Как определить сечение кабеля на глаз: Как определить сечение провода на глаз. Способы определения сечения провода

Опубликовано

Содержание

Как определить сечение провода на глаз. Способы определения сечения провода

Говорят, что ремонт в доме сродни пожару. И в какой-то степени это действительно так. Ведь даже если начать делать только небольшую косметику, одна работа начинает тянуть за собой другую, а так и до полного ремонта недалеко.

И, конечно же, редко ремонт проходит без замены проводки. Ведь где-то необходимо поставить дополнительную розетку, а где-то и сам провод уже приходит в негодность (особенно это касается алюминиевых изделий). И вот тогда приходится думать, какую толщину провода выбрать, чтобы и в монтаже он был не слишком сложен, и не переплатить за лишние, ненужные квадратные сантиметры, но, в то же время, и чтобы хватило на все электроприборы, которых с каждым годом становится в квартирах все больше и больше.

Конечно, вопрос характеристик провода не только очень важен, но и сложен. Он требует серьезного подхода, расчетов и внимательности.

Сейчас попытаемся понять, как правильно определить сечение провода по диаметру, мощности, силе тока, а также как приобрести правильную толщину (измеряется в мм 2).

Ведь иногда и маркировка может не совпадать с реальным диаметром.

Маркировка кабеля

Для начала имеет смысл разобраться с сечением токопроводящих изделий, которая указана на маркировке, на внешней стороне. К примеру, провод маркирован как АВВГ 3х2,5. Из этого обозначения можно узнать, что это алюминиевый проводник с изоляцией жил из ПВХ, с общей изоляцией из того же материала, без брони, т говоря на языке электриков, «голый». Но эта информация, которую можно узнать из буквенного обозначения, хотя и важна, но не настолько, как числовая маркировка. А по цифрам можно узнать, что кабель трехжильный, а площадь поперечного сечения проводника, то есть жилы, равна 2,5 мм.

Но часто бывает, что маркировка не совсем точна, погрешность может составить до 40 %, а это величина немалая (к примеру, написано КГ 3х16, а в действительности не более 12 мм 2). Ну а последствия такой неточности, естественно — прогоревшие кабеля (хорошо, если не сгоревшая квартира), а возможно, и испорченная бытовая техника.

Но, о способах, при помощи которых можно выполнить измерение сечения кабеля при покупке чуть ниже, а сейчас стоит рассмотреть материалы, из которых изготавливаются провода. Необходимо помнить что для одной и той же нагрузки сечение алюминиевого кабеля требуется большее, нежели медного. К тому же медь дает меньшие потери электропроводности, а также намного долговечнее. Конечно, и стоимость медных проводов выше, но это компенсируется при эксплуатации, а потому, такие кабеля предпочтительнее.

Расчет сечения провода по диаметру

Первое, что необходимо сделать перед тем, как идти в магазин за проводом — это вычислить необходимое сечение кабеля для того или иного помещения. Для этого нужно понять, какие приборы будут «нагружать» помещение. Суммировав мощности всех бытовых приборов, взять общую, и уже по ней, согласно таблице, выбрать нужные характеристики кабеля.

Аналогичным образом ведутся расчеты и по силе тока. Главное в этом деле ничего не упустить. Оптимальным будет кабель, толщина которого на 15–20 % больше требуемой по нагрузке. Тогда, при необходимости, можно подключить еще какие-то приборы, которые могут со временем появиться в помещении.

Все таблицы для выбора сечения провода по мощности или силе тока приведены в этой статье. Но как определить сечение кабеля, не глядя на маркировку, ведь она может не соответствовать действительности? Высчитать площадь сечения провода несложно.

Как посчитать сечение при покупке

При приобретении кабеля необходимо убедиться, что его сечение соответствует заявленной маркировке. Для этого можно приобрести пробный образец. Обычно минимальная длина в продаже составляет 0,5 метра — этой длины вполне будет достаточно.

