Решение столбиком онлайн калькулятор умножение деление: Калькулятор онлайн — лучший и бесплатно

Опубликовано

Содержание

Умножение и деление в столбик

Описание

Примеры на умножение и деление в столбик решать просто. Но они требуют концентрации и внимания, особенно для очень торопливых детей. Практика счета таких примеров поможет развить внимательность и закрепить навыки счета больших чисел, а также добиться автоматизированного счета.

Программа представляет собой тренажер для счета. Она имеет внутренние настройки, изменяя которые можно создать примеры на умножение и деление в столбик  для детей разного возраста и уровня подготовки:

  • Умножение на однозначное, двузначное или  трехзначное число,
  • Деление на однозначное, двузначное или трехзначное число.

Поэтому программа будет полезна как для учеников начальной школы 3-4 классов, так и для более старших классов.

Программа счета написана в Excel с помощью макросов. Формируются примеры на листе формата А4. Примеры генерируются случайным образом, количество генераций не ограничено. При записи примеров разряды чисел формируются друг под другом, что позволяет легко ориентироваться в примерах.

В конце карточки формируются ответы на примеры, которые после печати карточки можно отрезать. Нумерация карточек и ответов позволяет быстро находить ответы к каждой карточке, даже если их напечатано много.

Генератор примеров по математике будет очень удобен как для родителей, так и для учителей. Не нужно заранее покупать задачники и пособия по математике с примерами. Можно скачать файл и сгенерировать карточки в любое время независимо от подключения к интернету и распечатать.

Для ознакомления с программой можно бесплатно скачать примеры, которые получаются при использовании программы.
Для получения новой карточки примеров достаточно скачать, нажать на кнопку генерации и распечатать.

Другие программы, которые помогут закрепить навыки счета:

 Также есть программы, в которых можно выбрать уровень сложности. В них можно начать с решения легких примеров, а затем перейти к более сложным.

На сайте представлен каталог программ, в котором все программы распределены по группам с указанием различий в программах внутри каждой группы. С помощью каталога Вы можете выбрать те программы, которые подходят именно Вам.

Деление в столбик десятичных дробей с помощью онлайн-калькулятора

Деление в столбик десятичных дробей с помощью онлайн-калькулятора

Делить десятичные дроби в столбик немного сложнее, чем целые числа из-за плавающей точки, еще задачу усложняет надобность деления остатка. Поэтому если вы хотите упростить этот процесс или проверить свой результат, можно воспользоваться онлайн-калькулятором, который не только выведет ответ, но и покажет всю процедуру решения.

Делим в столбик десятичные дроби с помощью онлайн-калькулятора

Подходящих под эту цель онлайн-сервисов существует большое количество, однако практически все они мало чем отличаются друг от друга. Сегодня мы подготовили для вас два разных варианта вычисления, а вы, ознакомившись с инструкциями, выберите тот, который будет наиболее подходящим.

Способ 1: OnlineMSchool

Сайт OnlineMSchool был разработан для изучения математики. Сейчас на нем присутствует не только множество полезной информации, уроков и задач, но и встроенные калькуляторы, один из которых мы сегодня задействуем. Деление в столбик десятичных дробей в нем происходит так:

    Откройте главную страницу сайта OnlineMSchool и перейдите в раздел «Калькуляторы».

В первую очередь обратите внимание на инструкцию по использованию, представленную в соответствующей вкладке. Рекомендуем с ней ознакомиться.

Теперь вернитесь в «Калькулятор». Здесь вам следует еще раз убедиться, что выбрана правильная операция. Если нет, измените ее, воспользовавшись всплывающим меню.

Введите два числа, используя точку для обозначения целой части дроби, а также отметьте галочкой пункт, если необходимо делить остаток.

Вам будет предоставлен ответ, где подробно расписан каждый шаг получения конечного числа. Ознакомьтесь с ним и можете переходить к следующим вычислениям.

Перед тем как делить остаток, внимательно изучите условие задачи. Часто этого делать не нужно, иначе ответ могут засчитать неправильным.

Всего за семь простых шагов мы смогли поделить десятичные дроби в столбик с помощью небольшого инструмента на сайте OnlineMSchool.

Способ 2: Rytex

Онлайн-сервис Rytex также помогает в изучении математики, предоставляя примеры и теорию. Однако сегодня нас интересует присутствующий в нем калькулятор, переход к работе с которым осуществляется следующим образом:

    Воспользуйтесь ссылкой выше, чтобы перейти на главную страницу Rytex. На ней кликните по надписи «Онлайн калькуляторы».

Опуститесь в самый низ вкладки и на панели слева отыщите «Деление столбиком».

Перед началом выполнения основного процесса прочтите правила использования инструмента.

Теперь в соответствующие поля введите первое и второе число, а затем укажите, нужно ли делить остаток, отметив галочкой необходимый пункт.

Для получения решения нажмите на кнопку «Вывести результат».

Теперь вы можете узнать, как было получено итоговое число. Поднимитесь выше по вкладке, чтобы перейти к вводу новых значений для дальнейшей работы с примерами.

Как видите, рассмотренные нами сервисы практически не отличаются между собой, разве что только внешним видом. Поэтому можно сделать вывод – нет разницы, какой веб-ресурс использовать, все калькуляторы считают правильно и предоставляют развернутый ответ по вашему примеру.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Калькулятор дробей: решение уравнений с дробями

Онлайн калькулятор дробей позволяет производить простейшие арифметические операции с дробями: сложение дробей, вычитание дробей, умножение дробей, деление дробей. Чтобы произвести вычисления, заполните поля соответствующие числителям и знаменателям двух дробей.

Онлайн калькулятор уравнений с дробями

Дробью в математике называется число, представляющее часть единицы или несколько её частей.

Обыкновенная дробь записывается в виде двух чисел, разделенных обычно горизонтальной чертой, обозначающей знак деления. Число, располагающееся над чертой, называется числителем. Число, располагающееся под чертой, называется знаменателем. Знаменатель дроби показывает количество равных частей, на которое разделено целое, а числитель дроби — количество взятых этих частей целого.

Дроби бывают правильными и неправильными.

  • Правильной называется дробь, у которой числитель меньше знаменателя.
  • Неправильная дробь – если у дроби числитель больше знаменателя.

Смешанной называется дробь, записанная в виде целого числа и правильной дроби, и понимается как сумма этого числа и дробной части. Соответственно, дробь, не имеющая целую часть, называется простой дробью. Любая смешанная дробь может быть преобразована в неправильную простую дробь.

Как перевести смешанную дробь в обыкновенную

Для того, чтобы перевести смешанную дробь в обыкновенную, необходимо к числителю дроби прибавить произведение целой части и знаменателя:

Как перевести обыкновенную дробь в смешанную

Для того, чтобы перевести обыкновенную дробь в смешанную, необходимо:

  1. Поделить числитель дроби на её знаменатель
  2. Результат от деления будет являться целой частью
  3. Остаток отделения будет являться числителем

Как перевести обыкновенную дробь в десятичную

Для того, чтобы перевести обыкновенную дробь в десятичную, нужно разделить её числитель на знаменатель.

Как перевести десятичную дробь в обыкновенную

Для того, чтобы перевести десятичную дробь в обыкновенную, необходимо:

  1. Записать дробь в виде десятичная
  2. Умножать числитель и знаменатель на 10 до тех пор, пока числитель не станет целым числом.
  3. Найти наибольший общий делитель и сократить дробь.

Как перевести дробь в проценты

Для того, чтобы перевести обыкновенную или смешанную дробь в проценты, необходимо перевести её в десятичную дробь и умножить на 100.

Как перевести проценты в дробь

Для того, чтобы перевести проценты в дробь, необходимо получить из процентов десятичную дробь (разделив на 100), затем полученную десятичную дробь перевести в обыкновенную.

Сложение дробей

Алгоритм действий при сложении двух дробей такой:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Выполнить сложение дробей путем сложения их числителей.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Вычитание дробей

Алгоритм действий при вычитании двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Привести дроби к общему знаменателю. Для этого нужно числитель и знаменатель первой дроби умножить на знаменатель второй дроби, а числитель и знаменатель второй дроби умножить на знаменатель первой дроби.
  3. Вычесть одну дробь из другой, путем вычитания числителя второй дроби из числителя первой.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Умножение дробей

Алгоритм действий при умножении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  3. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  4. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление дробей

Алгоритм действий при делении двух дробей:

  1. Перевести смешанные дроби в обыкновенные (избавиться от целой части).
  2. Чтобы произвести деление дробей, нужно преобразовать вторую дробь, поменяв местами её числитель и знаменатель, а затем произвести умножение дробей.
  3. Умножить числитель первой дроби на числитель второй дроби и знаменатель первой дроби на знаменатель второй.
  4. Найти наибольший общий делитель (НОД) числителя и знаменателя и сократить дробь, поделив числитель и знаменатель на НОД.
  5. Если числитель итоговой дроби больше знаменателя, то выделить целую часть.

Деление в столбик онлайн. Калькулятор наглядного деления.

Деление столбиком онлайн калькулятор может разделить столбиком два числа выдавая полностью расписанный процесс деления.

Калькулятор деления в столбик поддерживает целые числа, десятичные дроби,отрицательные числа и результат с остатком.

  • Калькулятор
  • Инструкция
  • Теория
  • История
  • Сообщить о проблеме

Для простоты вычислений умножим делимое 1.5 и делитель 9 на 10. Результат (частное) от этого не изменится. В результате пример сводится к делению следующих чисел:

159
9.16666666 6666
6
54
6
54
6
54
6
54
6
54
6
5
4
6
54
6
54
6
54
6
54
6
54
6

Просто введите делимое в поле 1 и делитель в поле 2 и нажмите кнопку “ВЫЧИСЛИТЬ”. Результат появится на экране.

Поддерживаются следующие виды чисел:

1. Целые(1,2,3. ). 2. Десятичное (1.1, 2,35). 3. Отрицательные (-7.35,-2). Дробные числа умножаются на 10 пока не станут целыми.

Разделить одно число на другое является самой сложной задачей арифметики. Данный калькулятор может помочь Вам разобраться как это сделать самостоятельно.

