такие радиаторы не лучший выбор для центрального отопления, так как могут не выдержать давления. Они достаточно легкие и устойчивые к коррозии, с высокой инерционностью и неплохими показателями теплоотдачи. Проходное сечение у них чаще всего меньше, чем у стандартных стояков, поэтому забиваются они крайне редко.
Среди недостатков можно выделить довольно низкое рабочее давления 6-8 кг/см2 и сопротивляемость гидроударам, до 13 кг/см2. Показатель теплоотдачи, у стальных батарей составляет 150 Вт на одну секцию.
В таблице представлены средние показатели теплоотдачи и рабочего давления для радиаторов отопления.
Влияние размера алюминиевого радиатора отопления
Батареи из алюминия делают в широком диапазоне габаритов. Длина оказывает первоочередное влияние на мощность.
Соответственно, для достижения необходимого обогрева нужно увеличить количество секций. Общая протяжённость батареи зависит от расчётов.
Глубина и высота также изменяют показатели, поскольку затрагивают объём. В отличие от длины, эти два значения — вариативные, благодаря чему существует множество различных моделей.
Следующий показатель — межосевое расстояние. Оно отвечает за скорость прогрева радиаторов, поскольку означает промежуток между трубами подачи и обратки.
На работоспособность также влияет способ изготовления:
Отлив из металла повышает прочность и долговечность прибора. В этом случае каждая секция — цельная единица, из которых собирают устройство. Это делают в определённой последовательности: сначала сваривают верхние части, затем нижние.
Экструзионный способ предусматривает продавливание нагретого алюминия через решетчатую пластину из металла. Благодаря этому получается профиль заданной формы, который разделяют на части и собирают в радиатор
Внимание! Подобные отопительные приборы редко встречаются, а изготавливаются, обычно, на заказ. Это связано с невозможностью внести изменения в конструкцию после окончания производства
Межосевое расстояние
Показатель представляет собой промежуток между осями радиатора. Они расположены симметрично, одна сверху, вторая снизу. К ним примыкают трубы, через которые осуществляется включение в отопительный контур.
Фото 1. Алюминиевый радиатор модели 350/80, межосевое расстояние 350 мм, производитель – «Oasis», Китай.
В зависимости от производителя, значение колеблется в диапазоне 150—2000 мм. У большинства устройств этот показатель делают равным 500. Это связано с отопительными системами в многоквартирных домах: в старых постройках расчёты выполнены для чугунных радиаторов. При замене батарей нежелательны затраты на переваривание трубопровода.
Справка! В названии большинства моделей присутствует число, указывающее на межосевое расстояние.
Глубина
Зависит от материала, из которого изготовлена батарея. Минимальная величина составляет 52 мм. Её достаточно для создания высокой мощности небольших секций. Максимальный показатель — 180 мм. Он встречается довольно редко и требует прочности. Есть модели с большей глубиной, но их использование нецелесообразно из-за недостаточного прогрева.
Определение объёма секции
Для расчёта необходимо знать значение, описанное выше, а также длину и высоту. Первое значение, зрительно — ширина.
Она составляет 80 или 88 мм, что указано в паспорте.
Второе — вариативное. Обычно вертикальная составляющая размеров секции — 570 мм.
Чтобы найти объём, достаточно перемножить три показателя.
Как правильно подобрать размер секций радиатора
Определение габаритов секций и их количества — самый важный шаг в создании классической системы отопления.
При стандартном расположении
От размеров батарей и материала зависит мощность, которую они способны развить.
Длина почти всегда одинакова и составляет 80 мм. Сначала определяют высоту. Для этого выбирают место установки, от которого зависит доступное пространство.
И также большую роль играет дизайн. По этим параметрам определяют вертикальную составляющую. Обычно решают между 350 и 500 миллиметрами.
В зависимости от особенностей помещения, можно приобрести устройства от 200 мм. Если радиатор приобретают для санузла или ванной комнаты, рекомендуют узкую модель, способную полностью закрыть пространство между полом и потолком. Высотные устройства имеют различные вариации от полутора до трёх метров.
Определив две линейных характеристики и материал, переходят к расчётам глубины и количества секций. Число последних обычно принимают равным 10, но встречаются и другие. Толщину находят из объёма. Кубическую величину делят на длину и высоту. Определение мощности также тесно связано с этими показателями: зная необходимую, можно найти количество секций.
При оригинальном интерьере
Для создания дизайна производители зачастую жертвуют техническими характеристиками.
В первую очередь это касается изделий из чугуна. Отечественные радиаторы выглядят серьёзно, при этом просто покрыты краской.
Европейские изящней, но слабее в обогреве. В любом случае необходимо узнать из документации о мощности, которую они способны развить, поскольку выбирать устройства нужно по передаче тепла.
Справка! Существуют батареи в стиле «ретро». Они обладают приятным внешним видом, но дороги.
Алюминиевые имеют одинаковую форму, за исключением заказных, но отличаются разнообразием расцветок. Кроме того, широкий диапазон габаритов помогает вписать их практически в любой участок комнаты.
Биметаллические радиаторы, в отличие от аналогов, выполняют не только прямыми, но также изогнутыми. Благодаря этому они хорошо смотрятся в помещениях с плавными углами.
Вне зависимости от выбранного материала, перед покупкой следует ознакомиться с технической документацией и узнать габариты внутренних частей секций, вмещающих теплоноситель.
Это поможет определиться с батареями не только по внешним признакам, но и по способности к обогреву.
Следует помнить о возможности сочетаний. Так, если определённое устройство подходит по дизайну, но его мощности недостаточно, можно установить дополнительный обогрев, спрятав его за боковой панелью. Или объединить радиаторное отопление с тёплыми полами.
Хорошим вариантом для гостевых комнат станет установка камина. Хотя последний чаще выполняет декоративную роль, он также способен уменьшить количество или размер секций, установленных в помещении. Иногда лучше пожертвовать красотой, чем замерзать каждую зиму.
Если возникло желание создать особый дизайн, следует обратиться к производителям батарей. Они помогут выполнить расчёты. Благодаря этому готовое изделие будет красиво выглядеть и осуществлять свою прямую функцию.
Теплоотдача одной секции
Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.
Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.
Технические характеристики некоторых биметаллических радиаторов
Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу. Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов
Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):
- Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
- Алюминиевый — 190 Вт (0,19 кВт).
- Чугунные — 120 Вт (0,120 кВт).
Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.
Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше
Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м2:
- биметаллическая секция обогреет 1,8 м2;
- алюминиевая — 1,9-2,0 м2;
- чугунная — 1,4-1,5 м2;
Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м2, для ее отопления примерно понадобится:
- биметаллических 16 м2 / 1,8 м2 = 8,88 шт, округляем — 9 шт.
- алюминиевых 16 м2 / 2 м2 = 8 шт.
- чугунных 16 м2 / 1,4 м2 = 11,4 шт, округляем — 12 шт.
Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.
Инфракрасные теплые полы.
Как его уложить подробно читаем в этой нашей статье. Рекомендую дополнительно подложить под него слой алюминиевой фольги на деревянное основание.
И обязательно всегда соблюдайте правила электромонтажа по сгораемым основаниям.
- Видео 24. Монтаж и подключение теплого.
- Подключение и устройство теплого пола.
- Монтаж теплого пола.
- Как рассчитать теплый пол
Рабочее и опрессовочное давление
Когда речь заходит про технические характеристики радиаторов, показатели давления всегда приводятся в числе первых. Обычное рабочее давление теплоносителя 6-9 атмосфер. С этим напором любые радиаторы справляются, для чугунных батарей штатной нагрузкой считается как раз 9 атмосфер.
Есть еще понятие «опрессовочного» давления — это максимальное давление в системе, которое может возникать при ее первоначальном запуске. Для модели МС-140 – это 15 атмосфер.
Различные дизайнерские решения оформления чугунных радиаторов
По регламенту при запуске системы отопления обязательно должна выполняться проверка возможности плавного пуска центробежных насосов. По-хорошему, все насосы должны быть оборудованы автоматикой, обеспечивающей этот плавный пуск. Ну а на самом деле…
На самом деле, в большинстве домов ее или нет, или она находится в неисправном состоянии. Но и на такой случай в инструкции предусмотрен соответствующий пункт: первоначальный пуск должен выполняться при закрытой задвижке, которую можно (плавно!) открывать только после выравнивания давления в магистрали. Учитывая, кто и как запускает отопление в наших домах, нетрудно себе представить процент выполнения этих инструкций.
При нарушении регламента и возникает тот самый гидроудар, при котором мгновенный скачок давления вызывает превышение допустимого значения, и один из радиаторов по ходу движения теплоносителя не выдерживает нагрузки. Дальнейший ход событий понятен – его срок службы оказывается не столь долгим, как хотелось бы.
Определяем объема радиатора отопления
Теплоноситель в системе отопления – это не только водопроводная вода, которая закачивается внутрь за счет своего давления. К примеру, в загородных поселках нередко воду заливают в отопление ведрами, доставая ее из колодца или близлежащего водоема. Или вообще используют незамерзающие жидкости. Второй вариант используется нечасто только из-за дороговизны материала, но тот, кто планирует проживать на даче или загородном коттедже только по выходным и праздникам, пользуется именно незамерзающими жидкостями, чтобы каждый раз не сливать теплоноситель из отопительной системы. Поэтому расчет объема теплоносителя – важный показатель, в который входит объем радиатора отопления, объем труб и отопительного котла.
Емкость котла указана в паспорте изделия. Этот показатель будет в основном зависеть от мощности агрегата и его размеров. Объем труб можно определить из специальных таблиц:
Диаметр (мм) | Объем одного погонного метра (л) |
---|---|
15 | 0,177 |
20 | 0,31 |
25 | 0,49 |
32 | 0,8 |
40 | 1,25 |
50 | 1,96 |
Чтобы определить общий объем необходимого теплоносителя, который будет помещаться только в трубы, необходимо измерить их общую длину и умножить на показатель из таблицы. Если вы пользуетесь проектом для сооружения отопительной системы, то все необходимые расчеты и замеры можно провести по нему.
Ниже рассмотрим популярные способы расчета объема радиатора отопления.
Рассчитываем объем радиатора
Итак, остается только определить объем воды в радиаторе отопления. Как это можно сделать проще всего? Советуем опять-таки воспользоваться таблицами. Обращаем ваше внимание, что производители предлагают на рынке различные модели отопительных приборов. В модельной линейке могут оказаться радиаторы не только разной конструкции, но и разных размеров. В плане размерного ряда в основе лежит межосевое расстояние, то есть, это расстояние между осями двух коллекторов (верхнего и нижнего). К тому же в настоящее время производители предлагают приборы на заказ, в которых используются индивидуальные эскизы и рисунки. С определением емкости этих батарей все намного сложнее.