Для замера найдите и возьмите с собой с собой штангенциркуль (механический или электронный, что предпочтительнее) или микрометр. Электронные приборы, конечно же, точнее, но они не у каждого имеются, а вот механический найдется практически у каждого.

Но даже если его нет, может выручить простая отвертка и линейка. Сейчас попробуем разобраться, как вычислить параметры сечения по рассчитанному радиусу.

Замеры микрометром или штангенциркулем

Для того, чтобы высчитать площадь сечения проводника, для начала необходимо зачистить одну из жил провода, диаметр которого нам требуется. Достаточная длина для замера подобным способом — 1 см. Далее, при помощи штангенциркуля или микрометра замеряется толщина жилы — это, как можно догадаться, и будет диаметр кабеля. Но для расчета соотношения сечения к диаметру по формуле нужна такая величина, как радиус, а потому делим полученное значение на 2. После такого перевода диаметр больше не используется, все считают с данными радиуса.

После произведенных замеров используется формула, по которой и вычисляется поперечное сечение кабеля, то есть площадь сечения кабеля — S = π*r2, где π — постоянная величина, равная 3,14.

Таким образом, если диаметр жилы составил 3,6 мм, тогда расчеты будут следующими:

3,6:2 = 1,8; после 3,14 х (1,8х1,8) = 3,14 х 3,24 = 10,17. Отсюда следует, что площадь сечения определяемого кабеля, диаметр жилы которого составила 3,6 мм. равна 10,17 кв. мм.

Аналогичным образом можно рассчитать толщину многопроволочного гибкого токопроводящего изделия, но при подобных расчетах нужно замерить диаметр одной проволоки из жилы, после умножить получившуюся цифру на количество проволок, которые составляют жилу, а потом уже высчитать толщину кабеля по вышеуказанной формуле.

Как становится ясно, вычислить толщину проводника по диаметру не так уж и сложно, причем, еще на стадии проекта можно перевести сечение в диаметр, тогда не нужно будет высчитывать данные, стоя у прилавка, в чем и плюс данного действия.

Замеры кабеля линейкой


При отсутствии высокоточных приспособлений для замера толщины провода, можно воспользоваться обычной линейкой и отверткой. Для замера понадобится зачистить не менее 10 см жилы (чем больше будет зачищено, тем точнее можно вычислить диаметр).

После снятия изоляции голая жила наматывается на отвертку таким образом, чтобы между витками не было зазоров, а получившаяся на жале отвертки спираль замеряется при помощи линейки. Для удобства желательно брать целое число в миллиметрах. Для примера, от начального края провода до края 10 витка получилось 23 мм. Тогда необходимо 23 мм разделить на количество витков, что будет равно 23:10 = 2.3 мм. Это и будет необходимое значение для того, чтобы вычислить толщину жилы кабеля. Ну а дальше снова по той же формуле — 2.3:2 = 1.15х1.15 = 1.3225х3.14 = 4.15. Вот и перевели диаметр в сечение проводника.

Аналогично производятся расчеты и по гибким многопроволочным проводам.

Определение сечения провода по таблицам

Как определить поперечное параметры кабеля, если не хочется возле прилавка производить расчеты? Для подобных случаев есть таблица для определения сечения и диаметра провода, которая также представлена в данной статье. Но при этом необходимо быть готовым к тому, что нужного диаметра жилы в них не окажется. В таком случае лучше принять за необходимое ближайшее меньшее значение. По крайней мере, в таком случае образуется небольшой запас по мощности.

Также, еще на стадии проектирования электромонтажа, необходимо определение при помощи таблиц сечения кабеля, которое будет нужно. Надо понимать, что на этот параметр провода влияет много факторов.

Конечно же, главным образом необходимо учесть потребляемую мощность или потребляемый ток всех бытовых электроприборов. Но, кроме этого, учитывается и длина кабеля, то есть расстояние от распределительного щита до прибора или до распределительной коробки, от которой могут пойти кабеля меньшего диаметра. Также на толщину провода влияет и окружающая температура. Если проводка монтируется в помещении с повышенной температурой, то смело можно добавлять 15–20%.