Самое важное запомните: Деление – это обратная операция умножения.

После проведения расчета нажмите на кнопочку “Расчет не верен” если Вы обнаружили ошибку. Или нажмите “расчет верный” если ошибок нет.

Этот калькулятор умеет умножать столбиком два числа.Можно умножать целые и дробные числа, положительные и отрицательные.

Сложение столбиком двух чисел. Можно сложить столбиком два любых числа. Показываются все переносы.

Калькулятор вычитает столбиком и показывает подробное решение.

Данный онлайн калькулятор дробей предназначен для сложения, вычитания, деления и умножения между собой обыкновенных дробей. А так же дробей с целой частью и десятичных дробей.

Деление в столбик десятичных дробей с помощью онлайн-калькулятора

Как работать с калькулятором обыкновенных дробей?

Калькулятор предназначен для решения простых дробей и дробей с целыми числами (смешанных). В будущем, планируется внедрение функции решения десятичных дробей, но в данный момент она отсутствует.

Для начала работы с дробным калькулятором необходимо понять очень простой принцип ввода данных. Все целые числа вводятся с помощью больших кнопок, расположенных слева. Все числители вводятся с помощью маленьких белых кнопок, расположенных в правом верхнем блоке цифр. Все знаменатели, соответственно, вводятся путем нажатия на кнопки в правом нижнем углу. Данный способ ввода данных является в некотором роде инновационным, поскольку четко разграничивает целое, числитель и знаменатель, что облегчает вычисления, экономит время и делает взаимодействие с приложением более эффективным. », после чего на цифру шесть на основной клавиатуре. В результате, получится готовый пример:

Теперь нажмите на кнопку равно и получите результат калькуляции. В примере выше проиллюстрирован практически весь арсенал возможностей калькулятора дробей. Точно таким же образом, вы можете осуществлять умножение, деление и вычитание дробей, как простых, так и алгебраических, с одинаковыми и разными знаменателями, целыми числами и т.д. Также, калькулятор может вычислить проценты от дробей, что требуется не так часто, но тем не менее очень важно для решения многих актуальных задач.

Если вам требуется сделать положительное число отрицательным, то сначала введите число, а потом нажмите на кнопку «+/-». После этого число или дробь автоматически обернется в скобки с отрицательным значением или наоборот (в зависимости от изначального статуса числа). Если необходимо удалить число, числитель или знаменатель, то воспользуйтесь соответствующей стрелкой Backspace, которая есть в блоке и числителя и знаменателя. Стрелки работают одинаково и по очереди стирают числа или знаки, находящиеся на дисплее калькулятора.

Управление калькулятором дробей с клавиатуры.

Использовать калькулятор дробей онлайн можно не только с помощью компьютерной мыши, но и с помощью клавиатуры. Здесь логика очень проста:

  1. Все целые числа вводятся как обычно, нажатиями на клавиши чисел.
  2. Все числители вводятся с добавлением клавиши CTRL (например, CTRL+1).
  3. Все знаменатели вводятся с добавлением клавиши ALT (например, ALT+2).

Действия умножения, деления, сложения и вычитания так же инициируются соответствующими кнопками клавиатуры, если они есть (обычно располагаются в правой части, в так называемой области Numpad). Удаление производится нажатием на клавишу Backspace. Действие очистки (красная кнопка «C») вызывается нажатием на клавишу «C». Квадратный корень – нажатием на соседнюю клавишу «V» . Удаление производится нажатием на клавишу Backspace.

Зачем нужен калькулятор дробей онлайн?

Калькулятор дробей онлайн предназначен для решения обыкновенных и смешанных дробей (с целыми числами). Решение дробей часто требуется школьникам и студентам, а также инженерам и аспирантам. Наш калькулятор предоставляет возможность производить с дробями следующие действия: деление дробей, умножение дробей, сложение дробей и вычитание дробей. Также, калькулятор умеет работать с корнями и степенями, а еще с отрицательными числами, благодаря чему он многократно превосходит аналогичные онлайн приложения.

Калькулятор простых дробей онлайн поможет вам решить примеры с дробями и при этом вам не надо беспокоиться о том, как предварительно сократить дробь. Здесь это сделается автоматически, т.к. приложение само вычисляет общий знаменатель и выдает вам готовый результат на экран.

В чем преимущества такого способа решения дробей?

Калькулятор поддерживает работу со скобками, что позволяет решать дроби даже в сложных математических примерах. В частности, действия со скобками часто требуются при вычислении алгебраических дробей или отрицательных дробей, над которыми постоянно приходится корпеть всем школьникам средних классов. Дополнительно, вы можете использовать этот калькулятор для сокращения дробей или решения дробей с разными знаменателями. Более того, в отличии от многих других бесплатных сервисов, данный калькулятор умеет работать с двумя, тремя, четырьмя и вообще с любым количеством дробей и чисел.

Калькулятор обыкновенных дробей полностью бесплатный и не требует регистрации. Вы можете использовать его в любое время дня и ночи. Работать можно с помощью мыши или прямо с клавиатуры (это касается как чисел, так и действий). Мы постарались реализовать максимально удобный интерфейс дробных вычислений, благодаря чему сложные математические калькуляции превратятся для вас в одно удовольствие! 🙂

Действия с десятичными дробями

Десятичные дроби можно складывать, вычитать, умножать и делить. Также, десятичные дроби можно сравнивать между собой.

В этом уроке мы рассмотрим каждую из этих операций по отдельности.

Сложение десятичных дробей

Как мы знаем, десятичная дробь состоит из целой и дробной части. При сложении десятичных дробей, целые и дробные части складываются по отдельности.

Например, сложим десятичные дроби 3,2 и 5,3. Десятичные дроби удобнее складывать в столбик.

Запишем сначала эти две дроби в столбик, при этом целые части обязательно должны быть под целыми, а дробные под дробными. В школе это требование называют «запятая под запятой».

Запишем дроби в столбик так, чтобы запятая оказалась под запятой:

Складываем дробные части: 2 + 3 = 5. Записываем пятёрку в дробной части нашего ответа:

Теперь складываем целые части: 3 + 5 = 8. Записываем восьмёрку в целой части нашего ответа:

Теперь отделяем запятой целую часть от дробной. Для этого опять же соблюдаем правило «запятая под запятой»:

Получили ответ 8,5. Значит, выражения 3,2 + 5,3 равно 8,5

3,2 + 5,3 = 8,5

На самом деле не всё так просто как кажется на первый взгляд. Здесь тоже имеются свои подводные камни, о которых мы сейчас поговорим.


Разряды в десятичных дробях

У десятичных дробей, как и у обычных чисел, есть свои разряды. Это разряды десятых, разряды сотых, разряды тысячных. При этом разряды начинаются после запятой.

Первая цифра после запятой отвечает за разряд десятых, вторая цифра после запятой за разряд сотых, третья цифра после запятой за разряд тысячных.

Разряды в десятичных дробях хранят в себе нéкоторую полезную информацию. В частности, они сообщают сколько в десятичной дроби десятых частей, сотых частей и тысячных частей.

Например, рассмотрим десятичную дробь 0,345

Позиция, где находится тройка, называется разрядом десятых

Позиция, где находится четвёрка, называется разрядом сотых

Позиция, где находится пятёрка, называется разрядом тысячных

Посмотрим на данный рисунок. Видим, что в разряде десятых располагается тройка. Это говорит о том, что в десятичной дроби 0,345 содержится три десятых  .

Смотрим дальше. В разряде сотых располагается четвёрка. Это говорит о том, что в десятичной дроби 0,345 содержится четыре сотых   .

Смотрим дальше. В разряде тысячных находится пятёрка. Это говорит о том, что в десятичной дроби 0,345 содержится пять тысячных .

Если мы сложим дроби ,    и  то получим изначальную десятичную дробь 0,345

Сначала мы получили ответ , но перевели его в десятичную дробь и получили 0,345.

При сложении десятичных дробей соблюдаются те же правила что и при сложении обычных чисел. Сложение десятичных дробей происходит по разрядам: десятые части складываются с десятыми частями, сотые с сотыми, тысячные с тысячными.

Поэтому при сложении десятичных дробей требуют соблюдать правило «запятая под запятой». Запятая под запятой обеспечивает тот самый порядок, в котором десятые части складываются с десятыми, сотые с сотыми, тысячные с тысячными.

Пример 1. Найти значение выражения 1,5 + 3,4

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»:

В первую очередь складываем дробные части 5 + 4 = 9. Записываем девятку в дробной части нашего ответа:

Теперь складываем целые части 1 + 3 = 4. Записываем четвёрку в целой части нашего ответа:

Теперь отделяем запятой целую часть от дробной. Для этого опять же соблюдаем правило «запятая под запятой»:

Получили ответ 4,9. Значит значение выражения 1,5 + 3,4 равно 4,9

1,5 + 3,4 = 4,9


Пример 2. Найти значение выражения: 3,51 + 1,22

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»

В первую очередь складываем дробную часть, а именно сотые части 1+2=3. Записываем тройку в сотой части нашего ответа:

Теперь складываем десятые части 5+2=7. Записываем семёрку в десятой части нашего ответа:

Теперь складываем целые части 3+1=4. Записываем четвёрку в целой части нашего ответа:

Отделяем запятой целую часть от дробной, соблюдая правило «запятая под запятой»:

Получили ответ 4,73. Значит значение выражения 3,51 + 1,22 равно 4,73

3,51 + 1,22 = 4,73

Как и в обычных числах, при сложении десятичных дробей может произойти переполнение разряда. В этом случае в ответе записывается одна цифра, а остальные переносят на следующий разряд.