Но давайте вернемся к данному показателю и покажем усредненные величины для приборов отопления. Берем модели вида 500 (межосевое расстояние).
Технические характеристики чугунных радиаторов
- Чугунный радиатор ЧМ-140 старого образца – 1,7 литра объем одной секции.
- То же самое только нового образца – 1л.
- Стальной панельный прибор тип 11 (то есть, одна панель) – 0,25 л на каждые 10 см длины прибора. Измерение типа в количественном соотношении увеличивает объем теплоносителя на 0,25 л. То есть, тип 22 – 0,5 л, тип 33 – 0,75 л.
- Алюминиевая батарея – 0,45 л на каждую секцию.
- Биметаллический – 0,25 л.
В данном списке нет стальных трубчатых радиаторов. Даже приблизительный объем у этой модели определить будет непросто. Дело все в том, что производители используют для их изготовления трубы различных диаметров, отсюда и невозможность подобрать хотя бы усредненный вариант. Поэтому рекомендуем обращать внимание на паспортные данные, где показатель объема должен быть указан.
Расчет объема опытным путем
А если такового показателя нет, что делать? Тогда рекомендуем найти объем батареи отопления практическим путем. Как это можно сделать:
- Устанавливаете три заглушки на радиатор.
- Ставите его на торец так, чтобы открытый патрубок находился сверху.
- Берете мерную емкость, к примеру, ведро или ковшик (то есть вы должны знать объем этой емкости, пусть даже приблизительный).
- Теперь заливаете вручную в батарею обычную воду, при этом считаете, сколько ведер вошло в отопительный прибор. Умножая количество на объем ведра, вы получаете объем теплоносителя в приборе.
Радиаторы отопления
Обратите внимание, что этот способ определения объема прибора отопления может быть использован для всех типов и моделей. Если в паспортных данных емкость прибора не указана, и таблицу определения вы не нашли, то опытным путем, своими руками можно достаточно точно определить данный показатель.
Теперь хотелось бы затронуть тему, как влияет емкость батареи отопления на общую теплоотдачу отопительной системы. Здесь зависимость не прямая, а косвенная. Поясним суть дела. Многое будет зависеть от того, как сам теплоноситель будет двигаться по контурам: под действием физических законов (то есть, с естественной циркуляцией) или под искусственным давлением (под действием циркуляционного насоса).
Если выбран первый вариант, то оптимальное решение – радиаторы с большим объемом. Если второй, то тут разницы никакой нет. Давление создаст условия, при которых теплоноситель будет распределяться равномерно по всей сети, а, значит, равномерно распределиться и температура.
Подробнее об определении объема радиатора отопления смотрите в видео:
Вам также будет интересно:
Расчёт количества секций радиатора отопления
На этапе подготовки к капитальным ремонтным работам и в процессе планирования возведения нового дома возникает необходимость расчета количества секций радиатора отопления. Результаты подобных вычислений позволяют узнать количество батарей, которого было бы достаточно для обеспечения квартиры либо дома достаточным теплом даже в наиболее холодную погоду.
Расчёт количества секций радиатора отопленияПорядок расчета может меняться в зависимости от множества факторов. Ознакомьтесь с инструкциями по быстрому расчету для типичных ситуаций, вычислению для нестандартных комнат, а также с порядком выполнения максимально подробных и точных расчетов с учетом всевозможных значимых характеристик помещения.
Расчёт количества секций радиатора отопленияРекомендации по расчету до начала работы
Чтобы самостоятельно рассчитать нужное количество секций отопительной батареи, вы обязательно должны узнать следующие параметры:
Показатели теплоотдачи, форма батареи и материал ее изготовления – эти показатели в расчетах не учитываем.
Важно! Не выполняйте расчет сразу для всего дома либо квартиры. Потратьте немного больше времени и проведите вычисления для каждой комнаты отдельно. Только так можно получить максимально достоверные сведения. При этом в процессе расчета количества секций батареи для обогрева угловой комнаты к итоговому результату нужно добавить 20%. Такой же запас нужно накинуть сверху, если в работе обогрева появляются перебои либо же его эффективности недостаточно для качественного прогрева.
Стандартный расчет радиаторов отопления
Расчет радиаторов отопленияНачнем обучение с рассмотрения наиболее часто использующегося метода расчета. Его вряд ли можно считать самым точным, зато по простоте выполнения он определенно вырывается вперед.
Стандартный расчет радиаторов отопленияВ соответствии с этим «универсальным» методом для обогрева 1 м2 площади помещения нужно 100 Вт мощности батареи. В данном случае вычисления ограничиваются одной простой формулой:
K=S/U*100
В этой формуле:
Для примера рассмотрим порядок расчета необходимого числа секций батареи для комнаты габаритами 4х3,5 м. Площадь такого помещения составляет 14 м2. Производитель заявляет, что каждая секция выпущенной им батареи выдает 160 Вт мощности.
Подставляем значения в приведенную выше формулу и получаем, что для обогрева нашей комнаты нужно 8,75 секций радиатора. Округляем, конечно же, в большую сторону, т.е. к 9. Если комната угловая, добавляем 20%-й запас, снова округляем, и получаем 11 секций. Если в работе отопительной системы наблюдаются проблемы, добавляем еще 20% к первоначально рассчитанному значению. Получится около 2. То есть в сумме для обогрева 14-метровой угловой комнаты в условиях нестабильной работы отопительной системы понадобится 13 секций батареи.
Расчет алюминиевых радиаторов отопленияПриблизительный расчет для стандартных помещений
Очень простой вариант расчета. Основывается он на том, что размер отопительных батарей серийного производства практически не отличается. Если высота комнаты составляет 250 см (стандартное значение для большинства жилых помещений), то одна секция радиатора сможет обогреть 1,8 м2 пространства.
Площадь комнаты составляет 14 м2. Для расчета достаточно разделить значение площади на упоминавшиеся ранее 1,8 м2. В результате получается 7,8. Округляем до 8.
Таким образом, чтобы прогреть 14-метровую комнату с 2,5-метровым потолком нужно купить батарею на 8 секций.
Подбор радиаторов отопления по тепловой мощностиВажно! Не используйте этот метод при расчете маломощного агрегата (до 60 Вт). Погрешность будет слишком большой.
Расчет для нестандартных комнат
Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной формуле, имеющей такой вид:
A=Bx41,
где:
- А – нужное число секций отопительной батареи;
- B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.
Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.
Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.
Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.
Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-произво
Максимально точный вариант расчета
Из приведенных выше расчетов мы увидели, что ни один из них не является идеально точным, т.к. даже для одинаковых помещений результаты пусть и немного, но все равно отличаются.
Если вам нужна максимальная точность вычислений, используйте следующий метод. Он учитывает множество коэффициентов, способных повлиять на эффективность обогрева и прочие значимые показатели.
В целом расчетная формула имеет следующий вид:
T=100 Вт/м2 *A *B * C * D * E * F * G * S,
- где Т – суммарное количество тепла, необходимое для обогрева рассматриваемой комнаты;
- S – площадь обогреваемой комнаты.
Остальные коэффициенты нуждаются в более подробном изучении. Так, коэффициент А учитывает особенности остекления помещения.
Особенности остекления помещенияЗначения следующие:
- 1,27 для комнат, окна которых остеклены просто двумя стеклами;
- 1,0 – для помещений с окнами, оснащенными двойными стеклопакетами;
- 0,85 – если окна имеют тройной стеклопакет.
Коэффициент В учитывает особенности утепления стен помещения.
Особенности утепления стен помещенияЗависимость следующая:
- если утепление низкоэффективное
, коэффициент принимается равным 1,27; - при хорошем утеплении (к примеру, если стены выложены в 2 кирпича либо же целенаправленно утеплены качественным теплоизолятором)
, используется коэффициент равный 1,0; - при высоком уровне утепления – 0,85.
Коэффициент C указывает на соотношение суммарной площади оконных проемов и поверхности пола в комнате.
Соотношение суммарной площади оконных проемов и поверхности пола в комнатеЗависимость выглядит так:
- при соотношении равном 50% коэффициент С принимается как 1,2;
- если соотношение составляет 40%, используют коэффициент равный 1,1;
- при соотношении равном 30% значение коэффициента уменьшают до 1,0;
- в случае с еще меньшим процентным соотношением используют коэффициенты равные 0,9 (для 20%) и 0,8 (для 10%).
Коэффициент D указывает на среднюю температуру в наиболее холодный период года.
Распределение тепла в комнате при использовании радиаторовЗависимость выглядит так:
- если температура составляет -35 и ниже, коэффициент принимается равным 1,5;
- при температуре до -25 градусов используется значение 1,3;
- если температура не опускается ниже -20 градусов, расчет ведется с коэффициентом равным 1,1;
- жителям регионов, в которых температура не опускается ниже -15, следует использовать коэффициент 0,9;
- если температура зимой не падает ниже -10, считайте с коэффициентом 0,7.
Коэффициент E указывает на количество внешних стен.
Количество внешних стенЕсли внешняя стена одна, используйте коэффициент 1,1. При двух стенах увеличьте его до 1,2; при трех – до 1,3; если же внешних стен 4, используйте коэффициент равный 1,4.
Коэффициент F учитывает особенности вышерасположенно
- если выше находится не обогреваемое чердачное помещение, коэффициент принимается равным 1,0;
- если чердак отапливаемый – 0,9;
- если соседом сверху является отапливаемая жилая комната, коэффициент можно уменьшить до 0,8.
И последний коэффициент формулы – G – учитывает высоту помещения.
Высота комнатыПорядок следующий:
- в комнатах с потолками высотой 2,5 м расчет ведется с использованием коэффициента равного 1,0;
- если помещение имеет 3-метровый потолок, коэффициент увеличивают до 1,05;
- при высоте потолка в 3,5 м считайте с коэффициентом 1,1;
- комнаты с 4-метровым потолком рассчитываются с коэффициентом 1,15;
- при расчете количества секций батареи для обогрева помещения высотой 4,5 м увеличьте коэффициент до 1,2.
Этот расчет учитывает почти все существующие нюансы и позволяет определить необходимое число секций отопительного агрегата с наименьшей погрешностью. В завершение вам останется лишь разделить расчетный показатель на теплоотдачу одной секции батареи (уточните в прилагающемся паспорте) и, конечно же, округлить найденное число до ближайшего целого значения в сторону увеличения.