Опять же, если монтаж электропроводки ведется наружным способом, возможно применение кабеля меньшего диаметра, так как окружающий воздух будет лучше охлаждать жилы провода.

Материал изготовления провода

Как известно, медный и алюминиевый провода имеют разное сопротивление, равно как и различный срок службы, из чего можно сделать вывод, что и расчеты по мощности или току их сечения требуется производить отдельно.

Медный провод, как уже упоминалось, требуется меньшей толщины, чем алюминиевый, при одинаковой нагрузке на кабель, и вот почему. Удельное сопротивление у алюминия выше, чем у меди, а потому токовые потери больше. А как раз за счет этого и идет нагрев кабеля, так как бытовые электроприборы не разбирают, посредством какого материала на них поступило напряжение. Они берут именно столько, сколько им необходимо.

А вот медь, которая имеет сопротивление, равное 0,017 Ом*кВ мм/м. потребляет на нагрев меньшее количество электроэнергии, чем алюминий с его удельным сопротивлением в 0.028 Ом*кв. мм/м. В результате нагрев меди меньший, провод необходим тоньше, а коэффициент полезного действия медного кабеля выше.

Именно по этому, несмотря на высокую стоимость по сравнению с алюминием, медные провода более востребованы на рынке электротехники.


Особенности сечения провода на 380 вольт

Выбирая сечение или диаметр провода, который будет работать с напряжением в 380 вольт, необходимо учитывать, что фаза по такому кабелю подается не по одной, а по трем жилам. А потому и нагрузка будет распределена по всем трем. Как узнать сечение провода с тремя жилами? Да очень просто. Нужно также определить диаметр одной из жил, после, зная как найти сечение двухжильного провода, произвести перевод в этот параметр.

А после этого полученную цифру можно смело умножать на три. Либо изначально делить максимальную нагрузку на то же.

Вообще, подобные кабеля используются в основном в промышленности, так как в обычной жилой квартире нет оборудования, которое работает на подобном напряжении, а потому слишком глубоко рассматривать этого вопрос не стоит.

Вместо послесловия

Теперь вопрос определения сечение провода по диаметру не кажется таким уж сложным.

Выбирая необходимый диаметр кабеля для монтажа электропроводки в квартире не стоит слишком надеяться на добросовестность производителя, в любом случае большая их часть заботится не о нашей безопасности, а о своем финансовом благополучии. Многие из них увеличивают толщину изоляции, уменьшая при этом реальные параметры. В итоге товар выглядит внешне так, как и должен, но мощность, на которую должен быть рассчитан, уже не выдерживает. А потому имеет смысл всегда пересчитывать толщину вышеописанным способом, даже если это изделие проверенного производителя.

Как говорится, доверяй, но проверяй. Ведь не производителю пользоваться смонтированной проводкой, и не ему переделывать ее в случае прогорания. А потому, каждый сам должен заботиться о своем удобстве и комфорте проживания.

Определить какого сечения провода вам нужны — это только пол дела. Надо еще требуемое сечение найти. Дело в том, что некоторые производители для увеличения прибыли выпускают кабели с проводами намного меньшего сечения, чем заявлено в сопроводительных документах. Например, заявлены жилы по 4 мм 2 , а в реале — 3,6 мм 2 или даже меньше. Это приличная разница. Если ее во время не заметить, проводка может греться а это, в свою очередь, может привести к пожару. Потому дальше будем говорить о том, как узнать сечение провода по диаметру, ведь диаметр всегда можно измерить. Дальше по результатам измерений узнаем фактические параметры жилы.

При покупке электрического кабеля или провода для проверки сечения жилы необходимо измерить ее диаметр. Для этого есть несколько способов. Можно использовать измерительные приборы типа штангенциркуля или микрометра. Ими измеряют размер оголенной части проводника. Прибор просто приставляется к жиле, зажимается между губками, а результат отображается на шкале.