Пример 3. Найти значение выражения 2,65 + 3,27

Записываем в столбик данное выражение:

Складываем сотые части 5+7=12. Число 12 не поместится в сотой части нашего ответа. Поэтому в сотой части записываем цифру 2, а единицу переносим на следующий разряд:

Теперь складываем десятые части 6+2=8 плюс единица, которая досталась от предыдущей операции, получим 9. Записываем цифру 9 в десятой части нашего ответа:

Теперь складываем целые части 2+3=5. Записываем цифру 5 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 5,92. Значит значение выражения 2,65 + 3,27 равно 5,92

2,65 + 3,27 = 5,92


Пример 4. Найти значение выражения 9,5 + 2,8

Записываем в столбик данное выражение

Складываем дробные части 5 + 8 = 13. Число 13 не поместится в дробной часть нашего ответа, поэтому сначала записываем цифру 3, а единицу переносим на следующий разряд, точнее переносим её к целой части:

Теперь складываем целые части 9+2=11 плюс единица, которая досталась от предыдущей операции, получаем 12. Записываем число 12 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 12,3. Значит значение выражения 9,5 + 2,8 равно 12,3

9,5 + 2,8 = 12,3

При сложении десятичных дробей количество цифр после запятой в обеих дробях должно быть одинаковым. Если цифр не хватает, то эти места в дробной части заполняются нулями.

Пример 5. Найти значение выражения: 12,725 + 1,7

Прежде чем записывать в столбик данное выражение, сделаем количество цифр после запятой в обеих дробях одинаковым. В десятичной дроби 12,725 после запятой три цифры, а в дроби 1,7 только одна. Значит в дроби 1,7 в конце нужно добавить два нуля. Тогда получим дробь 1,700. Теперь можно записать в столбик данное выражение и начать вычислять:

Складываем тысячные части 5+0=5. Записываем цифру 5 в тысячной части нашего ответа:

Складываем сотые части 2+0=2. Записываем цифру 2 в сотой части нашего ответа:

Складываем десятые части 7+7=14. Число 14 не поместится в десятой части нашего ответа. Поэтому сначала записываем цифру 4, а единицу переносим на следующий разряд:

Теперь складываем целые части 12+1=13 плюс единица, которая досталась от предыдущей операции, получаем 14. Записываем число 14 в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 14,425. Значит значение выражения 12,725+1,700 равно 14,425

12,725+ 1,700 = 14,425


Вычитание десятичных дробей

При вычитании десятичных дробей нужно соблюдать те же правила что и при сложении: «запятая под запятой» и «равное количества цифр после запятой».

Пример 1. Найти значение выражения 2,5 − 2,2

Записываем в столбик данное выражение, соблюдая правило «запятая под запятой»:

Вычисляем дробную часть 5−2=3. Записываем цифру 3 в десятой части нашего ответа:

Вычисляем целую часть 2−2=0. Записываем ноль в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 0,3. Значит значение выражения 2,5 − 2,2 равно 0,3

2,5 − 2,2 = 0,3


Пример 2. Найти значение выражения 7,353 — 3,1

В этом выражении разное количество цифр после запятой. В дроби 7,353 после запятой три цифры, а в дроби 3,1 только одна. Значит в дроби 3,1 в конце нужно добавить два нуля, чтобы сделать количество цифр в обеих дробях одинаковым. Тогда получим 3,100.

Теперь можно записать в столбик данное выражение и вычислить его:

Получили ответ 4,253. Значит значение выражения 7,353 − 3,1 равно 4,253

7,353 — 3,1 = 4,253


Как и в обычных числах, иногда придётся занимать единицу у соседнего разряда, если вычитание станет невозможным.

Пример 3. Найти значение выражения 3,46 − 2,39

Вычитаем сотые части 6−9. От число 6 не вычесть число 9. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда число 6 обращается в число 16. Теперь можно вычислить сотые части 16−9=7. Записываем семёрку в сотой части нашего ответа:

Теперь вычитаем десятые части. Поскольку мы заняли в разряде десятых одну единицу, то цифра, которая там располагалась, уменьшилась на одну единицу. Другими словами, в разряде десятых теперь не цифра 4, а цифра 3. Вычислим десятые части 3−3=0. Записываем ноль в десятой части нашего ответа:

Теперь вычитаем целые части 3−2=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,07. Значит значение выражения 3,46−2,39 равно 1,07

 3,46−2,39=1,07

Пример 4. Найти значение выражения 3−1,2

В этом примере из целого числа вычитается десятичная дробь. Запишем данное выражение столбиком так, чтобы целая часть десятичной дроби 1,23 оказалась под числом 3

Теперь сделаем количество цифр после запятой одинаковым. Для этого после числа 3 поставим запятую и допишем один ноль:

Теперь вычитаем десятые части: 0−2. От нуля не вычесть число 2. Поэтому нужно занять единицу у соседнего разряда. Заняв единицу у соседнего разряда, 0 обращается в число 10. Теперь можно вычислить десятые части 10−2=8. Записываем восьмёрку в десятой части нашего ответа:

Теперь вычитаем целые части. Раньше в целой располагалось число 3, но мы заняли у него одну единицу. В результате оно обратилось в число 2. Поэтому из 2 вычитаем 1. 2−1=1. Записываем единицу в целой части нашего ответа:

Отделяем запятой целую часть от дробной:

Получили ответ 1,8. Значит значение выражения 3−1,2 равно 1,8

3 − 1,2 = 1,8

 


Умножение десятичных дробей

Умножение десятичных дробей это просто и даже увлекательно. Чтобы перемножить десятичные дроби, нужно перемножить их как обычные числа, не обращая внимания на запятые.

Получив ответ, необходимо отделить запятой целую часть от дробной. Чтобы сделать это, надо посчитать количество цифр после запятой в обеих дробях, затем в ответе отсчитать справа столько же цифр и поставить запятую.


Пример 1. Найти значение выражения 2,5 × 1,5

Перемножим эти десятичные дроби как обычные числа, не обращая внимания на запятые. Чтобы не обращать внимания на запятые, можно на время представить, что они вообще отсутствуют:

Получили 375. В этом числе необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в дробях 2,5 и 1,5. В первой дроби после запятой одна цифра, во второй дроби тоже одна. Итого две цифры.

Возвращаемся к числу 375 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 3,75. Значит значение выражения 2,5 × 1,5 равно 3,75

2,5 × 1,5 = 3,75


Пример 2. Найти значение выражения 12,85 × 2,7

Перемножим эти десятичные дроби, не обращая внимания на запятые:

Получили 34695. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дробях 12,85 и 2,7. В дроби 12,85 после запятой две цифры, в дроби 2,7 одна цифра — итого три цифры.

Возвращаемся к числу 34695 и начинаем двигаться справа налево. Нам нужно отсчитать три цифры справа и поставить запятую:

Получили ответ 34,695. Значит значение выражения 12,85 × 2,7 равно 34,695

12,85 × 2,7 = 34,695


Умножение десятичной дроби на обычное число

Иногда возникают ситуации, когда требуется умножить десятичную дробь на обычное число.

Чтобы перемножить десятичную дробь и обычное число, нужно перемножить их, не обращая внимания на запятую в десятичной дроби. Получив ответ, необходимо отделить запятой целую часть от дробной. Для этого нужно посчитать количество цифр после запятой в десятичной дроби, затем в ответе отсчитать справа столько же цифр и поставить запятую.

Например, умножим 2,54 на 2

Умножаем десятичную дробь 2,54 на обычное число 2, не обращая внимания на запятую:

Получили число 508. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,54. В дроби 2,54 после запятой две цифры.

Возвращаемся к числу 508 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 5,08. Значит значение выражения 2,54 × 2 равно 5,08

2,54 × 2 = 5,08


Умножение десятичных дробей на 10, 100, 1000

Умножение десятичных дробей на 10, 100 или 1000 выполняется таким же образом, как и умножение десятичных дробей на обычные числа. Нужно выполнить умножение, не обращая внимания на запятую в десятичной дроби, затем в ответе отделить целую часть от дробной, отсчитав справа столько же цифр, сколько было цифр после запятой в десятичной дроби.

Например, умножим 2,88 на 10

Умножим десятичную дробь 2,88 на 10, не обращая внимания на запятую в десятичной дроби:

Получили 2880. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дроби 2,88. Видим, что в дроби 2,88 после запятой две цифры.

Возвращаемся к числу 2880 и начинаем двигаться справа налево. Нам нужно отсчитать две цифры справа и поставить запятую:

Получили ответ 28,80. Отбросим последний ноль — получим 28,8. Значит значение выражения 2,88×10 равно 28,8

2,88 × 10 = 28,8


Есть и второй способ умножения десятичных дробей на 10, 100, 1000. Этот способ намного проще и удобнее. Он заключается в том, что запятая в десятичной дроби передвигается вправо на столько цифр, сколько нулей во множителе.

Например, решим предыдущий пример 2,88×10 этим способом. Не приводя никаких вычислений, сразу же смотрим на множитель 10. Нас интересует сколько в нём нулей. Видим, что в нём один ноль. Теперь в дроби 2,88 передвигаем запятую вправо на одну цифру, получим 28,8.

2,88 × 10 = 28,8


Попробуем умножить 2,88 на 100. Сразу же смотрим на множитель 100. Нас интересует сколько в нём нулей. Видим, что в нём два нуля. Теперь в дроби 2,88 передвигаем запятую вправо на две цифры, получаем 288

2,88 × 100 = 288


Попробуем умножить 2,88 на 1000. Сразу же смотрим на множитель 1000. Нас интересует сколько в нём нулей. Видим, что в нём три нуля. Теперь в дроби 2,88 передвигаем запятую вправо на три цифры. Третьей цифры там нет, поэтому мы дописываем ещё один ноль. В итоге получаем 2880.

2,88 × 1000 = 2880


Умножение десятичных дробей на 0,1  0,01 и 0,001

Умножение десятичных дробей на 0,1,  0,01 и 0,001 происходит таким же образом, как и умножение десятичной дроби на десятичную дробь. Необходимо перемножить дроби, как обычные числа, и в ответе поставить запятую, отсчитав столько цифр справа, сколько цифр после запятой в обеих дробях.

Например, умножим 3,25 на 0,1

Умножаем эти дроби, как обычные числа, не обращая внимания на запятые:

Получили 325. В этом числе нужно отделить запятой целую часть от дробной. Для этого необходимо посчитать количество цифр после запятой в дробях 3,25 и 0,1. В дроби 3,25 после запятой две цифры, в дроби 0,1 одна цифра. Итого три цифры.