Цены на популярные модели радиаторов отопления
Радиаторы отопления
Калькулятор расчета радиатора отопления
Для удобства, все эти параметры внесены в специальный калькулятор расчета радиаторов отопления. Достаточно указать все запрашиваемые параметры — и нажатие на кнопку «РАССЧИТАТЬ» сразу даст искомый результат:
Перейти к расчётам
Последовательно введите запрашиваемые значения или отметьте нужные варианты в предлагаемых списках
Установите ползунком значение площади помещения, м²
Сколько внешних стен в помещении?
однадветричетыре
В какую сторону света смотрят внешние стены
Север, Северо-Восток, ВостокЮг, Юго-Запад, Запад
Укажите степень утепленности внешних стен
Внешние стены не утепленыСредняя степень утепленияВнешние стены имеют качественное утепление
Укажите среднюю температуру воздуха в регионе в самую холодную декаду года
— 35 °С и нижеот — 25 °С до — 35 °Сдо — 20 °Сдо — 15 °Сне ниже — 10 °С
Укажите высоту потолка в помещении
до 2,7 м2,8 ÷ 3,0 м3,1 ÷ 3,5 м3,6 ÷ 4,0 мболее 4,1 м
Что располагается над помещением?
холодный чердак или неотапливаемое и не утепленное помещениеутепленные чердак или иное помещениеотапливаемое помещение
Укажите тип установленных окон
Обычные деревянные рамы с двойным остеклениемОкна с однокамерным (2 стекла) стеклопакетомОкна с двухкамерным (3 стекла) стеклопакетом или с аргоновым заполнением
Укажите количество окон в помещении
Укажите высоту окна, м
Укажите ширину окна, м
Выберите схему подключения батарей
Укажите особенности установки радиаторов
Радиатор располжен открыто на стене или не прикрыт подоконникомРадиатор полностью прикрыт сверху подоконником или полкойРадиатор установлен в стеновой нишеРадиатор частично прикрыт фронтальным декоративным экраномРадиатор полностью закрыт декоративным кожухом
Ниже будет предложено ввести паспортную мощность одной секции выбранной модели радиатора.
Если целью расчетов стоит определение потребной суммарной тепловой мощности для отопления комнаты (например, для выбора неразборных радиаторов) то оставьте поле пустым
Введите паспортную тепловую мощность одной секции выбранной модели радиатора
Советы по энергосбережениюСоветы по энергосбережениюУдачных расчетов!
Видео – Расчёт количества секций радиатора отопления
Биметаллические радиаторы отопления: размеры и виды
Современный рынок предлагает 4 вида радиаторов: чугунные, алюминиевые, стальные и биметаллические. Такие батареи долговечны, у них хорошая теплоотдача и привлекательный дизайн. Когда выбираете модель, учитывайте размеры биметаллических радиаторов, их энергоемкость и количество. Но, обо всем подробней.
Радиатор биметаллическийУстройство
Каждый из видов радиаторов обладает своими достоинствами. Чугунный радиатор долговечный, долго удерживает тепло, но имеет не очень привлекательный вид. Алюминиевый выглядит эстетично, имеет высокий уровень теплоотдачи, но недолговечен. Стальная батарея долговечна, но не хуже, чем предыдущие модели удерживает тепло и требует дополнительного декора, если используется в жилом помещении.
Среди разных видов батарей биметаллические радиаторы обладают несравненными преимуществами. Они созданы из стали и алюминия. От стали они получили прочность и надежность, от алюминия – привлекательный внешний вид. За счет гармоничного сочетания качеств обоих металлов, биметаллическая батарея может долгое время сохранять тепло.
Особенности конструкции
Вода содержит большое количество примесей. Контактируя с алюминием, они вызывают коррозию. За несколько лет использования эти процессы приведут к протеканию прибора.
Особенность конструкции этих радиаторов заключается в наличии внутреннего сердечника из нержавеющей стали, который снаружи окружен алюминиевым сплавом. Так вода не контактирует с алюминием, что значительно продлевает срок службы системы.
Есть два варианта изготовления:
- Псевдобиметалл. В этом случае стальная сердцевина расположена только внутри вертикальных каналов. Так алюминий защищен не полностью, а лишь в наиболее слабых местах. Эти модели дешевле, их стандартный срок службы составляет до 10 лет, если они используются в системах с высоким давлением воды (например, в городских квартирах).
- Биметалл. Обладает цельным внутренним корпусом из стали, который поверх заливается алюминиевым сплавом под давлением. Здесь алюминий защищен со всех сторон. Это более дорогие модели и срок их службы при аналогичных условиях эксплуатации составляет до 30 лет.
Есть разные способы соединения двух металлов. Предпочтительней, если алюминий залит поверх стали под давлением. Такая модель батареи прослужит дольше. Существует вариант, когда металлы соединяются между собой сваркой.
По техническому типу конструкции радиаторы могут быть:
- Разборными. Это значит, что с помощью радиаторного ключа можно открутить любое количество секций и прикрутить их к другому радиатору. Такой тип чаще устанавливается в частных домах с автономной системой отопления, где нет высокого давления воды.
- Неразборными. Радиатор монолитный, его нельзя раскрутить, обрезать, присоединить к другому. Отлично подойдет для использования в городской квартире, где всегда высокий уровень давления.
Размеры
Размер секций биметаллического радиатора определяется расстоянием от середины входного, до середины выходного отверстий. Сегодня изготавливают батареи с расстоянием между указанными отверстиями:
- 200 мм;
- 350 мм;
- 500 мм.
Чтобы подсчитать полные габариты биметаллических радиаторов отопления нужно к этому показателю добавить 8 сантиметров. Получаются размеры 28, 43 и 58 сантиметров.
Размеры биметаллических отопительных батарейПеред выбором нужных габаритов батарей отопления следует помнить, что от пола до низа радиатора должно быть не меньше 12 см, а от его верха до выступающей части подоконника – не меньше 10 см. Иначе не будет достаточной циркуляции воздуха, что снизит эффективность теплоотдачи прибора.
Ширина секции находится в диапазоне от 80 до 90 мм. Толщина – от 80 до 120 мм. Высота, ширина и толщина влияют на энергетическую мощность батареи.
Емкость секции
Специфическая конструкция радиаторов обуславливает их довольно низкую вместимость. Это одновременно хорошо и плохо.
Маленькая емкость не требует большого количества теплоносителя (горячей воды), а значит, экономит воду и топливо, чтобы ее подогреть. Но чем меньше теплоносителя, тем быстрее остывает радиатор. Здесь быстрого остывания не происходит, так как между водой и алюминиевой поверхностью есть еще стальная оболочка, которая долго не остывает.
Соединение двух металловМаленькая емкость способствует быстрому загрязнению, закупориванию каналов при использовании некачественной воды. Чтобы решить эту проблему в частном доме устанавливается система очистки. Минимальное требование – установка двух фильтров: тонкой и грубой очистки.
Объем одной секции зависит от ее размера:
- при расстоянии между входным и выходным отверстиями 500 мм, вместимость секции будет составлять 0,2–0,3 литра;
- при расстоянии в 350 мм вместимость составит 0,15–0,2 литра;
- расстояние в 200 мм гарантирует объем в 0,1–0,16 литра.
Расчет количества секций
Объем и количество секций определяет тепловую мощность одного радиатора. Перед совершением покупки важно произвести расчет этой мощности, чтобы найти необходимое для помещения количество секций. Для этого используется любая из двух формул:
- Общая. Когда расчет секций производится исходя из площади помещения. В среднем, на 10 м2 требуется не менее 1 кВт энергии. Для подсчета используется формула N = S × 100/Q. Где N – это количество секций для помещения, S – площадь помещения в метрах квадратных, Q – энергетическая мощность секции. Энергетическая мощность указывается производителем на упаковке или на сопутствующих документах.
Попробуем рассчитать количество секций на помещение 25 м2, при энергетической мощности секции 180 Вт. Получится: 25 × 100/180 = 13.88. После округления получаем 14 секций (округление необходимо производить в большую сторону). При ширине 8 сантиметров общая ширина радиатора будет составлять 112 сантиметров. В этом случае можно установить 2 радиатора каждый по 7 секций.
- Подробная. Эта формула берет в расчет объем помещения в кубических метарах (м3). В среднем, на 1 кубометр пространства необходим 41 Вт энергии. Далее используют формулу N = S × 41/Q, где N – это количество секций для помещения, V – объем помещения в метрах кубических, Q – энергетическая мощность секции.
Рассчитаем количество секций для обогрева помещения со следующими параметрами: длина 5 метров, ширина 3 метра, высота потолков 2,5 метра. Сначала необходимо найти площадь комнаты. Длину умножаем на ширину и получаем 15 м2. Получившийся показатель умножаем на высоту потолков – получаем 37,5 м3. За мощность одной секции возьмем 180 Вт, тогда 37,5 × 41/180 = 8,54. Округляем в большую сторону и получаем 9 секций.
При расположении квартиры на первом или последнем этажах, в угловой квартире, в комнате с большими окнами или в доме с толщиной стен не более 25 сантиметров, необходимо к получившемуся параметру добавлять 10%.
Рекомендации по выбору
Подведем итоги. Для осуществления правильного выбора необходимо обращать внимание на все указанные характеристики:
- Конструкция. Для городской квартиры подойдет монолитная, полностью биметаллическая батарея, которая способна выдержать давление до 15 атмосфер и более (обычно в квартирах используется давление в районе 12 атмосфер, тогда как в частном доме рекомендуется устанавливать давление всего в одну атмосферу). Автономным отопительным системам подойдут более дешевые модели, так как в них нет высокого давления.
- Размер. Если расстояние между полом и подоконником не менее 80 сантиметров, следует выбирать самую высокую модель. Иначе придется брать радиатор поменьше, так, чтобы до пола было не менее 12 см, а до подоконника не менее 10 см.
- Емкость. Одно из основных свойств – довольно узкие проходы. По возможности обеспечьте хорошее качество воды, подаваемой в систему отопления.
- Расчет секций. Перед покупкой читайте описание модели для уточнения энергетической мощности. Расчет количества секций лучше производить, используя вторую (подробную) формулу, где необходимое количество тепла определяется исходя из объема помещения. Не забывайте добавлять 10% в случае значительных теплопотерь за счет внешних факторов.
Сегодня хорошо зарекомендовали себя биметаллические батареи от итальянских производителей Fondital и Global.