Как измерить диаметр жилы — взять штангенциркуль или микрометр

Для частного применения измерения достаточно точные, с небольшой погрешностью. Особенно, если приборы электронные.

Для второго способа нужны только линейка и какой-то ровный стержень. Но в этом случае еще придется заниматься расчетами, правда, очень простыми. Об этом способе — дальше.

Линейка+стержень

Если измерительных приборов в хозяйстве нет, можно обойтись обычной линейкой и любым стержнем одинакового диаметра. Этот метод имеет высокую погрешность, но если постараться будет достаточно точно.

Берем кусок провода длиной около 10-20 см, снимаем изоляцию. Оголенную медную или алюминиевую проволоку накручиваем на стержень одинакового диаметра (подойдет любая отвертка, карандаш, ручка и т.п.). Витки укладываем аккуратно, вплотную один к другому. Количество витков — 5-10-15. Считаем количество полных витков, берем линейку и измеряем расстояние, которое на стержне занимает намотанный провод. Затем делим это расстояние на количество витков. В результате получаем диаметр проводника.


Как видите, тут присутствует погрешность. Во-первых, можно неплотно уложить провод. Во-вторых, недостаточно точно провести измерения. Но если делать все тщательно, расхождения с реальными размерами будут не такими уж большими.

Как измерять диаметр многожильного провода

Если вам надо узнать диаметр многожильного провода, измерения проводят с одной из проволочек, его составляющих. Процесс такой же: снять изоляцию, удалить оплетку (если она есть), распушить проволочки, выделив одну, провести измерения любым способом (микрометром или намотав на стержень).


Найденный размер умножить на количество проволочек в одном проводнике (распушите и пересчитайте). Вот и все, диаметр многожильного проводника вы нашли. Осталось узнать, как узнать сечение провода по диаметру, потому что при планировании проводки используется именно площадь сечения проводов.

Как вычислить по формуле

Так как сечение провода — круг, использовать будем формулу площади круга (на фото). Как видим, рассчитать сечение провода можно используя измеренный диаметр или высчитать радиус (поделить диаметр на 2). Для наглядности приведем пример. Пусть измеренный размер провода 3,8 мм. Подставляем эту цифру в формулу и получаем: 3,14 / 4 * 3,8 2 = 11.3354 мм 2 . Можно результат округлить — это будет 11,3 мм 2 . Внушительный кабель.


Вторая часть формулы использует радиус. Это — половина диаметра. То есть, чтобы найти радиус, диаметр делим на 2, получаем 3,8 / 2 = 1,9 мм 2 . Далее подставляем в формулу и получаем: 3,14 * 1,9 2 = 11.3354 мм 2 .

Цифры совпадают, что и должно быть. Итак, при диаметре провода 3,8 мм, площадь его сечения — 11,34 мм 2 . Вы знаете, как узнать сечение провода по формуле. Но не всегда есть возможность заниматься подсчетами. В этом случае могут помочь таблицы.

Определение сечения провода по диаметру по таблицам

Для кабельно-проводниковой продукции есть определенный набор сечений, которые прописаны в нормативах. Зная какое сечение вам требуется, по таблице находим диаметр проводника. Далее только надо найти продукцию с нужными параметрами.

Сечение проводникаДиаметр
0,5 мм20,8 мм
0,75 мм20,98 мм
1,0 мм21,13 мм
1,5 мм21,38 мм
2,0 мм21,6 мм
2,5 мм21,78 мм
4,0 мм22,26 мм
6,0 мм22,76 мм
10,0 мм 23,57 мм

Теперь немного о том, как работать с этой таблицей. Вы идете за продукцией с определенными параметрами. Например, вы знаете, что вам нужен кабель с сечением жилы 4 мм 2 . Найдя по таблице соответствующее значение, ищем требуемые параметры в кабельной продукции. В данном случае надо будет найти провода диаметром 2,26 мм. Если в магазине или на рынке находим близкие параметры — это уже хорошо. Но чаще на кабелях с заявленными на бирках 4 квадратами оказываются гораздо более тонкие провода и кабель с требуемыми данными приходится искать.