Возвращаемся к числу 325 и начинаем двигаться справа налево. Нам нужно отсчитать три цифры справа и поставить запятую. Отсчитав три цифры мы обнаруживаем, что цифры закончились. В этом случае нужно дописать один ноль и поставить запятую:

Получили ответ 0,325. Значит значение выражения 3,25 × 0,1 равно 0,325

3,25 × 0,1 = 0,325


Есть и второй способ умножения десятичных дробей на 0,1,  0,01  и 0,001. Этот способ намного проще и удобнее. Он заключается в том, что запятая в десятичной дроби передвигается влево на столько цифр, сколько нулей во множителе.

Например, решим предыдущий пример 3,25 × 0,1 этим способом. Не приводя никаких вычислений сразу же смотрим на множитель 0,1. Нас интересует сколько в нём нулей. Видим, что в нём один ноль. Теперь в дроби 3,25 передвигаем запятую влево на одну цифру. Передвинув запятую на одну цифру влево мы видим, что перед тройкой больше нет никаких цифр. В этом случае дописываем один ноль и ставим запятую. В результате получаем 0,325

3,25 × 0,1 = 0,325

Попробуем умножить 3,25 на 0,01. Сразу же смотрим на множитель 0,01. Нас интересует сколько в нём нулей. Видим, что в нём два нуля. Теперь в дроби 3,25 передвигаем запятую влево на две цифры, получаем 0,0325

3,25 × 0,01 = 0,0325

Попробуем умножить 3,25 на 0,001. Сразу же смотрим на множитель 0,001. Нас интересует сколько в нём нулей. Видим, что в нём три нуля. Теперь в дроби 3,25 передвигаем запятую влево на три цифры, получаем 0,00325

3,25 × 0,001 = 0,00325


Нельзя путать умножение десятичных дробей на 0,1,  0,001 и 0,001 с умножением на 10, 100, 1000. Типичная ошибка большинства людей.

При умножении на 10, 100, 1000 запятая переносится вправо на столько же цифр сколько нулей во множителе.

А при умножении на 0,1,  0,01 и 0,001 запятая переносится влево на столько же цифр сколько нулей во множителе.

Если на первых порах это сложно запомнить, можно пользоваться первым способом, в котором умножение выполняется как с обычными числами. В ответе нужно будет отделить целую часть от дробной, отсчитав справа столько же цифр, сколько цифр после запятой в обеих дробях.


Деление меньшего числа на большее. Продвинутый уровень.

В одном из предыдущих уроков мы сказали, что при делении меньшего числа на большее получается дробь, в числителе которой делимое, а в знаменателе – делитель.

Например, чтобы разделить одно яблоко на двоих, нужно в числитель записать 1 (одно яблоко), а в знаменатель записать 2 (двое друзей). В результате получим дробь . Значит каждому другу достанется по  яблока. Другими словами, по половине яблока. Дробь  это ответ к задаче «как разделить одно яблоко на двоих»

Оказывается, можно решать эту задачу и дальше, если разделить 1 на 2. Ведь дробная черта в любой дроби означает деление, а значит и в дроби  это деление разрешено. Но как? Мы ведь привыкли к тому, что делимое всегда больше делителя. А здесь наоборот, делимое меньше делителя.

Всё станет ясным, если вспомнить, что дробь означает дробление, деление, разделение. А значит и единица может быть раздроблена на сколько угодно частей, а не только на две части.

При разделении меньшего числа на большее получается десятичная дробь, в которой целая часть будет 0 (нулевой). Дробная часть же может быть любой.

Итак, разделим 1 на 2. Решим этот пример уголком:

Единицу на два просто так нацело не разделить. Если задать вопрос «сколько двоек в единице», то ответом будет 0. Поэтому в частном записываем 0 и ставим запятую:

Теперь как обычно умножаем частное на делитель, чтобы вытащить остаток:

Настал момент, когда единицу можно дробить на две части. Для этого справа от полученной единички дописываем ещё один ноль:

Получили 10. Делим 10 на 2, получаем 5. Записываем пятёрку в дробной части нашего ответа:

Теперь вытаскиваем последний остаток, чтобы завершить вычисление. Умножаем 5 на 2, получаем 10

Получили ответ 0,5. Значит дробь  равна 0,5

Половину яблока  можно записать и с помощью десятичной дроби 0,5. Если сложить эти две половинки (0,5 и 0,5), мы опять получим изначальное одно целое яблоко:

Этот момент также можно понять, если представить, как 1 см делится на две части. Если 1 сантиметр разделить на 2 части, то получится 0,5 см


Пример 2. Найти значение выражения 4 : 5

Сколько пятёрок в четвёрке? Нисколько. Записываем в частном 0 и ставим запятую:

Умножаем 0 на 5, получаем 0. Записываем ноль под четвёркой. Сразу же вычитаем этот ноль из делимого:

Теперь начнём дробить (делить) четвёрку на 5 частей. Для этого справа от 4 дописываем ноль и делим 40 на 5, получаем 8. Записываем восьмёрку в частном.

Завершаем пример, умножив 8 на 5, и получив 40:

Получили ответ 0,8. Значит значение выражения 4 : 5 равно 0,8


Пример 3. Найти значение выражения 5 : 125

Сколько чисел 125 в пятёрке? Нисколько. Записываем 0 в частном и ставим запятую:

Умножаем 0 на 125, получаем 0. Записываем 0 под пятёркой. Сразу же вычитаем из пятёрки 0

Теперь начнём дробить (делить) пятёрку на 125 частей. Для этого справа от этой пятёрки запишем ноль:

Делим 50 на 125. Сколько чисел 125 в числе 50? Нисколько. Значит в частном опять записываем 0

Умножаем 0 на 125, получаем 0. Записываем этот ноль под 50. Сразу же вычитаем 0 из 50

Теперь делим число 50 на 125 частей. Для этого справа от 50 запишем ещё один ноль:

Делим 500 на 125. Сколько чисел 125 в числе 500. В числе 500 четыре числа 125. Записываем четвёрку в частном:

Завершаем пример, умножив 4 на 125, и получив 500

Получили ответ 0,04. Значит значение выражения 5 : 125 равно 0,04


Деление чисел без остатка

В уроке деление мы научились делить числа с остатком. Например, чтобы разделить 9 на 5, мы поступали следующим образом:

и далее говорили, что «девять разделить на пять будет один и четыре в остатке».

Теперь мы получили необходимые знания, чтобы разделить 9 на 5 без остатка. Наша задача раздробить остаток 4 на 5 частей. Другими словами, разделить меньшее число на большее.

Итак, поставим в частном после единицы запятую, тем самым указывая, что деление целых частей закончилось и мы приступаем к дробной части:

Допишем ноль к остатку 4

Теперь делим 40 на 5, получаем 8. Записываем восьмёрку в частном:

Что делать дальше мы уже знаем. Вытаскиваем остаток (если есть). Умножаем восьмёрку на делитель 5, и записываем полученный результат под 40:

40−40=0. Получили 0 в остатке. Значит деление на этом полностью завершено. При делении 9 на 5 получается десятичная дробь 1,8:

9 : 5 = 1,8


Пример 2. Разделить 84 на 5 без остатка

Сначала разделим 84 на 5 как обычно с остатком:

Получили в частном 16 и еще 4 в остатке. Теперь разделим этот остаток на 5. Поставим в частном запятую, а к остатку 4 допишем 0

Теперь делим 40 на 5, получаем 8. Записываем восьмерку в частном после запятой:

и завершаем пример, проверив есть ли еще остаток:


Деление десятичной дроби на обычное число

Десятичная дробь, как мы знаем состоит из целой и дробной части. При делении десятичной дроби на обычное число в первую очередь нужно:

  • разделить целую часть десятичной дроби на это число;
  • после того, как целая часть будет разделена, нужно в частном сразу же поставить запятую и продолжить вычисление, как в обычном делении.

Например, разделим 4,8 на 2

Запишем этот пример уголком:

Теперь разделим целую часть на 2. Четыре разделить на два будет два. Записываем двойку в частном и сразу же ставим запятую:

Теперь умножаем частное на делитель и смотрим есть ли остаток от деления:

4−4=0. Остаток равен нулю. Ноль пока не записываем, поскольку решение не завершено. Далее продолжаем вычислять, как в обычном делении. Сносим 8 и делим её на 2

8 : 2 = 4. Записываем четвёрку в частном и сразу умножаем её на делитель:

Получили ответ 2,4. Значение выражения 4,8 : 2 равно 2,4


 Пример 2. Найти значение выражения 8,43 : 3

Делим 8 на 3, получаем 2. Сразу же ставим запятую после двойки:

Теперь умножаем частное на делитель 2 × 3 = 6. Записываем шестёрку под восьмёркой и находим остаток:

 

Далее продолжаем вычислять, как в обычном делении. Сносим 4

Делим 24 на 3, получаем 8. Записываем восьмёрку в частном. Сразу же умножаем её на делитель, чтобы найти остаток от деления:

24−24=0. Остаток равен нулю. Ноль пока не записываем. Сносим последнюю тройку из делимого и делим на 3, получим 1. Сразу же умножаем 1 на 3, чтобы завершить этот пример:

Получили ответ 2,81. Значит значение выражения 8,43 : 3 равно 2,81


Деление десятичной дроби на десятичную дробь

Чтобы разделить десятичную дробь на десятичную дробь, надо в делимом и в делителе перенести запятую вправо на столько же цифр, сколько их после запятой в делителе, и затем выполнить деление на обычное число.

Например, разделим 5,95 на 1,7

Запишем уголком данное выражение

Теперь в делимом и в делителе перенесём запятую вправо на столько же цифр, сколько их после запятой в делителе. В делителе после запятой одна цифра. Значит мы должны в делимом и в делителе перенести запятую вправо на одну цифру. Переносим:

После перенесения запятой вправо на одну цифру десятичная дробь 5,95 обратилась в дробь 59,5. А десятичная дробь 1,7 после перенесения запятой вправо на одну цифру обратилась в обычное число 17. А как делить десятичную дробь на обычное число мы уже знаем. Дальнейшее вычисление не составляет особого труда:

Запятая переносится вправо с целью облегчить деление. Это допускается по причине того, что при умножении или делении делимого и делителя на одно и то же число, частное не меняется. Что это значит?