Видео по теме:
youtube.com/embed/-OaMj0spGA0?rel=0&wmode=transparent» frameborder=»0″ allowfullscreen=»»/>
Как рассчитать количество радиаторов отопления и секций в каждом радиаторе
Чтобы отопительная система работала эффективно, мало просто расставить батареи по комнатам. Нужно обязательно рассчитать количество радиаторов, с учетом площади и объема помещений и мощности самой печи или котла. Немаловажно учесть и вид батареи, количество секций в каждой и скорость доставки «рабочей жидкости».
8 секционный радиатор отопления в квартире
На сегодняшний день промышленностью производится несколько видов радиаторов, которые выполняются из разных материалов, имеют различные формы и, конечно же, характеристики. Для эффективности обогрева дома, покупая их, нужно учесть все минусы и плюсы моделей, представленных на рынке.
Владельцу недвижимости не обязательно обращаться к специалистам, за помощью в расчете количества радиаторов отопления, для этого достаточно уметь пользоваться рулеткой, калькулятором и шариковой ручкой или карандашом! Следуя нашим инструкциям у вас обязательно всё получится!
Виды радиаторов
Первое, что нужно знать — это вид и материал из которых сделаны ваши радиаторы, именно от этого в частности и зависит их количество. В продаже присутствуют как всем уже знакомые чугунные виды батарей, но значительно усовершенствованные, так и современные экземпляры, выполненные из алюминия, стали и, так называемые, биметаллические радиаторы из стали и алюминия.
Современные варианты батарей изготавливаются в разнообразных дизайнерских исполнениях и имеют многочисленные оттенки и цвета, поэтому можно легко выбрать те модели, которые больше подходят для конкретного интерьера. Однако, нельзя забывать и о технических характеристиках приборов.
- Самыми популярными из современных радиаторов стали биметаллические батареи. Они устроены по комбинированному принципу и состоят из двух сплавов: изнутри они стальные, снаружи — алюминиевые. Привлекают они своим эстетичным внешним видом, экономностью в использовании и легкостью в эксплуатации.
Современная биметаллическая батарея на 10 секций
Но есть у них и слабая сторона — приемлемы они только для систем отопления с достаточно высоким давлением, а значит, для строений, подключенных к центральному отоплению в многоквартирных домах. Для зданий с автономным отопительным снабжением они не подходят и от них лучше отказаться.
- Стоит поговорить и о чугунных радиаторах. Несмотря на их большой «исторический стаж», они не теряют своей востребованности. Тем более, что сегодня можно приобрести чугунные варианты, выполненные в различном дизайне, и их легко можно подобрать для любого дизайнерского оформления. Более того, производятся такие радиаторы, которые вполне могут стать дополнением или даже украшением помещения.
Чугунный радиатор в современном стиле
Эти батареи подойдут как для автономного, так и для центрального отопления, и под любой теплоноситель. Они дольше, чем биметаллические прогреваются, но и более длительное время остывают, что способствует большей теплоотдаче и сохранению тепла в помещении. Единственным условием долгосрочной их эксплуатации является качественный монтаж при установке.
- Стальные радиаторы делятся на два типа: трубчатые и панельные.
Стальные радиаторы трубчатой конструкции
Трубчатые варианты более дорогостоящие, они нагреваются медленнее панельных, и, соответственно, дольше сохраняют температуру.
Панельный тип стальных радиаторов
Панельные — быстро нагревающиеся батареи. Они намного дешевле трубчатых по цене, тоже неплохо обогревают комнаты, но в процессе их быстрого остывания, выхолаживается и помещение. Поэтому эти батареи в автономном отоплении не экономичны, так как требуют практически постоянного притока тепловой энергии.
Эти характеристики обоих типов стальных батарей и будут напрямую влиять на количество точек их размещения.
Стальные радиаторы имеют респектабельный вид, поэтому неплохо вписываются в любой стиль оформления помещения. Они не собирают на своей поверхности пыль и легко приводятся в порядок.
- Алюминиевые радиаторы имеют хорошую теплопроводность, поэтому считаются вполне экономичными. Благодаря этому качеству и современному дизайну, алюминиевые батареи стали лидерами продаж.
Легкие и эффективные алюминиевые радиаторы
Но, приобретая их, необходимо учитывать один их недостаток — это требовательность алюминия к качеству теплоносителя, поэтому они больше подходят только для автономного отопления.
Для того, чтобы рассчитать, сколько радиаторов понадобится на каждую из комнат, придется учесть многие нюансы, как связанные с характеристиками батарей, так и другие, влияющие на сохранность тепла в помещениях.
Как рассчитать количество секций радиатора отопления
Чтобы теплоотдача и нагревательная эффективность была должного уровня, при расчете размера радиаторов нужно учесть нормативы их установки, а отнюдь не опираться на размеры оконных проемов, под которыми они устанавливаются.
На теплоотдачу влияет не ее размер, а мощность каждой отдельной секции, которые собраны в один радиатор. Поэтому лучшим вариантом будет разместить несколько небольших батарей, распределив их по комнате, нежели одну большую. Это можно объяснить тем, что тепло будет поступать в помещение из разных точек и равномерно прогревать его.
Каждое отдельное помещение имеет свою площадь и объем, от этих параметров и будет зависеть расчет количества секций, устанавливаемых в нем.
Расчет на основании площади помещения
Чтобы правильно рассчитать это количество на определенную комнату, нужно знать некоторые правила:
Узнать нужную мощность для обогрева помещения можно, умножив на 100 Вт размер его площади (в квадратных метрах), при этом:
- На 20% увеличивают мощность радиатора в том случае, если две стены помещения выходят на улицу, и в нем находится одно окно — это может быть торцевая комната.
- На 30% придется увеличить мощность, если комната имеет те же характеристики, как в предыдущем случае, но в ней устроено два окна.
- Если же окно или окна комнаты выходят на северо-восток или север, а значит, в ней бывает минимальное количество солнечного света, мощность нужно увеличить еще на 10%.
- Устанавливаемый радиатор в нишу под окном, имеет сниженную теплоотдачу, в этом случае придется увеличить мощность еще на 5%.
Ниша снизит энергоотдачу радиатора на 5 %
- Если радиатор закрывается экраном в эстетических целях, то снижается теплоотдача на 15%, и ее также нужно восполнить, увеличив мощность на эту величину.
Экраны на радиаторах — это красиво, но они заберут до 15% мощности
Удельная мощность секции радиатора обязательно указывается в паспорте, который производитель прилагает к изделию.
Зная эти требования, можно рассчитать необходимое количество секций, разделив полученное суммарное значение требуемой тепловой мощности с учетом всех указанных компенсирующих поправок, на удельную теплоотдачу одной секции батареи.
Полученный результат расчетов округляется до целого числа, но только в большую сторону. Допустим, получилось восемь секций. И тут, возвращаясь к вышесказанному, нужно отметить, что для лучшего обогрева и распределения тепла, радиатор можно разделить на две части, по четыре секции каждая, которые устанавливают в разных местах помещения.
Каждое помещение просчитывается отдельно
Нужно отметить, что такие расчеты подходят для определения количества секций для помещений, оснащенных центральным отоплением, теплоноситель в котором имеет температуру не больше 70 градусов.
Этот расчет считается достаточно точным, но можно произвести расчет и по-другому.
Расчет количества секций в радиаторах, исходя из объема помещения
Стандартом считается соотношение тепловой мощности в 41 Вт на 1 куб. метр объема помещения, при условии нахождения в нем одной двери, окна и внешней стены.
Чтобы результат был виден наглядно, для примера можно рассчитать нужное количество батарей для комнаты площадью 16 кв. м. и потолком, высотой 2,5 метра:
16 × 2,5= 40 куб.м.
Далее нужно найти значение тепловой мощности, это делается следующим образом
41 × 40=1640 Вт.
Зная теплоотдачу одной секции (ее указывают в паспорте), можно без труда определить количество батарей. Например, теплоотдача равна 170 Вт, и идет следующий расчет:
1640 / 170 = 9,6.
После округления получается цифра 10 — это и будет нужное количество секций отопительных элементов на комнату.
Существуют также некоторые особенности:
- Если комната соединяется с соседним помещением проемом, не имеющим двери, то необходимо считать общую площадь двух комнат, только тогда будет выявлена точное количество батарей для эффективности отопления.
- Если теплоноситель имеет температуру ниже 70 градусов, количество секций в батареи придется пропорционально увеличить.
- При установленных в комнате стеклопакетах, значительно снижаются тепловые потери, поэтому и количество секций в каждом радиаторе может быть меньше.
- Если в помещениях установлены старые чугунные батареи, которые вполне справлялись с созданием нужного микроклимата, но есть планы поменять их на какие-то современные, то посчитать, сколько их понадобится, будет очень просто. Одна чугунная секция имеет постоянную теплоотдачу в 150 Вт. Поэтому количество установленных чугунных секций нужно умножить на 150, а полученное число делится на теплоотдачу, указанную на секции новых батарей.
Видео: Советы специалистов по расчету количества радиаторов отопления в квартире
Если вам до сих пор не до конца понятно, как производятся эти расчеты и вы не рассчитываете на свои силы, можно обратиться к специалистам, которые произведут точный расчет и сделают анализ с учетом всех параметров:
- особенности погодных условий региона, где расположено строение;
- температурные климатические показатели на начало и окончание отопительного сезона;
- материал, из которого возведено строение и наличие качественного утепления;
- количество окон и материал, из которого изготовлены рамы;
- высота отапливаемых помещений;
- эффективность установленной системы отопления.
Зная все вышеперечисленные параметры, специалисты-теплотехники по имеющейся у них программе расчёта с легкостью высчитают нужное количество батарей. Такой просчет с учетом всех нюансов вашего дома гарантированно сделает его уютным и теплым, а вас и вашу семью — счастливыми!
Как работают тепловые батареи?
Что такое тепловая батарея?
Любую тепловую массу по определению можно назвать тепловой батареей, поскольку она способна накапливать тепло. В контексте дома это означает плотные материалы, такие как кирпич, кладка и бетон. Даже кувшин с водой, стоящий в солнечном окне, представляет собой своего рода тепловую батарею, поскольку она улавливает, а затем выделяет тепло от солнца.
Хорошо утепленный бетонный пол также действует как тепловая батарея; как только вы накачаете его полным теплом, он долго остынет (в зависимости от толщины), и в течение этого времени он регулирует внутреннюю температуру.
Одно из практических применений для получения максимальной отдачи от излучающего бетонного пола, поскольку тепловая батарея может быть в областях с колеблющимися затратами на электроэнергию — вы можете настроить пол на таймер, чтобы он включался только в часы с низким тарифом (с 19:00 до 7:00 в Онтарио например). В течение двенадцати часов, когда он выключен, он действует как аккумулятор, медленно выделяя накопленное тепло, поэтому вам не придется платить по более высоким тарифам в часы пик.