Есть два пути найти требуемое. Первый — искать продукцию, которая соответствует заявленным параметрам. Возможно, потратив какое-то время, вам удастся найти. Но времени на поиски уйдет много. Слишком мало стало ответственных производителей. Есть, кстати признак, по которому можно ориентироваться. Это цена. Она значительно выше средней. Это потому, что потрачено большее количество меди или алюминия. Если пользоваться этим признаком, времени уйдет меньше.

Второй вариант — посмотреть продукцию с заявленным большим номиналом. В нашем случае рассуждаем так: нам нужен провод в 4 квадрата. Следующий по — 6 мм 2 . Очень вероятно, что параметры этого кабеля в реале будут близки к требуемым 4 квадратам. Возможно, сечение проводников будет больше, но это хорошо — проводка точно не будет греться. Минус этого варианта в том, что потратите вы больше денег, так как такие кабели стоят больше.

В общем, вы знаете не только как узнать сечение провода по диаметру, но и то, как выбрать нужный. Даже если заявленные характеристики не совпадают с реальными.

Нередко случается, что продавцы проводов непроизвольно завышают реальное значение поперечного сечения жилы провода, и на деле оказывается, что указанные на ценнике 2,5 квадрата, оказываются в реальности, например, 2,1 квадратами. Это совсем не удивительно, поскольку в промышленных масштабах экономия меди получается колоссальной, и продавец не виноват в желании производителя сэкономить.

В этих условиях и сам покупатель не должен терять бдительности. Ну представьте себе: вы хотите проложить проводку, скажем, в доме, прикинули типичную нагрузку, которую проводка должна гарантированно выдерживать, вычислили требуемое сечение провода, купили его, поверив заводским маркировкам, и в один прекрасный день проводка вдруг начинает неожиданно плавиться, происходит замыкание, а так и до пожара не далеко, хорошо, если при замыкании сработает автомат.

Зачастую причина, приходящая на ум горе-монтажнику, представляется как неправильно рассчитанное сечение провода. Однако, при пересчете выясняется, что все было рассчитано правильно, к тому же нагрузка не превысила по току допустимого предела, но почему-то произошел перегрев и расплавилась изоляция. Взглянув на проблему более внимательно, вооружившись штангенциркулем, человек обнаруживает, что диаметр то на 0,15 миллиметра меньше, а для тока это уже критичная разница в 2 ампера.

Как же быть? Прежде всего нужно уметь самостоятельно вычислить реальное сечение провода (жилы), прежде чем его покупать. Далее рассмотрим простой способ вычисления сечения жилы.

В первую очередь, вооружившись штангенциркулем, измерьте диаметр жилы проводника в миллиметрах. Разделите полученное значение на 2, так вы получите радиус. Следующим шагом возведите значение радиуса в квадрат (умножьте его значение на него же), и умножьте результат на число Пи, равное 3,1416. Вы получите значение сечения круглого проводника в квадратных миллиметрах.

У меня есть медный провод, сечение жилы которого я хочу узнать. Измеряю диаметр штангенциркулем, получается 1,2 мм, это диаметр жилы. Значит радиус жилы 0,6 мм. Возвожу в квадрат, и получаю 0,36, затем умножаю 0,36 на Пи, равное 3,1416, получаю 1,13 квадратных миллиметра. Делаю вывод: 3 киловатта при 220 вольтах этот провод точно выдержит.

Но что же делать, если под рукой штангенциркуля не оказалось? Достаточно оголить провода побольше, и намотать плотно несколько витков, скажем на стержень отвертки, а затем измерить линейкой длину намотки в миллиметрах, и разделить ее на количество витков.

Все тот же провод, с все той же жилой. Намотали на отвертку плотно 10 витков этой жилы, измеряем линейкой: они занимают 12 миллиметров, — значит жила имеет диаметр 1,2 миллиметра. Следовательно радиус 0,6 мм, и площадь сечения получается 0,6*0,6*3,1416 = 1,13 квадратных миллиметра.