Это одна из интересных особенностей деления. Его называют свойством частного. Рассмотрим выражение 9 : 3 = 3. Если в этом выражении делимое и делитель умножить или разделить на одно и то же число, то частное 3 не изменится.

Давайте умножим делимое и делитель на 2, и посмотрим, что из этого получится:

(9 × 2) : (3 × 2) = 18 : 6 = 3

Как видно из примера, частное не поменялось.

Тоже самое происходит, когда мы переносим запятую в делимом и в делителе. В предыдущем примере, где мы делили 5,91 на 1,7 мы перенесли в делимом и делителе запятую на одну цифру вправо. После переноса запятой, дробь 5,91 преобразовалась в дробь 59,1 а дробь 1,7 преобразовалась в обычное число 17. На самом деле здесь происходило умножение на 10. Вот как это выглядело:

5,91 × 10 = 59,1

1,7 × 10 = 17

Поэтому от количества цифр после запятой в делителе зависит то, на что будет умножено делимое и делитель. Другими словами, от количества цифр после запятой в делителе будет зависеть то, на сколько цифр в делимом и в делителе запятая будет перенесена вправо.


Деление десятичной дроби на 10, 100, 1000

Деление десятичной дроби на 10, 100, или 1000 осуществляется таким же образом, как и деление десятичной дроби на обычное число. Например, разделим 2,1 на 10. Решим этот пример уголком:

Но есть и второй способ. Он более лёгкий. Суть этого способа в том, что запятая в делимом переносится влево на столько цифр, сколько нулей в делителе.

Решим предыдущий пример этим способом. 2,1 : 10. Смотрим на делитель. Нас интересует сколько в нём нулей. Видим, что там один ноль. Значит в делимом 2,1 нужно перенести запятую влево на одну цифру. Переносим запятую влево на одну цифру и видим, что там больше не осталось цифр. В этом случае перед цифрой дописываем ещё один ноль. В итоге получаем 0,21

2,1 : 10 = 0,21


Попробуем разделить 2,1 на 100. В числе 100 два нуля. Значит в делимом 2,1 надо перенести запятую влево на две цифры:

2,1 : 100 = 0,021


Попробуем разделить 2,1 на 1000. В числе 1000 три нуля. Значит в делимом 2,1 надо перенести запятую влево на три цифры:

2,1 : 1000 = 0,0021


Деление десятичной дроби на 0,1,  0,01  и  0,001

Деление десятичной дроби на 0,1,  0,01, и 0,001 осуществляется таким же образом, как и деление десятичной дроби на десятичную дробь. В делимом и в делителе надо перенести запятую вправо на столько цифр, сколько их после запятой в делителе.

Например, разделим 6,3 на 0,1. В первую очередь перенесём запятые в делимом и в делителе вправо на столько же цифр, сколько их после запятой в делителе. В делителе после запятой одна цифра. Значит переносим запятые в делимом и в делителе вправо на одну цифру.

После перенесения запятой вправо на одну цифру, десятичная дробь 6,3 превращается в обычное число 63, а десятичная дробь 0,1 после перенесения запятой вправо на одну цифру превращается в единицу. А разделить 63 на 1 очень просто:

63 : 1 = 63

Значит значение выражения 6,3 : 0,1 равно 63

6,3 : 0,1 = 63

Но есть и второй способ. Он более лёгкий. Суть этого способа в том, что запятая в делимом переносится вправо на столько цифр, сколько нулей в делителе.

Решим предыдущий пример этим способом. 6,3 : 0,1. Смотрим на делитель. Нас интересует сколько в нём нулей. Видим, что там один ноль. Значит в делимом 6,3 нужно перенести запятую вправо на одну цифру. Переносим запятую вправо на одну цифру и получаем 63

6,3 : 0,1 = 63


Попробуем разделить 6,3 на 0,01. В делителе 0,01 два нуля. Значит в делимом 6,3 надо перенести запятую вправо на две цифры. Но в делимом после запятой только одна цифра. В этом случае в конце нужно дописать ещё один ноль. В результате получим 630

6,3 : 0,01 = 630


Попробуем разделить 6,3 на 0,001. В делителе 0,001 три нуля. Значит в делимом 6,3 надо перенести запятую вправо на три цифры:

6,3 : 0,001 = 6300


Задания для самостоятельного решения

Задание 1. Выполните сложение:

0,6 + 0,3

Решение:

Задание 2. Выполните сложение:

1,2 + 5,3

Решение:

Задание 3. Выполните сложение:

1,6 + 0,4

Решение:

Задание 4. Выполните сложение:

0,8 + 0,5

Решение:

Задание 5. Выполните вычитание:

0,9 − 0,4

Решение:

Задание 6. Выполните вычитание:

2 − 0,3

Решение:

Задание 7. Выполните вычитание:

9 − 7,8

Решение:

Задание 8. Выполните вычитание:

4 − 1,8

Решение:

Задание 9. Выполните умножение:

3,2 × 1,8

Решение:

Задание 10. Выполните умножение:

9,3 × 5,8

Решение:

Задание 11. Выполните умножение:

0,23 × 0,07

Решение:

Задание 12. Выполните умножение:

3,14 × 0,25

Решение:

Задание 13. Выполните деление:

9,36 : 6

Решение:

Задание 14. Выполните деление:

0,169 : 13

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

разделить столбиком | Математика

Как разделить столбиком, правило деления столбиком, примеры как делить делить два числа столбиком, онлайн деление столбиком. Разделить любое число на любое онлайн в столбик.

  • Правило деления столбиком

    Правило деления в столбик звучит так :

    Располагаем число, которое будем делить (делимое) — слева, справа от него чертим вертикальную линию, за которой пишем «делитель» — число, на которое будем делить. От вертикальной линии чертим горизонтальную, под делителем. Внизу будем записывать результат деления!

    Алгоритм деления столбиком пошагово!

    После того, как вы записали делимое и делитель по выше описанному правилу, считаем сколько цифр имеет делитель. В скрине ниже — делитель состоит из одной цифры — 4.

    Смотрим на делимое(число, которое будем делить), а точнее на первую цифру слева(2) и сравниваем её с делимым(4). Очевидно, что 4 > 2 из чего получается, что при делении 2 на 4 мы целых не получим — это нам не подходит, переходим ск следующему пункту.

    Далее смотрим на число, которое составляет две цифры слева — 23. Понятно, что 23 > 4. Если мы разделим 23 на 4, то получим 5 и 3 в остатке. Скобки применены, чтобы вы понимали, какое действие будет выполняться первым.

    23 : 4 = (4 * 5) + 3

    5 — записываем под горизонтальной линией, под делителем.

    20 — результат умножения делителя и частного 4 * 5 = 20, записываем под делимым 23.

    Отнимаем от делимого(23), полученный результат(20) , 23 — 20 = 3.

    3 — получился остаток, который меньше 4.

    Если вы еще не изучали десятичные дроби. То здесь мы останавливаемся.

    Итого :

    Результат деления двух чисел столбиком :

    При делении двух чисел 23 на 4 получили результат : неполное частное(или целое) равно 5.

    Остаток, который меньше делителя — 3.

    Но и 3 далее можно было продолжить делить, но мы бы перешли в зону десятичных. См. пример деления с десятичными.


  • Как называются числа при делении столбиком!?

    При делении столбиком, чтобы оперировать к каждому участнику данного математического действия у него есть собственное название:

    То число, которое будет делиться столбиком, будет называться -> делимое

    То число на которое будет делиться, называется -> делитель

    Результат, который записывается под делимым, называется -> частным

    И если остается «остаток», то такое число называется -> остаток от деления

    Формула деления числа столбиком

    Как таковой формулы деления столбиком не существует, есть несколько правил деления столбиком. И которые рассматривать отдельно, гипотетически глупо! Если вы никогда не делили столбиком, то вы никогда этого не поймете!

    Поэтому. для пониманияделения столбиком надо рассмотреть пример деления столбиком:


  • Как называются числа при делении в строке

    Кроме названий чисел при делении столбиком, у нас есть еще запись деления в строку.

    И там названий чуть поменьше.

    Как называются числа при делении

    Числа при делении называются так :

    Первое число при делении называется «делимое«.

    Второе число при делении называется «делитель«.

    Третье число при делении называется «частное«.

    Как запомнить «как называются числа при делении».

    Есть огромное количество способов запомнить «как называются числа при делении«, вы их можете найти в интернете.

    У меня есть свой способ.

    Это не то, чтобы способ… просто у меня на подкорке сидят эти понятия и вот такие ассоциации! лучший способ, для любого запоминания — это ассоциации.

    «Делимое» — первое число, среднего рода, ни рыба, ни мясо, над которым будут производить действия! Как в жизни

    «Делитель» — «он», мужик, разрушитель, придет и всех разрушит, поделит на ноль.

    «Частное» -никогда не запоминал, само запомнилось — просто третье… частное


  • Пример деления столбиком

    Предположим, что нам нужно разделить число 102 на 4

    Разберем это на картинке :

    Первое, поскольку у нас цифра 4 однозначное, то проверяем первую цифру слева — это 1, то понятно, что 1 меньше 4, а нам нужно наоборот. Например, если бы перове число слева было бы рано 5, то нам не пришлось бы брать вторую цифру в делимом.

    Берем двузначное число слева — это 10 и сравниваем с нажим делителем… 10 больше 4, теперь, все правильно, далее нам потребуется узнать «нод» двух чисел.

    Не буду повторять, что такое «нод» — лишь покажу на примере, как мы видим, цифру 10 и делитель 4, то их общий нод будет 2. Или другими словами, в числе 10 умещается всего 2 числа 4…

    Этот нод заносим под горизонтальную черту в область частного и умножаем его на 4 — это будет 8, и 8 ставим под ноль

    От 10 отняли 8 и ставим его под черту под цифру 8 и если это число получилось меньше 4, то значит нод был найден верно! И нодом нам придется пользоваться много раз, поэтому нужно научиться его находить!

    Теперь, у нас в самом верху еще осталась одна двойка, её сносим ниже к двойке, которая получилась отниманием от 10 восьмерки, получается число 22.