MIT Solar House через ВикимедиаПо мере того, как вы приближаетесь к области активных систем аккумулирования тепла, одним из наиболее распространенных типов тепловых батарей (не то чтобы их много) является огромный резервуар для воды, закопанный в землю, который нагревается солнечными тепловыми панелями.
Даже этот тип системы не нов, первый дом в Соединенных Штатах с активной системой солнечного отопления был построен в 1939 году на территории кампуса Массачусетского технологического института (Массачусетского технологического института) и располагался на вершине огромного резервуара с водой, который нагревается тепловыми солнечными панелями.
Тепловая батарея MIT Solar House через ВикимедиаЧто такое тепловые батареи с фазовым переходом?
Использование «фазового перехода» немного поднимает планку — оставайтесь со мной, это будет весело, обещаю 🙂
Требуется значительный вклад энергии для превращения материала из твердого в жидкое.Эта энергия высвобождается позже, когда материал снова затвердевает. Пока происходят эти преобразования и материал либо поглощает, либо выделяет энергию, температура остается постоянной. Как только фазовый переход завершится, материал снова начнет изменять температуру.
Так что это означает в реальном выражении? Это означает, что для того, чтобы растопить воду, воск, металл, камень или что-то еще, вам нужно накормить его тонной энергии. но при этом температура не меняется.Таким образом, ваша «батарея» имеет больше энергии, и вы можете хранить больше тепла в том же объеме пространства.
Трудно воспользоваться температурой плавления 0 ° Цельсия, но воск плавится при температуре около 37 ° Цельсия (в зависимости от его точного химического состава), что идеально подходит для сбора и хранения тепла от солнечных тепловых коллекторов.
Как построить тепловую батарею:
Если у вас есть солнечная панель, собирающая тепло (непосредственно нагревающая воздух или жидкость, а не генерирующая энергию с помощью фотоэлектрических элементов), вы можете использовать ее для зарядки своей тепловой батареи.Представьте себе это — большой резервуар с воском (или водой), который нагревается нагревательными змеевиками от солнечного коллектора. Через этот же резервуар проходит другой змеевик, который отбирает тепло, чтобы перекачивать его через ваш лучистый пол или любую другую систему распределения тепла, которая у вас есть.
Удельная теплоемкость:
Если вы возьмете твердый парафин (теплоемкость Cp = 2,5 кДж / кг · K и теплота плавления 210 кДж / кг), скажем, 1 кг при комнатной температуре, вам потребуется 2,5 кДж (килоджоулей) тепла, чтобы Блок 1 кг выдерживает температуру от 20 ° C до 21 ° C.Чтобы температура повысилась с 21 ° C до 22 ° C, вам также потребуется 2,5 кДж (то есть такое же количество энергии).
Парафин плавится примерно при 37 ° C. Если она упадет до 36 ° C, вам снова потребуется всего 2,5 кДж, чтобы вернуть ее к 37 ° C, но вам потребуется 210 кДж (в 84 раза больше), чтобы перейти с 37 до 38 ° C.
Это связано с тем, что для плавления необходимо разорвать некоторые химические связи в твердой решетке, а это требует дополнительной энергии. Итак, в целом, если при температуре 20 ° C лежит килограмм парафина, вам понадобится 252.5 кДж, чтобы довести его до 38 ° C.
Бетон является одним из наиболее распространенных строительных материалов с высокой теплотворной способностью. В отличие от парафина, 1 кг бетона (Cp = 0,88 кДж / кг · K) потребует 15,8 кДж, чтобы сделать то же самое. Для воды (Cp = 4,18 кДж / кг · К) необходимое количество энергии составит 75,2 кДж.
Количество вложенной энергии — это количество энергии, хранящейся в материале, поскольку эта энергия позже будет высвобождена, когда материал снова остынет до 20 ° C или комнатной температуры. Хотя существует множество материалов, которые можно использовать для аккумулирования тепла, это всего лишь краткое сравнение некоторых из наиболее широко доступных.
Итак, парафин может сохранять в 16 раз больше тепла на килограмм, чем бетон, и в 3,4 раза больше, чем вода. Таким образом, хотя вода может быть не лучшим материалом для хранения тепла, она, безусловно, является наиболее доступной по цене и легкодоступной.
Значение Cp, указанное в тексте выше, относится к теплоемкости материалов.
q = м Cp ΔT
где:
q = энергия [Дж]
m = масса материала [кг]
Cp = теплоемкость материала [кДж / (кг · K)]
ΔT = разница температур [K или ° C]
Подробнее о дизайне пассивных солнечных домов здесь
Схема термобатареи предоставлена компанией Alternative-Photonics.com / |
Диаграммы тепловых батарей любезно предоставлены компанией Alternative Photonics.
Исследования характеристик рассеивания тепла пространственной компоновки литиевых батарей в АНПА
Для удовлетворения требований энергопотребления автономных подводных аппаратов (АНПА) источник питания обычно состоит из большого количества высокоэнергетических групп литиевых батарей. Свойства рассеивания тепла литиевой батареей не только влияют на характеристики подводного аппарата, но и создают определенные риски для безопасности.Основываясь на широком применении литиевых батарей, литиевые батареи в АПА взяты в качестве примера для исследования характеристик рассеивания тепла пространственной компоновкой литиевых батарей в АПА. С целью повышения безопасности литиевых батарей разработана модель процесса теплопередачи, основанная на уравнении сохранения энергии, и проанализированы характеристики рассеивания тепла батареей пространственной компоновки. Результаты показывают, что наиболее подходящее расстояние между ячейками и перекрестное расположение лучше, чем расположение последовательности с точки зрения характеристик охлаждения.Температурный градиент и изменение температуры внутри кабины со временем в первую очередь зависят от скорости навигации, но они мало связаны с температурой окружающей среды.
1. Введение
Поскольку автономные подводные аппараты (АНПА) развиваются в направлении больших расстояний и высоких скоростей, для поддержки навигации срочно требуется все больше мощности. Поскольку электрохимические реакции, происходящие в литий-ионных батареях, будут выделять тепло, батарейный отсек автономных подводных аппаратов в течение длительного времени работает на крупномасштабных интегрированных литий-ионных аккумуляторных батареях в ограниченном пространстве, и, таким образом, будут существовать проблемы с безопасностью и надежностью.В [1] тепло можно разделить на две части. С одной стороны, в аккумуляторном отсеке происходит накопление тепла, поскольку тепло от аккумуляторного блока не может рассеиваться своевременно. С другой стороны, неравномерно излучающий тепло аккумуляторный блок вызовет локальную разницу температур, что приведет к неравномерной работе батарей и, в конечном итоге, повлияет на общую производительность батарей.
В настоящее время отечественные и зарубежные ученые сосредоточили свое внимание на проблеме безопасности АПА, использующих литиевые батареи для проведения соответствующих исследований.В [2–7] проведено исследование стратегии управления тепловым балансом литиевой батареи и системы терморегулирования, рассчитанной на непостоянное влияние срока службы батареи. В [8–10] метод сопряженной теплопередачи «жидкость-твердое тело» был использован для создания математической физической модели процесса теплопроводности внутри аккумуляторной кабины АНПА в связи с проблемой охлаждения аккумуляторной батареи. Кроме того, ток разряда аккумуляторной батареи и теплопроводность аккумуляторной батареи навигационных устройств также были проанализированы в [11], в которой программа анализа конечных элементов ANSYS использовалась для анализа температурного поля группы литиевых аккумуляторов АНПА и обсуждения влияния различного времени разрядки. и граничные условия на поле температуры батареи.В [12], стационарный анализ теплового моделирования кабины аккумуляторной батареи АНПА был выполнен в соответствии с процессом теплопередачи ключевой точки проекта пассивного теплового контроля конструкции. Что касается тепловых аспектов аккумуляторных батарей в исследовательских работах, основное внимание уделяется области электроэнергии для транспортных средств на новой энергии. В [13] была создана модель крупномасштабного аккумуляторного блока для исследования рассеивания тепла аккумуляторным блоком; в первую очередь он был сосредоточен на области электроэнергии для транспортных средств на новой энергии.В [14, 15] была создана модель для прогнозирования производительности литиевых батарей для электромобилей, и влияние различных групп на производительность батареи было проанализировано в том же режиме охлаждения с 9 одноэлементными батареями в качестве батареи. упаковка. Кроме того, с использованием принудительного воздушного охлаждения и материалов с фазовым переходом, охлаждающая способность автомобильного аккумуляторного блока была проанализирована на основе метода вычислительной гидродинамики в [16, 17]. Подходящая модель аккумулятора необходима для правильного проектирования и работы аккумуляторных систем с BMS.Доступны несколько подходов к моделированию: эмпирические модели, статистические модели и электрические модели [18, 19]. В [20] было исследовано локальное тепловыделение в однослойном литий-ионном аккумуляторном элементе в зависимости от -скорости и состояния заряда (SOC). В [21] комбинированная модель использовалась для изучения тепловыделения и рассеивания тепла, а также их влияния на температуру аккумуляторной батареи с вентилятором и без него при разрядке постоянным током и разрядке переменного тока на основе вождения электромобиля (EV). циклы.
Существующие исследования в основном сосредоточены на разработке системы контроля теплового баланса аккумуляторной батареи. Что касается исследований схемы охлаждения аккумуляторной батареи АПА, то анализ проводился только для навигации в температурном поле аккумуляторного отсека, но с исследованиями структурной схемы тепловых характеристик аккумуляторной батареи мало что связано. Кроме того, по сравнению с электромобилями аккумуляторная кабина АПА представляет собой замкнутое компактное пространство, и использование обычных методов охлаждения, таких как охлаждение холодным ветром и растворителем, ограничено.Теплопроводность аккумуляторной батареи может быть достигнута только через корпус аккумуляторной батареи и морскую воду, и физические проблемы связаны с тем, как реализовать охлаждение аккумуляторной батареи с помощью воздушного потока, вызываемого локальными колебаниями температуры внутри аккумуляторной кабины и теплопроводной конструкции.
Основной вклад этой статьи двоякий: (i) мы анализируем процесс теплообмена аккумуляторной батареи транспортного средства и устанавливаем модель естественной конвекции и теплопередачи для ограниченного пространства аккумуляторного отсека и (ii) мы исследуем тепло передаточные характеристики литиевых батарей в различных пространственных распределениях.
2. Моделирование литиевого аккумуляторного отсека АПА с внешним охлаждением
В соответствии с внутренней структурой аккумуляторной кабины АПА и теоретическими знаниями в области теплообмена, тепло, передаваемое от аккумулятора к внешней морской воде, можно резюмировать следующим образом: аспекты теплопроводности. Первая часть теплопроводности включает тепло, выделяемое аккумуляторной батареей, и процесс теплообмена между аккумуляторной кабиной и стенкой корпуса. Вторая часть процесса теплопроводности происходит между стенкой корпуса кабины и внешней стенкой корпуса.Наконец, третья часть теплопроводности — это теплообмен батареи между внешней стенкой корпуса кабины и морской водой. Процедура показана на рисунке 1.
Для облегчения анализа распределения температуры в аккумуляторной кабине при различных рабочих условиях, процесс теплопередачи в аккумуляторной кабине был предположен и упрощен следующим образом: (1) Концы аккумуляторная кабина и внутренний аккумуляторный блок изолированы. (2) Распределение температуры внутри аккумуляторной кабины и аккумуляторного блока изменяется только в радиальном направлении и остается практически неизменным в осевом направлении.(3) При работе аккумуляторной кабины тепловые параметры не меняются со временем.
На основании приведенного выше анализа модель рассеивания тепла ограниченного пространства аккумуляторной кабины эквивалентна задачам постоянных свойств, внутреннего источника тепла и трехмерной нестационарной теплопередачи.
2.1. Батарея внутри модуля Анализ тепла
Внутренний процесс теплопередачи в литиевой батарее можно упростить до обычного физического, трехмерного нестационарного процесса теплопередачи внутри источника тепла.По этой причине уравнение энергии внутренней литий / тионилхлоридной батареи может быть выражено как Граничные условия: где — скорость тепловыделения всей батареи (), — теплопроводность батареи (Вт / (м · k)),
% PDF-1.7 % 2461 0 объект > endobj xref 2461 104 0000000016 00000 н. 0000004031 00000 н. 0000004416 00000 н. 0000004462 00000 н. 0000004507 00000 н. 0000004593 00000 н. 0000004946 00000 н. 0000005499 00000 н. 0000005614 00000 н. 0000005871 00000 н. 0000006474 00000 н. 0000007625 00000 н. 0000008323 00000 н. 0000008574 00000 н. 0000009206 00000 н. 0000020803 00000 п. 0000051228 00000 п. 0000088673 00000 п. 0000092589 00000 п. 0000104068 00000 н. 0000145124 00000 н. 0000145175 00000 н. 0000145250 00000 н. 0000145470 00000 н. 0000145585 00000 н. 0000145630 00000 н. 0000145732 00000 н. 0000145777 00000 н. 0000145879 00000 н. 0000145924 00000 н. 0000146156 00000 п. 0000146201 00000 н. 0000146459 00000 н. 0000146504 00000 н. 0000146688 00000 н. 0000146733 00000 н. 0000146835 00000 н. 0000146880 00000 н. 0000147122 00000 н. 0000147167 00000 н. 0000147331 00000 п. 0000147376 00000 н. 0000147570 00000 п. 0000147615 00000 н. 0000147859 00000 н. 0000147904 00000 н. 0000148164 00000 н. 0000148209 00000 н. 0000148343 00000 п. 0000148388 00000 п. 0000148632 00000 н. 0000148677 00000 н. 0000148945 00000 н. 0000148990 00000 н. 0000149308 00000 н. 0000149352 00000 н. 0000149518 00000 н. 0000149562 00000 н. 0000149664 00000 н. 0000149708 00000 н. 0000149876 00000 н. 0000149920 00000 н. 0000150064 00000 н. 0000150108 00000 н. 0000150270 00000 н. 0000150314 00000 н. 0000150452 00000 н. 0000150496 00000 н. 0000150676 00000 н. 0000150720 00000 н. 0000150892 00000 н. 0000150936 00000 н. 0000151038 00000 н. 0000151082 00000 н. 0000151232 00000 н. 0000151276 00000 н. 0000151428 00000 н. 0000151472 00000 н. 0000151670 00000 н. 0000151714 00000 н. 0000151868 00000 н. 0000151912 00000 н. 0000152124 00000 н. 0000152168 00000 н. 0000152382 00000 н. 0000152426 00000 н. 0000152616 00000 н. 0000152660 00000 н. 0000152762 00000 н. 0000152806 00000 н. 0000152998 00000 н. 0000153042 00000 н. 0000153320 00000 н. 0000153364 00000 н. 0000153530 00000 н. 0000153574 00000 н. 0000153790 00000 н. 0000153833 00000 н. 0000154007 00000 н. 0000154050 00000 н. 0000154152 00000 н. 0000154195 00000 н. 0000003801 00000 п. 0000002429 00000 н. трейлер ] / Назад 1794734 / XRefStm 3801 >> startxref 0 %% EOF 2564 0 объект > поток h UkLSg ~ ϡ-RJiKABeb) 鈲 @.Ba! H: r [7BPȲpY9ӎmn3 [u`? L,; = ev; {y
Самонагревающаяся литий-ионная батарея может справиться с зимними бедами
Батарея для любых климатических условий, которая быстро нагревает материалы батареи и электрохимические интерфейсы в холодных условиях. Предоставлено: Чао-Ян Ван, штат Пенсильвания.Литий-ионный аккумулятор, который самонагревается, если температура ниже 32 градусов по Фаренгейту, имеет множество применений, но, по мнению группы исследователей из Пенсильвании и ЕС, может иметь наибольшее влияние на облегчение зимнего «беспокойства по поводу запаса хода» у владельцев электромобилей. Электроэнергетика, государственный колледж.
«Это давняя проблема, что батареи не работают хорошо при отрицательных температурах», — сказал Чао-Ян Ван, заведующий кафедрой машиностроения Уильяма Э. Дифендерфера, профессор химической инженерии, профессор материаловедения и инженерии и директор отдела электрохимии. Центр двигателя. «Это может не быть проблемой для телефонов и ноутбуков, но является огромным препятствием для электромобилей, дронов, уличных роботов и космических приложений.«
Обычные аккумуляторы при температурах ниже нуля сильно теряют мощность, что приводит к медленной зарядке в холодную погоду, ограничению регенеративного отключения и сокращению запаса хода автомобиля на целых 40 процентов, сообщили исследователи в сегодняшнем (20 января) выпуске . Природа . Эти проблемы требуют более крупных и дорогих аккумуляторных батарей, чтобы компенсировать холодное потребление энергии.
«Мы не хотим, чтобы электромобили теряли от 40 до 50 процентов своей дальности полета в холодную погоду, как сообщает Американская автомобильная ассоциация, и мы не хотим, чтобы холодная погода усугубляла опасения по поводу дальности полета», — сказал Ван.«В холодные зимы беспокойство о дальности — последнее, что нам нужно».
Исследователи, опираясь на предыдущие патенты EC Power, разработали универсальную батарею, которая весит всего на 1,5 процента больше и стоит всего 0,04 процента от базовой батареи. Они также спроектировали его таким образом, чтобы он мог нагреваться от -4 до 32 градусов по Фаренгейту за 20 секунд и от -22 до 32 градусов по Фаренгейту за 30 секунд и потреблял всего 3,8% и 5,5% емкости ячейки. Это намного меньше, чем 40% потерь в обычных литий-ионных батареях.
В климатической батарее используется никелевая фольга толщиной 50 микрометров, один конец которой прикреплен к отрицательной клемме, а другой выступает за пределы ячейки, образуя третью клемму. Датчик температуры, прикрепленный к переключателю, заставляет электроны проходить через никелевую фольгу, замыкая цепь. Это быстро нагревает никелевую фольгу за счет резистивного нагрева и нагревает внутреннюю часть батареи. Когда температура батареи достигает 32 градусов по Фаренгейту, переключатель выключается, и электрический ток течет в обычном режиме.
В то время как другие материалы также могут служить нагревательным элементом сопротивления, никель стоит недорого и хорошо работает.
«Затем мы хотели бы расширить работу до новой парадигмы, которая называется SmartBattery», — сказал Ван. «Мы думаем, что можем использовать аналогичные структуры или принципы для активного регулирования безопасности, производительности и срока службы батареи».
Встроенные датчики делают литий-ионные батареи более безопасными
Дополнительная информация: Природа , DOI: 10.1038 / природа16502 Предоставлено Государственный университет Пенсильвании
Ссылка : Самонагревающийся литий-ионный аккумулятор может победить зимние невзгоды (2016, 20 января) получено 21 декабря 2020 с https: // физ.org / news / 2016-01-самонагревающаяся-литий-ионная-батарея-зима-woes.html
Этот документ защищен авторским правом. За исключением честных сделок с целью частного изучения или исследования, нет часть может быть воспроизведена без письменного разрешения. Контент предоставляется только в информационных целях.
Как сэкономить аккумулятор смартфона до того, как он выключится
Сегодня смартфоныобладают разнообразными возможностями и многофункциональностью, работающими на мощных операционных системах.Однако это также сказывается на времени автономной работы телефона. Поэтому время автономной работы всегда является одной из самых больших проблем для разработчиков мобильных телефонов, производителей, а также пользователей .
В среднем, большинство аккумуляторов смартфонов работают от одного до двух дней, прежде чем полностью разрядятся, и им потребуется подзарядка или внешний аккумулятор. Итак, пока мы ждем, пока развитие оборудования наверстает упущенное, альтернативой будет сохранение времени автономной работы.
Срок службы аккумулятора телефона можно эффективно использовать и управлять им.Без зарядного устройства или запасного аккумулятора, куда бы вы ни пошли, вам придется свести к минимуму расход заряда аккумулятора.
Вот 10 важных советов, как сэкономить аккумулятор вашего смартфона .
Как выжить при умирающем аккумуляторе на AndroidКак выжить из умирающего аккумулятора на Android
Короткое время автономной работы — одно из самых больших недостатков телефонов Android, и бывают случаи, когда вы … Подробнее
1.Выключите вибрацию
Режим вибрации отлично подходит для уведомления о входящих вызовах или сообщениях, когда вы находитесь в месте, где необходимо, чтобы телефон не звонил. Однако если в этом нет необходимости, лучше использовать мелодию звонка в качестве уведомления.
Причина в том, что режим вибрации фактически потребляет больше энергии, чем рингтоны . Звуки, издаваемые рингтонами, представляют собой очень крошечные вибрации динамика вашего смартфона. Сравните это с тряской всего телефона из-за вибрации умного груза: воспроизведение мелодии звонка определенно снижает заряд батареи.