    Далее опять находим нод чисел 22 и 4 — это 5,

    5 заносим его под черту, ставим его после первого найденого нода.

    Умножаем 5 на 4 — это будет 20,

    20 ставим под 22.

    Отнимем опять и получим 2 — это остаток.

    Поскольку у нас наверху не осталось цифр, то ставим 0 и у нас получается 1020 — это означает, что мы перешли из целых в десятые, поэтому, под черту, рядом с пятеркой ставим точку(или запятую(зависит от того, как вас будут учить… )).

    Сносим наш ноль до остатка, что получается 20.

    Находим нод 20 и 4 — это опять 5.

    Заносим 5 под черту рядом с запятой.

    Умножаем 4 на 5 = 20.

    Ставим его под нашим остатком и нулем.

    Отнимаем — получаем ноль.

    Итого результат деления столбиком:

    Если разделить 102 на 4 столбиком, то мы получим 25.5, как впрочем и на калькуляторе, будет тоже самое….


  • Деление столбиком с остатком

    Если при делении столбиком остается остаток, не переходя в десятые — это и называется деление числа с остатком.

    Если мы разберем выше приведенный пример, то если мы возьмем картинку до добавления нуля, когда мы создали число 1020, то и полуим деление числа с остатком, остаток в данном случае равен двум:


  • Деление столбиком без остатка

    Как разделить число без остатка на выше приведенном примере… если последнее число, в данном примере, вместо цифры 2 стоял бы ноль, то получилось бы , что 100 разделить на 4 будет 25 без остатка


  • Деление столбиком если делимое меньше делителя

    Как разделить столбиком, если делитель больше делимого!

    Пример №1.(В1.)

    Предположим, что вам нужно разделить 4 на 5.

    Располагаем стандартно наши числа слева делимое, справа делитель.

    Ясно, что делитель больше делимого 5 > 4.

    Поэтому, рядом с число 4 пишем ноль(выделено зеленым) и одновременно, этот же ноль записываем под делителем и добавляем точку.

    Проверяем 40 делится на 5 — делится. 40 : 5 = 8, восемь записываем под черту, 40 пишем под делимым.

    Отнимаем 40 — 40 = 0.

    Итого получаем, что если разделить 4 на 5, то получим 0.8 — ноль целых восемь десятых.

    Пример №2.(В2.)

    Разберем второй пример :

    Предположим, что нам нужно разделить 4 на 50.

    Располагаем стандарно, наши числа для деления столбиком.

    Ясно, что 4 меньше 50.

    Пишем ноль рядом с 4, и одновременно ноль пишем под чертой ставим точку.

    Проверяем, делится ли 40 на 50 — нет! Значит, добавляем еще один ноль. И его же добавляем после точки.

    Далее аналогичные действия, что производили в первом варианте.

    Зачем для примера были выбраны такие простые примеры!?

    Числа выбраны простые намеренно, чтобы вам было понятно, как происходит деление, когда делитель больше делимого!


  • Деление столбиком онлайн любого числа на любое!


  • Интересные вопросы : о делении столбиком.

    О поисковых запросах.

    Как делить большие числа столбиком!?

    Интересный вопрос — «Как делить большие числа столбиком!?«.

    Ответ :

    А что с большими числами не так!? Они имеют какой-то другой тип, отличный от числа!?

    Или для деления больших чисел в столбик, написан отдельный алгоритм!?

    Никакой разницы, между большими и маленькими и любыми другими числами(кроме дробных), не существует для деления в столбик…

    Калькулятор комплексных чисел

    — eMathHelp

    Калькулятор упростит любое сложное выражение с указанием шагов. Он будет выполнять сложение, вычитание, умножение, деление, возведение в степень, а также найдет полярную форму, сопряжение, модуль и обратную форму комплексного числа.

    Показать инструкции

    • В общем случае знак умножения можно пропустить, поэтому «5x» эквивалентно «5 * x».3 (х).
    • Из приведенной ниже таблицы вы можете заметить, что sech не поддерживается, но вы все равно можете ввести его, используя идентификатор `sech (x) = 1 / cosh (x)`.
    • Если вы получили сообщение об ошибке, дважды проверьте свое выражение, добавьте скобки и знаки умножения, где это необходимо, и обратитесь к таблице ниже.
    • Все предложения и улучшения приветствуются. Пожалуйста, оставьте их в комментариях.

    В следующей таблице перечислены поддерживаемые операции и функции:

    9 0030 acsc (x)
    Тип Получить
    Константы
    e e
    pi `pi`
    i i (мнимая единица)
    Операции
    a + b a + b
    ab ab
    a * b `a * b`
    a ^ b, a ** b` a ^ b`
    sqrt (x), x ^ (1/2) `sqrt (x)`
    cbrt (x), x ^ (1/3) `root (3 ) (x) `
    корень (x, n), x ^ (1 / n)` root (n) (x) `
    x ^ (a / b)` x ^ (a / b) `
    x ^ a ^ b` x ^ (a ^ b) `
    abs (x)` | x | `
    Функции
    e ^ x `e ^ x`
    ln (x), журнал (x) ln (x)
    ln (x) / ln (a) `log_a (x)`
    Тригонометрические функции
    sin (x) sin (x)
    cos (x) cos (x)
    tan (x) tan (x), tg (x)
    кроватка (x) кроватка (x), ctg ( x)
    sec (x) sec (x)
    csc (x) csc (x), cosec (x)
    Обратные тригонометрические функции
    asin (x) , arcsin (x), sin ^ -1 (x) asin (x)
    acos (x), arccos (x), cos ^ -1 (x) acos (x)
    атан (x), arctan (x), tan ^ -1 (x) atan (x)
    acot (x), arccot ​​(x), cot ^ -1 (x) acot (x)
    asec (x), arcsec (x), sec ^ -1 (x) asec (x)
    acsc (x), arccsc (x), csc ^ -1 (x)
    Гиперболические функции
    sinh (x) sinh (x)
    cosh (x) cosh (x)
    tanh (x) tanh (x)
    coth (x) coth (x)
    1 / cosh (x) sech (x)
    1 / sinh (x) csch (x)
    Обратные гиперболические функции
    asinh (x), arcsinh (x), sinh ^ -1 (x) asinh (x)
    acosh (x), arccosh (x), cosh ^ — 1 (x) acosh (x)
    atanh (x), arctanh (x), tanh ^ -1 (x) atanh (x)
    acoth (x), arccoth (x) , кроватка ^ -1 (x) acoth (x)
    acosh (1 / x) asech (x)
    asinh (1 / x) acsch (x)

    Калькулятор деления матрицы

    • Матричные операции
    • Детерминант
    • Умножение
    • Сложение / вычитание
    • Деление
    • Обратный
    • Транспонировать
    • Кофактор / адъюгат
    • Ранг
    • Мощность
    • Решение линейных систем
    • Гауссово исключение
    • Исключение Гаусса-Джордана
    • Правило Крамера
    • Rref
    • Факторизация матрицы
    • Факторизация LU
    • QR-факторизация
    • Разложение Холецкого
    • Грам-Шмидт
    • Собственные значения и собственные векторы
    • Генератор случайных матриц

    Введите матрицу A:

    4 1 6 3 7 1 1 8 7


    Показать цифры

    Клетки + — Сброс

    Введите матрицу B:

    6 4 1 5 4 6 2 7 9


    Показать цифры

    Клетки + — Сброс

    Рассчитать

    © 2020 mxncalc.com

    Программа на C ++

    для создания простого калькулятора для сложения, вычитания, умножения или деления с помощью переключателя … case

    Эта программа принимает арифметический оператор (+, -, *, /) и два операнда от пользователя и выполняет операцию с этими двумя операндами в зависимости от оператора, введенного пользователем.


    Пример: простой калькулятор с использованием оператора switch

      # include 
    используя пространство имен std;
    
    int main ()
    {
        char op;
        float num1, num2;
    
        cout << "Введите оператор + или - или * или /:";
        cin >> op;
    
        cout << "Введите два операнда:";
        cin >> num1 >> num2;
    
        переключатель (op)
        {
            case '+':
                cout << num1 + num2;
                сломать;
    
            дело '-':
                cout << num1-num2;
                сломать;
    
            дело '*':
                cout << num1 * num2;
                сломать;
    
            дело '/':
                cout << num1 / num2;
                сломать;
    
            по умолчанию:
                // Если оператор отличный от +, -, * или /, отображается сообщение об ошибке
                cout << "Ошибка! неверный оператор";
                сломать;
        }
    
        возврат 0;
    }
      

    Выход

      Введите оператор + или - или * или разделите: -
    Введите два операнда:
    3.4
    8,4
    3,4 - 8,4 = -5,0
     
     

    Эта программа принимает от пользователя оператор и два операнда.

    Оператор хранится в переменной op , а два операнда хранятся в num1 и num2 соответственно.

    Затем оператор switch ... case используется для проверки оператора, введенного пользователем.

    Если пользователь вводит +, то выполняются операторы для случая : '+' и программа завершается.

    Если пользователь вводит -, то выполняются операторы для случая : '-' и программа завершается.

    Эта программа работает аналогично для оператора * и /. Но, если оператор не соответствует ни одному из четырех символов [+, -, * и /], выполняется инструкция по умолчанию, которая отображает сообщение об ошибке.

    Калькулятор нормального распределения

    Калькулятор нормального распределения позволяет легко вычислить совокупное вероятность при нормальной случайной величине; и наоборот. За помощью в использовании калькулятор, прочтите Часто задаваемые вопросы или просмотрите примеры проблем.

    Чтобы узнать больше о нормальном распределении, перейдите в Stat Trek's учебник по нормальному распределению.

    • Введите значение в трех из четырех текстовых полей.
    • Оставьте четвертое текстовое поле пустым.
    • Нажмите кнопку Calculate , чтобы вычислить значение для пустого поля. текстовое окно.

    Примечание : Таблица нормального распределения, приведенная в приложении к большинство статистических текстов основано на стандартное нормальное распределение, которое имеет среднее значение 0 и стандартное отклонение 1.Для производства продукции из стандартного нормального распределения с помощью этого калькулятора, установите среднее значение равным 0 и стандартное отклонение равным 1.

    Часто задаваемые вопросы


    Инструкции: Чтобы найти ответ на часто задаваемый вопрос, просто нажмите на вопрос.Если вы не видите нужного ответа, попробуйте Глоссарий статистики или ознакомьтесь с учебником Stat Trek по обычному распространение.

    Почему так важно нормальное распределение?

    Нормальное распределение важно, потому что оно описывает статистическое поведение многих реальных событий.Форма нормального распределение полностью описывается средним значением и стандартным отклонением.

    Таким образом, учитывая среднее значение и стандартное отклонение, вы можете использовать свойства нормального распределения для быстрого вычисления кумулятивного вероятность для любого значения. Этот процесс проиллюстрирован на Примеры проблем ниже.

    Что такое стандартное нормальное распределение?

    Существует бесконечное количество нормальных распределений.Хотя каждое нормальное распределение имеет колоколообразную кривую, некоторые нормальные распределения иметь высокий и узкий изгиб; в то время как у других кривая короткая и широкий.

    Точная форма нормального распределения определяется его среднее значение и его стандартное отклонение. Стандартное нормальное распределение - это нормальное распределение со средним нулевым и единичным стандартным отклонением.

    Нормальный случайная величина стандартного нормального распределения называется стандартом оценка или z-оценка .Нормальная случайная величина X из любого нормального распределения может быть преобразовано в оценку z из стандартное нормальное распределение через следующее уравнение:

    z = ( X - μ) / σ

    , где X - нормальная случайная величина, μ - среднее, а σ - стандартное отклонение.

    Потому что любую нормальную случайную величину можно «преобразовать» в z оценка, стандартное нормальное распределение обеспечивает полезную систему отсчета.Фактически, это нормальное распределение, которое обычно появляется в приложении. учебников по статистике.

    Что такое нормальная случайная величина?

    Нормальное распределение определяется следующим уравнением:

    Нормальное уравнение .Значение случайной величины Y составляет:

    Y = {1 / [σ * sqrt (2π)]} * e - (x - μ) 2 / 2σ 2

    , где X - нормальная случайная величина, μ - среднее, σ - стандартное отклонение, π составляет приблизительно 3,14159, а e составляет приблизительно 2,71828.

    В этом уравнении случайная величина X называется нормальной случайной величиной.Уникальный кумулятивная вероятность может быть связана с каждой нормальной случайной величиной. Учитывая нормальную случайную величину, стандартное отклонение нормальной распределения и среднего нормального распределения, мы можем вычислить кумулятивная вероятность (то есть вероятность того, что случайный выбор из нормальное распределение будет меньше или равно нормальной случайной величине.)

    Что такое стандартная оценка?

    Стандартная оценка (также известная как z-оценка) - это нормальная случайная величина из стандартное нормальное распределение.

    Для преобразования нормальной случайной величины (x) в эквивалентную стандартная оценка (z), используйте следующую формулу:

    z = ( x - μ) / σ

    , где μ - среднее значение, а σ - стандартное отклонение.

    Какая вероятность?

    Вероятность - это число, выражающее шансы того, что конкретная событие произойдет. Это число может принимать любое значение от 0 до 1. Вероятность 0 означает, что вероятность того, что событие произойдет, равна нулю; вероятность 1 означает, что событие обязательно произойдет.

    Числа от 0 до 1 определяют количество неопределенность, связанная с событием. Например, вероятность Подбрасывание монеты, в результате которого выпадет орел (а не решка), составит 0,50. Пятьдесят процентов иногда подбрасывание монеты приводило к выпадению орлов; и пятьдесят процентов время, это приведет к Tails.

    Какова совокупная вероятность?

    Кумулятивная вероятность - это сумма вероятностей.В связи с нормальным распределением кумулятивная вероятность относится к вероятность того, что случайно выбранная оценка будет меньше или равна указанное значение, называемое нормальной случайной величиной.

    Предположим, например, что у нас есть школа с 100 первоклассники. Если мы спросим о вероятности того, что случайно выбранный первый грейдер весит ровно 70 фунтов, мы спрашиваем о простой вероятности - а не о кумулятивная вероятность.

    Но если мы спросим о вероятности того, что случайно выбранный первоклассник на меньше или равен до 70 фунтов, мы действительно спрашиваем о сумме вероятностей (т.е. вероятности того, что студент точно 70 фунтов плюс вероятность того, что он / она 69 фунтов плюс вероятность что он / она 68 фунтов и т. д.). Таким образом, мы спрашиваем о совокупном вероятность.

    Что такое средний балл?

    Средний балл - это средний балл.Это сумма индивидуальных баллы, разделенные на количество людей.

    Что такое стандартное отклонение?

    Стандартное отклонение - это числовое значение, используемое для обозначения того, как сильно разнятся оценки в наборе данных. Это мера среднего расстояния индивидуальные наблюдения из группы в среднем.

    Дивизион ÷ | Основы арифметики

    На этой странице представлены основные сведения о Дивизионе (÷) .

    См. Другие наши арифметические страницы для обсуждения и примеров: Сложение ( + ), Вычитание (-) и Умножение ( × ).

    Дивизия

    Обычный письменный символ деления - (÷). В электронных таблицах и других компьютерных приложениях используется символ «/» (косая черта).

    Деление - это противоположность умножения в математике.

    Деление часто считается самой сложной из четырех основных арифметических функций. На этой странице объясняется, как выполнять расчеты деления. Как только мы хорошо разбираемся в методе и правилах, мы можем использовать калькулятор для более сложных вычислений, не делая ошибок.

    Дивизион позволяет нам делить или «делить» числа, чтобы найти ответ. Например, давайте посмотрим, как мы можем найти ответ на 10 ÷ 2 (десять, разделенные на два).Это то же самое, что «разделить» 10 сладостей между 2 детьми. У обоих детей должно получиться одинаковое количество конфет. В этом примере ответ - 5.


    Некоторые быстрые правила о делении:


    • Если вы разделите 0 на другое число, ответ всегда будет 0. Например: 0 ÷ 2 = 0. То есть 0 сладостей делятся поровну между 2 детьми - каждый ребенок получает 0 сладостей.

    • Когда вы делите число на 0, вы вообще не делите (это большая проблема в математике).2 ÷ 0 невозможно. У вас есть 2 сладости, но нет детей, чтобы разделить их между собой. Нельзя делить на 0.

    • При делении на 1 ответ будет таким же, как и число, которое вы делили. 2 ÷ 1 = 2. Две сладости на одного ребенка.

    • Когда вы делите на 2, вы уменьшаете число вдвое. 2 ÷ 2 = 1.

    • Любое число, разделенное на такое же число, равно 1. 20 ÷ 20 = 1. Двадцать конфет, разделенных на двадцать детей - каждый ребенок получает по одной конфете.

    • Номера должны быть разделены в правильном порядке. 10 ÷ 2 = 5, тогда как 2 ÷ 10 = 0,2. Десять сладостей, разделенных на двоих детей, сильно отличаются от двух сладостей, разделенных на 10 детей.

    • Все дроби, такие как ½, ¼ и ¾, являются суммами деления. ½ равно 1 ÷ 2. Одна конфета, разделенная на двоих детей. Смотрите нашу страницу Дроби для получения дополнительной информации.

    Множественное вычитание

    Так же, как умножение - это быстрый способ вычисления множественных сложений, деление - это быстрый способ выполнения множественных вычитаний.

    Например:

    Если у Джона есть 10 галлонов топлива в машине и он использует 2 галлона в день, сколько дней до того, как он закончится?

    Мы можем решить эту проблему, выполнив серию вычитаний или посчитав в обратном порядке с шагом 2.

    • В день 1 Джон начинает с 10 галлона и заканчивается 8 галлона. 10 - 2 = 8
    • В день 2 Джон начинает с 8 галлона и заканчивается 6 галлона. 8 - 2 = 6
    • В день 3 Джон начинает с 6 галлона и заканчивается с 4 галлона. 6 - 2 = 4
    • В день 4 Джон начинает с 4 галлона и заканчивается 2 галлона. 4 - 2 = 2
    • В день 5 Джон начинает с 2 галлона и заканчивается 0 галлонами. 2 - 2 = 0

    У Джона заканчивается топливо на 5-й день.

    Более быстрый способ выполнить этот расчет - разделить 10 на 2. То есть сколько раз 2 уходит в 10 или сколько партий по два галлона в десяти галлонах? 10 ÷ 2 = 5.

    Таблица умножения (см. Умножение) может помочь нам найти ответ на простые вычисления деления.

    В приведенном выше примере нам нужно было вычислить 10 ÷ 2 . Для этого с помощью таблицы умножения найдите столбец для 2 (заштрихованный красным заголовок).Двигайтесь вниз по столбцу, пока не найдете искомый номер: 10 . Перемещайтесь по строке влево, чтобы увидеть ответ (заштрихованный красным заголовок) 5 .

    Таблица умножения

    × 1 2 3 4 5 6 7 8 9 10
    1 1 2 3 4 5 6 7 8 9 10
    2 2 4 6 8 10 12 14 16 18 20
    3 3 6 9 12 15 18 21 24 27 30
    4 4 8 12 16 20 24 28 32 36 40
    5 5 10 15 20 25 30 35 40 45 50
    6 6 12 18 24 30 36 42 48 54 60
    7 7 14 21 28 35 42 49 56 63 70
    8 8 16 24 32 40 48 56 64 72 80
    9 9 18 27 36 45 54 63 72 81 90
    10 10 20 30 40 50 60 70 80 90 100

    Мы можем выполнить другие простые вычисления деления, используя тот же метод. 56 ÷ 8 = 7 например. Найдите 7 в верхней строке, посмотрите вниз по столбцу, пока не найдете 56 , затем найдите соответствующий номер строки, 8 .

    Если возможно, вам следует попытаться запомнить приведенную выше таблицу умножения, потому что она значительно ускоряет решение простых вычислений умножения и деления.