То же самое касается использования вибрации для тактильной обратной связи. Если вы не думаете, что это необходимо, отключите вибрации или, по крайней мере, уменьшите их силу.
2. Уменьшите яркость экрана
Этот совет сильно влияет на срок службы батареи. Очевидно, что уменьшение яркости экрана снизит энергопотребление вашего смартфона, поскольку все мы должны активировать экран каждый раз, когда мы используем наши телефоны.
Если наш экран ярко светится каждые пару минут, когда мы проверяем электронную почту и тому подобное, он в конечном итоге высосет весь заряд батареи.Настройка автоматической яркости позволяет смартфону настраивать яркость до оптимального уровня для чтения, сохраняя при этом время автономной работы.
С другой стороны, вы можете рассмотреть возможность постоянной настройки уровня на самый тусклый уровень, на котором вы все еще можете читать, не напрягая глаза. Это может творить чудеса с временем автономной работы в долгосрочной перспективе.
3. Сократить время ожидания экрана
Таким же образом, если вы хотите свести к минимуму энергопотребление вашего смартфона при отображении экрана, вам следует рассмотреть возможность сократить время ожидания экрана .Это определяет, как долго экран будет гореть после того, как вы закончите с ним взаимодействовать.
У некоторых из нас нет привычки «блокировать» телефон после того, как мы с ним закончили; мы просто позволяем ему погаснуть сама по себе. Сокращение времени ожидания гарантирует, что телефон не будет расходовать энергию, когда вы им не пользуетесь.
4. Выключение в неактивном состоянии
Хотя это правда, что включение телефона потребляет больше энергии, чем его разблокировка, выключение его на пару часов может сэкономить больше заряда батареи, чем оставление его в спящем или неактивном режиме .
Если вы знаете, что не собираетесь прикасаться к телефону в течение длительного периода времени, например, когда вы идете на встречу или спите, вы можете значительно сократить потребление энергии, просто выключив его.
Вам может быть интересно, зачем вам вообще беспокоиться об уровне заряда батареи, если у вас дома есть зарядное устройство, пока вы спите.
Ну в том-то и дело, что повторная зарядка некоторых видов аккумуляторов съедает объем аккумулятора .Для таких батарей лучший способ сохранить как можно больше, чтобы ваша батарея сохранила свою первоначальную емкость в максимально возможной степени.
5. Заряжайте аккумулятор правильно
Говоря о зарядке телефона, в смартфонах обычно используются два типа аккумуляторных батарей: литий-ионные (литий-ионные) и никелевые батареи : а именно никель-металлогидридные (NiMH). и никель-кадмиевый (NiCd).
Емкость батареи в никель-кадмиевых батареях уменьшается каждый раз при их подзарядке .Тем не менее, никель-кадмиевые батареи имеют более длительный срок службы, то есть их можно заряжать чаще, чем никель-металлогидридные батареи, прежде чем они перестанут работать.
Никелевые аккумуляторыследует заряжать (до полного заряда), когда они более или менее разряжены, а не тогда, когда остается достаточно энергии.
Литий-ионные аккумуляторыимеют самый длительный срок службы среди трех типов аккумуляторов, но их также необходимо заряжать чаще (даже если аккумулятор не полностью разряжен), чтобы сохранить свою первоначальную емкость.
Чтобы аккумулятор работал дольше, узнайте больше о типе аккумулятора, который использует ваш смартфон, и выберите подходящую стратегию зарядки для оптимального использования.
6. Закройте ненужные приложения
Некоторые из нас открывают приложение за приложением и не закрывают их даже после того, как нам больше не нужно их использовать. Эта возможность многозадачности является общей особенностью смартфонов, но также является основной причиной того, что время автономной работы быстро истощается.
Вы можете не знать, что вы теряете заряд батареи, даже когда не пользуетесь этими приложениями.Если оставить их открытыми, ваша батарея в мгновение ока опустится до пол-бара.
Как можно чаще, убивает ваши приложения, если вы их не используете . Есть несколько ценных приложений, которые управляют многозадачностью вашего смартфона, чтобы гарантировать, что он работает наилучшим образом, чтобы продлить срок службы батареи, не подвергая опасности использование.
7. Отключить GPS
Некоторые приложения потребляют больше заряда батареи, чем другие, особенно приложения, использующие систему GPS. В вашем смартфоне есть устройство GPS, которое позволяет отправлять и принимать сигналы со спутников и определять ваше точное местоположение.Это неотъемлемая часть работы некоторых приложений, например картографические приложения, такие как Google Maps, или для отметки на Facebook.
Когда они работают в фоновом режиме, некоторые из этих приложений могут продолжать отправлять и получать сигналы. Чтобы постоянно это делать, ваша батарея расходует много энергии, даже если вы об этом не подозреваете. Следовательно, вы должны убедиться, что эти конкретные приложения закрыты, когда они вам действительно не нужны.
Более экстремальный способ — отключить службы определения местоположения по запросу этих приложений. Это может снизить эффективность этих приложений, но ваше местоположение не будет отслеживаться, а некоторые пользователи намеренно делают это из соображений конфиденциальности.
8. Нет Bluetooth, Wi-Fi, 3G / 4G, когда они не используются
Энергия потребляется всякий раз, когда ваш смартфон ищет сигналы — Wi-Fi, 3G или Bluetooth и т. Д. При плохом приеме телефон продолжит сканирование, чтобы установить хорошее соединение. Повторные поиски этих сигналов могут легко снизить уровень заряда батареи .
Я говорю о том, что вам следует выключать Wi-Fi или Bluetooth, когда вам не нужно подключаться. Один из удобных способов сделать это — переключиться в «Режим полета» или просто выключить телефон, когда вы знаете, что не получаете никакого сигнала.
С другой стороны, если вам нужен хороший прием для вашего смартфона, поместите или разместите телефон в зонах с высокой степенью связи. Благодаря этому ваши смартфоны не будут постоянно искать соединение и тратить драгоценное время на переключение с одного сигнала на другой.
9. Свернуть уведомления
Благодаря постоянному подключению к Интернету мы, как правило, постоянно получаем уведомления на наши смартфоны, будь то обновления последних новостей, электронные письма, дополнения для приложений и т. Д.Но я уверен, что вы хотите получать уведомления только о более важных вещах, таких как новые текстовые сообщения или сообщения от Whatsapp.
Не только раздражает постоянное получение нерелевантных уведомлений, которые на самом деле могут подождать, это также мешает каждому из этих уведомлений . При каждом входящем уведомлении ваш экран загорается, издается звуковой сигнал или вибрирует.
Хорошо управляйте своими настройками и отключите ненужные уведомления, чтобы немного сэкономить заряд батареи (и не расстраиваться из-за этих постоянных уведомлений).
10. Поддержание низкой температуры
Некоторые из нас могли заметить, что наша батарея разряжается быстрее, когда наши смартфоны теплые. Проще говоря, не оставляйте свои смартфоны под прямыми солнечными лучами или в горячих местах .
Один из наиболее частых случаев — оставить смартфон в машине, припаркованной под солнцем. Аккумулятор будет оптимально работать в более прохладных условиях , поэтому внимательно следите и старайтесь избегать ситуаций, когда ваш телефон подвергается ненужному и чрезмерному нагреву.
Battery Technologies — learn.sparkfun.com
Добавлено в избранное Любимый 42Опции батарей
Доступно множество различных аккумуляторных технологий. Есть несколько действительно отличных ресурсов для мельчайших деталей химического состава батарей. Википедия особенно хороша и всеобъемлющая. В этом руководстве основное внимание уделяется наиболее часто используемым батареям для встроенных систем и электроники DIY.
Рекомендуемая литература
Есть некоторые концепции и знания, которые вы, возможно, захотите узнать, прежде чем читать это руководство:
Что такое схема?
Каждый электрический проект начинается со схемы. Не знаю, что такое схема? Мы здесь, чтобы помочь.
Что такое электричество?
Мы можем видеть электричество в действии на наших компьютерах, освещающее наши дома, как удары молнии во время грозы, но что это такое? Это непростой вопрос, но этот урок прольет на него некоторый свет!
Хотите изучить различные батареи?
Мы вас прикрыли!
Щелочная батарея 9 В
В наличии PRT-10218Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их с…
1Терминология
Вот несколько терминов, которые часто используются, когда говорят об аккумуляторах.
Емкость — Батареи имеют разные номиналы в зависимости от количества энергии, которое может хранить данная батарея. Когда аккумулятор полностью заряжен, его емкость — это количество энергии, которое в нем содержится.Батареи одного типа часто оцениваются по величине тока, которую они могут выдавать с течением времени. Например, есть батареи емкостью 1000 мАч (миллиампер-час) и 2000 мАч.
Номинальное напряжение ячейки — Среднее напряжение на выходе ячейки при зарядке. Номинальное напряжение батареи зависит от химической реакции за ней. Свинцово-кислотный автомобильный аккумулятор выдает 12 В. Литиевая батарейка типа «таблетка» выдает 3 В.
Ключевым словом здесь является «номинальное», фактическое измеренное напряжение на аккумуляторе будет уменьшаться по мере его разряда.Полностью заряженная батарея LiPo будет вырабатывать около 4,23 В, а в разряженном состоянии ее напряжение может быть ближе к 2,7 В.
Форма — Батареи бывают разных размеров и форм. Термин «AA» относится к определенной форме и стилю ячейки. Есть большое разнообразие.
Сравнение первичных и вторичных — первичные батареи являются синонимами одноразовых . После полного опорожнения первичные элементы нельзя заряжать (надежно / безопасно). Вторичные батареи более известны как аккумуляторные .Для их полной резервной зарядки требуется другой источник питания, но они могут полностью заряжаться / разряжаться много раз в течение своего срока службы. Как правило, первичные батареи имеют более низкую скорость разряда, поэтому они служат дольше, но они могут быть менее экономичными, чем аккумуляторные батареи.
Форма батареи | Химия | Номинальное напряжение | Перезаряжаемый? |
---|---|---|---|
AA, AAA, C и D | Щелочные или угольно-цинковые | 1.5В | Нет |
9V | Щелочная или угольно-цинковая | 9V | Нет |
Монетная ячейка | Литий | 3В | Нет |
Silver Flat Pack | Литий-полимерный (LiPo) | 3,7 В | Да |
AA, AAA, C, D (перезаряжаемый) | NiMH или NiCd | 1,2 В | Да |
Автомобильный аккумулятор | Шестиэлементный свинцово-кислотный | 12.6 В | Да |
Плотность энергии — Комбинируя емкость с формой и размером батареи, можно рассчитать плотность энергии батареи. Разные технологии допускают разную плотность. Например, литиевые батареи обычно содержат больше сока в заданном объеме, чем щелочные батареи или батарейки типа «таблетка».