    Деление больших чисел

    Вы можете использовать калькулятор для вычисления деления, особенно когда вы делите большие числа, которые сложнее вычислить в уме.Однако важно понимать, как выполнять расчеты деления вручную. Это полезно, когда у вас нет под рукой калькулятора, но также важно для того, чтобы вы правильно использовали калькулятор и не допускали ошибок. Деление может выглядеть устрашающе, но на самом деле, как и в большинстве арифметических операций, оно логично.

    Как и всю математику, проще всего понять, если мы рассмотрим пример:

    Машине Дэйва нужны новые шины. Ему нужно заменить все четыре шины на машине, а также запасную.

    Дэйв получил предложение в местном гараже на сумму 480 фунтов стерлингов, включая шины, установку и утилизацию старых шин. Сколько стоит каждая шина?

    Задача, которую нам нужно вычислить, - это 480 ÷ 5 . Это то же самое, что сказать, сколько раз 5 перейдет в 480?

    Условно мы пишем это как:

    Мы работаем слева направо в логической системе.

    Мы начинаем с деления 4 на 5 и сразу же решаем задачу. 4 не делится на 5, чтобы получить целое число, так как 5 больше 4.

    Язык, который мы используем в математике, может сбивать с толку. Другой способ взглянуть на это - спросить: «сколько раз 5 входит в 4?».

    Мы знаем, что 2 переходит в 4 дважды (4 ÷ 2 = 2), и мы знаем, что 1 переходит в 4 четыре раза (4 ÷ 1 = 4), но 5 не переходит в 4, потому что 5 больше 4.

    Число, на которое мы делим (в данном случае 5), должно войти в число, на которое мы делим (в данном случае 4) целое количество раз. Как вы увидите, это не обязательно должно быть точное целое число.

    Так как 5 не входит в 4, мы помещаем 0 в первый столбец (сотни). Для получения помощи с столбцами сотен, десятков и единиц см. Нашу страницу с номерами .

    Сот Десятки Квартир
    0
    5 4 8 0

    Затем мы переместимся вправо, чтобы включить столбец десятков.Теперь мы можем увидеть, сколько раз 5 переходит в 48.

    5 действительно переходит в 48, поскольку 48 больше 5. Однако нам нужно выяснить, сколько раз оно идет.

    Если мы обратимся к нашей таблице умножения, мы увидим, что 9 × 5 = 45 и 10 × 5 = 50 .

    48 , число, которое мы ищем, находится между этими двумя значениями. Помните, что нас интересует целое число , умноженное на , когда 5 переходит в 48. Десять раз - это слишком много.

    Мы можем видеть, что 5 переходит в 48 целое число (9) раз, но не точно, с оставшимися 3.

    9 × 5 = 45
    48-45 = 3

    Теперь мы можем сказать, что 5 делится на 48 девять раз, но с остатком 3. Остаток - это то, что остается, когда мы вычитаем найденное число из числа, на которое делим: 48-45 = 3 .

    Итак, 5 × 9 = 45, + 3, чтобы получить 48.

    Мы можем ввести 9 в столбец десятков в качестве ответа для второй части расчета и поставить остаток перед нашим последним числом в столбце единиц.Наше последнее число становится 30.

    Сот Десятки Квартир
    0 9
    5 4 8 30

    Теперь разделим 30 на 5 (или узнаем, сколько раз 5 делится на 30). Используя нашу таблицу умножения, мы можем увидеть, что ответ - ровно 6 без остатка. 5 × 6 = 30. Запишем 6 в столбце единиц нашего ответа.

    Сот Десятки Квартир
    0 9 6
    5 4 8 30

    Так как остатков нет, расчет закончен и мы получили ответ 96 .

    Новые шины

    Дэйва будут стоить £ 96 каждая. 480 ÷ 5 = 96 и 96 × 5 = 480 .


    Отдел рецептов

    Наш последний пример деления основан на рецепте. Часто во время приготовления рецепты сообщают вам, сколько еды они собираются приготовить, например, чтобы накормить 6 человек.

    Указанные ниже ингредиенты необходимы для изготовления 24 сказочных лепешек, однако мы хотим приготовить только 8 сказочных лепешек. Мы немного изменили ингредиенты для удобства этого примера (оригинальный рецепт на BBC Food).

    Первое, что нам нужно установить, это сколько восьмерок в 24 - используйте таблицу умножения выше или свою память.3 × 8 = 24 - если мы разделим 24 на 8, мы получим 3. Следовательно, нам нужно разделить каждый ингредиент, указанный ниже, на 3, чтобы получить необходимое количество смеси для изготовления 8 сказочных лепешек.

    Ингредиенты
    • 120 г сливочного масла, размягченного при комнатной температуре
    • 120 г сахарной пудры
    • 3 яйца от кур на свободном выгуле, слегка взбитые
    • 1 чайная ложка ванильного экстракта
    • 120 г муки самоподъемной
    • 1-2 столовые ложки молока

    Количество масла, сахара и муки все одинаково, 120гр.Поэтому необходимо всего один раз проработать 120 ÷ 3, поскольку для этих трех ингредиентов ответ будет одинаковым.

    Как и раньше, мы начинаем с левого столбца (сотни) и делим 1 на 3. Однако 3 ÷ 1 не идет, поскольку 3 больше 1. Затем мы смотрим, сколько умноженных на 3 делится на 12. Используя таблицу умножения при необходимости мы можем увидеть, что 3 переходит в 12 ровно 4 раза по без остатка.

    120 г ÷ 3, следовательно, 40 г. Теперь мы знаем, что нам понадобится 40 г масла, сахара и муки.

    Исходный рецепт требует 3 яйца, и мы снова делим на 3. Итак, 3 ÷ 3 = 1, поэтому необходимо одно яйцо.

    Далее в рецепте требуется 1 чайная ложка ванильного экстракта. Нам нужно разделить одну чайную ложку на 3. Мы знаем, что деление может быть записано в виде дроби, поэтому 1 ÷ 3 то же самое, что ⅓ (одна треть). Вам понадобится чайной ложки ванильного экстракта, хотя на самом деле сложно точно отмерить чайной ложки!

    Оценка может быть полезной, а единицы измерения можно менять!


    Мы можем взглянуть на это с другой стороны, если мы знаем, что одна чайная ложка равна 5 мл или 5 миллилитрам.(Если вам нужна помощь с единицами измерения, см. Нашу страницу о системах измерения .) Если мы хотим быть более точными, мы можем попробовать разделить 5 мл на 3. 3 делится на 5 один раз (3) с оставшимися 2. 2 ÷ 3 - это то же самое, что и so, поэтому 5 мл, разделенное на 3, дает 1 ⅔ мл, что в десятичных дробях составляет 1,666 мл. Мы можем использовать наши навыки оценки и сказать, что одна чайная ложка, разделенная на три, немного больше полутора миллилитров. Если у вас на кухне есть эти крошечные мерные ложки, вы можете быть очень точными!

    Мы можем оценить ответ, чтобы убедиться, что мы правы.Три партии по 1,5 мл дают нам 4,5 мл. Итак, три партии «чуть больше 1,5 мл» дают нам около 5 мл. Рецепты редко являются точной наукой, поэтому небольшое прикидывание может быть забавой и хорошей практикой для нашей ментальной арифметики.

    Следующий рецепт требует 1-2 ст. Л. Молока. Это от 1 до 2 столовых ложек молока. У нас нет точного количества, и сколько молока вы добавите, будет зависеть от консистенции вашей смеси.

    Мы уже знаем, что 1 ÷ 3 - это, а 2 ÷ 3 -.Поэтому нам понадобится – столовой ложки молока, чтобы приготовить восемь сказочных лепешек. Давайте посмотрим на это с другой стороны. Одна столовая ложка равна 15 мл. 15 ÷ 3 = 5, поэтому – столовой ложки равно 5–10 мл, что соответствует 1–2 чайным ложкам!


    Калькулятор лимита

    с шагами - 100% бесплатно

    Что такое пределы?

    Исчисление - одна из важнейших областей математики. Это изучение непрерывных изменений.Раздел исчисления подчеркивает концепции пределов, функций, интегралов, бесконечных рядов и производных. Пределы - одно из основных понятий исчисления. Это помогает анализировать приближение значения функции или последовательности по мере приближения входных данных или индекса к определенной точке. Другими словами, он показывает, как любая функция действует рядом с точкой, а не в этой точке. Теория пределов закладывает основу для исчисления; он используется для определения непрерывности, интегралов и производных.

    Пределы указаны для функции, любой дискретной последовательности и даже функции с действительным знаком или сложных функций.Для функции f (x) значение, которое функция принимает, когда переменная приближается к определенному числу, скажем, n, затем x → n, называется пределом. Здесь функция имеет конечный предел:

    Lim x → n f (x) = L

    Где L = Lim x → x0 f (x) для точки x0. Для всех ε> 0 мы можем найти δ> 0, где абсолютное значение f (x) - L меньше, чем E, когда абсолютное значение x - x0. В случае последовательности действительных чисел, таких как a1, a2, a3,…, an. Действительное число L - это предел последовательности:

    Lim n → ∞ an = L

    Значение функции f (x) можно найти слева или справа от точки n.Ожидаемое значение функции для точек слева от заданной точки n является левым пределом, также называемым нижним пределом, в то время как точки справа от указанной точки n известны как правый предел, даже назвал вышеуказанный предел. Предел слева определяется как limx → x- 0 f (x), а предел справа обозначается как limx → x + 0 f (x).

    Важно понимать, что предел существует только тогда, когда значения, полученные для левого и правого пределов, равны.При вычислении предела для функций со сложной структурой существует неограниченное количество режимов приближения к пределу для точки. В таких ситуациях, чтобы найти четкое значение предела, необходимы более строгие стандарты. Для предела рациональной функции типа p (x) / q (x) важным шагом является упрощение рациональной функции до вида 0/0 для данной точки.

    Существуют различные способы вычисления пределов в зависимости от разной природы и типов функций. Существует прекрасное применение правила L-Hospital, которое включает различение числителя и знаменателя рациональных функций или неопределенных пределов, пока предел не примет форму 0/0 или ∞ / ∞.

    .
  • Leave a Reply

    Ваш адрес email не будет опубликован. Обязательные поля помечены *