Скорость внутреннего разряда — Вы когда-нибудь пытались завести машину, которая простаивает в течение 6 месяцев? Батареи разряжаются, когда они лежат на полке или когда они не используются.Скорость, с которой батарея разряжается с течением времени, называется скоростью внутренней разрядки.
Безопасность — Поскольку батареи накапливают энергию, они представляют собой очень крошечные взрывчатые вещества. Чтобы предотвратить повреждение, батареи должны быть максимально безопасными. Большинство технологий аккумуляторов предназначены для безопасной разрядки в случае неправильного использования. Если вы неправильно подключите щелочную батарею, она может стать горячей на ощупь, но не должна загореться. Большинство литий-полимерных батарей имеют встроенные схемы безопасности, предотвращающие повреждение батареи и предотвращающие ее небезопасное использование.
Полный список терминов и технический обзор Википедия — [отличный ресурс] (http://en.wikipedia.org/wiki/Battery_ (электричество)).
Литий-полимерный
Литий-полимерные батареи(часто сокращенно LiPo) очень полезны для встроенной электроники. Они предлагают самую высокую плотность, доступную на рынке. Поскольку в сотовых телефонах преимущественно используются батареи этого типа, их легко найти по разумным ценам. Они от до требуют специальной зарядки, поэтому обязательно используйте правильное зарядное устройство для работы.SparkFun оснащен различными литий-полимерными батареями 3,7 В, многие из которых перечислены ниже. Емкость выбранной вами батареи будет зависеть от предполагаемого времени работы вашего проекта, ограничений по размеру и других факторов.
Литий-ионный аккумулятор — 2 Ач
В наличии PRT-13855Это очень тонкие и чрезвычайно легкие батареи на основе литий-ионной химии.Каждая ячейка выдает номинальное напряжение 3,7 В при 200…
. 7Номинальное напряжение
Индивидуальная ячейка LiPo имеет номинальное напряжение 3,7 В . При полной зарядке вы увидите почти 4,3 В на элементе, но при нормальном использовании оно быстро упадет до 3,7 В. Когда батарея разряжена, она будет около 3 В. Это означает, что ваш проект должен будет обрабатывать различные напряжения, если вы работаете напрямую от ячейки.Если вам нужно 5 В, вам нужно будет соединить два LiPos последовательно, чтобы создать блок на 7,4 В и снизить напряжение до 5 В.
Разъемы
В мире малогабаритной электроники большинство литий-полимерных аккумуляторов имеют различные 2-контактные разъемы. В SparkFun мы используем разъем JST . Это предотвращает неправильное подключение аккумулятора. Разъем имеет фрикционную посадку, поэтому для аккуратного извлечения аккумулятора часто используются плоскогубцы.
Зарядка и разрядка
Существует множество недорогих зарядных устройств, предназначенных для зарядки LiPo батарей.Обычно они используют USB для зарядки аккумулятора. Не пытайтесь заряжать LiPos без зарядного устройства. Аккумулятор LiPo может быть поврежден из-за перезарядки, поэтому используйте специально разработанное зарядное устройство LiPo, например, здесь:
Перед зарядкой литий-ионного аккумулятора убедитесь, что вы знаете его емкость и ток заряда, подаваемый зарядным устройством. Дополнительную информацию можно найти в следующем руководстве: Установка зарядного тока.
БатареиLiPo также могут быть повреждены, если они слишком сильно разряжены.Для защиты от этого почти все литий-полимерные батареи имеют небольшую цепь безопасности, встроенную в верхнюю часть элемента, которая отключит батарею, если напряжение упадет ниже определенного порога (обычно 3V ).
АккумуляторыLiPo имеют очень низкий уровень внутренней разрядки . Это делает их хорошим кандидатом для проектов с низким энергопотреблением, требующих выполнения в течение многих дней или месяцев.
Соблюдайте плотность энергии: Эти батареи обладают мощным зарядом и могут непрерывно обеспечивать несколько ампер.Защита от короткого замыкания отключит аккумулятор при обнаружении короткого замыкания, но при использовании этих аккумуляторов в проектах руководствуйтесь здравым смыслом.
Мы рекомендуем LiPo почти для каждого портативного приложения. Они довольно прочные и при безопасном использовании являются отличным источником энергии.
Другие типы литий-ионных батарей
Круглые литий-ионные батареи большой емкости
Эти батарейки в основном использовались в устройствах типа фонариков, но их легко использовать и устанавливать, и они имеют много энергии.
Номинальное напряжение — Эти батареи также имеют номинальное напряжение 3,7 В , но в отличие от плоских LiPo-батарей, эти круглые батареи НЕ имеют встроенную схему защиты. Особые меры предосторожности необходимо соблюдать при зарядке и разрядить эти батареи, чтобы они не повредились. Более подробную информацию о схемах защиты можно найти здесь.
Разъемы — Эти батареи можно легко интегрировать в проекты со специальными держателями для батарей:
Зарядка и разрядка — Поскольку в этих батареях нет схемы защиты, пользователь должен учитывать возможность чрезмерной или недостаточной зарядки, чтобы батарея не была повреждена.Мы рекомендуем универсальное зарядное устройство вроде этого:
Литий-ионные аккумуляторы высокой степени разряда
Литий-ионные аккумуляторы с высокой степенью разряда — отличный способ питания любого радиоуправляемого, роботизированного или портативного проекта, которому требуется небольшая батарея с большой мощностью.
Номинальное напряжение — Они имеют номинальное напряжение 7,4 В и, как и батареи с круглыми элементами, НЕ имеют встроенную схему защиты.При зарядке и разрядке этих аккумуляторов необходимо соблюдать особую осторожность, чтобы не повредить их. Более подробную информацию о схемах защиты можно найти здесь.
Разъемы — Разъем для зарядки представляет собой 3-контактный разъем для зарядки JST-XH. Разрядка осуществляется через разрядные провода Dean’s Connector.
Зарядка и разрядка -Поскольку на этих батареях нет схемы защиты, пользователь должен учитывать возможность чрезмерной или недостаточной зарядки, чтобы батарея не была повреждена.Поскольку это обычно двухэлементные аккумуляторные батареи, требуется специальное зарядное устройство. Этот аккумулятор несовместим с одноэлементными зарядными устройствами. Мы рекомендуем специализированное зарядное устройство, такое как это:
(часто сокращенно NiMH) — это проверенная технология перезарядки. Эти батареи часто дешевле, чем другие химические, но имеют меньшую плотность, чем LiPo. NiMH аккумуляторы требуют менее строгих кривых зарядки, что снижает стоимость зарядных устройств.NiMH часто встречаются в недорогих электронных устройствах, таких как зубные щетки и беспроводные бритвы, где выходное напряжение не вызывает беспокойства (вы заметите, что ваша зубная щетка работает медленнее, но продолжает работать).
Никель-металлгидридный аккумулятор 2500 мАч — AA
В наличии PRT-00335Никель-металлогидридные аккумуляторные батареи AA емкостью 2500 мАч, 1,2 В.[Технология NiMH] (http://en.wikipedia.org/wiki/Nickel_metal_hy…
Каждая ячейка выводит номинально 1,2 В . Это очень похоже на щелочные батареи того же размера, которые выдают 1,5 В. Объединение четырех никель-металлгидридных аккумуляторов AA даст вам батарею 4,8 В, которая должна работать с большинством систем 5 В, но будет падать напряжение при разряде батареи.
Зарядка и разрядка
NiMH аккумуляторы сами по себе не имеют цепей защиты от разряда.Схема защиты от разряда предотвращает разряд аккумулятора ниже определенного уровня напряжения, чтобы предотвратить повреждение аккумулятора. Более подробную информацию о NiMH батареях и чрезмерной разрядке можно найти здесь.
Из-за их сходства с обычными бытовыми аккумуляторами зарядка NiMH аккумуляторов часто выполняется с помощью зарядных устройств, которые подключаются к розетке. Мы рекомендуем никель-металлгидридные аккумуляторы для приложений, в которых устройство уже рассчитано на использование батарей типа AA.
Ячейка для монет
Батареи типа «таблетка»отлично подходят для очень небольших проектов с низким энергопотреблением.Эти батарейки дешевые! Купите их оптом, если вам нужно много. Они отлично подходят для тестирования светодиодов. Вы найдете батарейки такого типа, спрятанные внутри пультов дистанционного управления, электронных свечей и множества одноразовых устройств меньшего размера.
Эти батареи не перезаряжаемые. Есть несколько более сложных платных версий, но подавляющее большинство монетных ячеек следует выбросить после использования.
Химический состав и технологии монетных ячеек различаются.Некоторые щелочные, другие литиевые. Щелочные батарейки типа «таблетка» имеют номинальное напряжение 1,5 В. Литиевые батарейки типа «таблетка», с другой стороны, имеют номинальное напряжение 3 В.
Батарейки типа «таблетка»бывают разных размеров, каждая со специально закодированным названием, указывающим размер и химический состав. Все щелочные батарейки начинаются с буквы «L», в то время как все литиевые батарейки имеют префикс «С». Популярный CR2032, например, представляет собой литиевую батарею (номинальное напряжение 3 В) диаметром 20 мм и 3.2 мм высотой. LR1154 (он же LR44) представляет собой щелочную батарею (1,5 В) размером 11 мм в поперечнике и 5,4 мм в высоту.
Ячейки для монетотлично подходят для питания ATtiny или других небольших микроконтроллеров и светодиодных проектов.
Щелочной
Все мы выросли на одноразовых батареях этого типа. Эти батареи существуют уже много десятилетий, поэтому вы найдете их повсюду! Также имеется множество держателей для батареек и аксессуаров для батареек AA и 9 В.
Эти батареи дешевы, безопасны в использовании и доступны везде, но, к сожалению, они не перезаряжаемые. Щелочная химия делает эти батареи особенно надежными (безопасными) для идиотов.
AA и AAA являются наиболее распространенными щелочными батареями и выдают 1,2 В, номинально (но при первом использовании они составляют около 1,5 В). Поскольку AA выдают 1,2 В, вам нужно будет объединить их в пакеты по 3 или 4 для работы вашей системы на 3,3 или 5 В. Батареи 9V, очевидно, номинально 9V.
Батарея 9 В с соединительным кабелем — отличный и быстрый способ сделать проект портативным, но не ожидайте, что батарея прослужит очень долго! Несмотря на то, что он выдает 9 вольт, емкость 9-вольтовой батареи довольно низкая.