Конечно, не всегда удобно наматывать толстый провод на стержень, гораздо удобней пользоваться штангенциркулем, но если выбора нет, то линейки, отвертки (или другого цилиндрического предмета, да хоть куска фанеры) и калькулятора оказывается достаточно, ну и плюс знание формулы.



Вообще, существуют таблицы, по которым можно легко определить площадь сечения жилы одножильного провода зная ее диаметр, и наоборот. Эти таблицы относятся и к гибким одножильным проводам, тогда берется в расчет диаметр проводящей части провода, состоящей из множества жил, и определяется общая площадь сечения проводящей многожильной части.

Надеемся, что эта краткая статья была для вас полезной, и теперь вы сможете легко определить реальное сечение провода, независимо от того, что написано на этикетке. Обычно, зная реальное сечение проводника и допустимый для этого сечения предельный ток, можно легко рассчитать, какого диаметра провод будет наиболее подходящим для ваших целей, чтобы работа силовых цепей была безопасной.

Кабель – основа любой электрической сети. При прокладке проводки и ремонтных работах возникает необходимость монтажа электропроводки. Сечение кабеля по диаметру кабеля должно быть определено по соответствующим параметрам, дабы предотвратить дальнейшие проблемы с использованием домашних электроприборов.

Цена кабеля достаточно высокая, это ещё одна причина тщательно отнестись к выбору продукции. При покупке товара многие ориентируются на стоимость, а не на фирму изготовителя. Поэтому для правильного проведения работ, важно научиться самому определять и проверять диаметр кабеля.

  • Метод 1
  • Метод 2
  • Метод 3
    • Перевод ватт в киловатт
    • Выбираем материал
    • Выбираем марку кабеля

Метод 1

Если нет возможности использовать специальный прибор. Можно применить подручные средства. Для этого нужен предмет имеющий круглую продолговатую форму, это может быть любая пишущая принадлежность – ручка или карандаш, линейка. Провод зачищаем на длину минимум 30 см. Потом наматываем плотно на ручку спиралькой. Между витками не должно быть щелей.

Считаем количество витков и длину проволоки, использованную для них. Затем длину делим на количество.

Например, провод имеет 21 виток при длине 40 миллиметров. Для расчёта диаметра, длину делим на количество. То есть 40 делим на 21, получается 1,904 миллиметра.

Формула: S = πr 2 , где π – 3,14, S – площадь круга, r – радиус окружности.

Так как посчитанное число является диаметром, а не радиусом. То формулу изменяем для данного измерения: S = (πd 2)/4, где d — диаметр.

Полученное число подставляет в формулу. Результат и будет диаметр.

Например, d = 3,635. 3,14 × 3,635 ÷ 4 = 2,84

Метод 2

Для этого метода нужен механический или электронный штангенциркуль и микрометр.


Измерить микрометром. Прибор имеет две основные части – ручки и выемки полукругом для измерения. Провод вставляется в разъём микрометра, ручка закручивается до упора. Когда винты сошлись по сторонам, крутят трещотку на ручке прибора, пока она не начнёт прокручиваться. Замер выполнен, его показывает шкала на барабане микрометра.

Электронный микрометр показывает точные цифры, чем исключает ошибку расчёта человеком.

Расчёт сечения штангенциркулем. Для правильного использования необходимо знать структуру прибора. Он состоит из шкалы с разметкой в 1 мм, длина стандартной линейки 15см, губки для измерения, линейки для глубины, винта для зажатия предмета.

Кабель разделать, развести жилы. Зачистить одну из них. Раздвинуть губки, вставить жилу,так чтобы губки плотно облегали её. Зафиксировать винтом. Теперь можно увидеть длину предмета. Далее считаем по уже известной формуле.

Метод 3

Узнать сечение жил можно и с помощью готовой таблицы.

Для определения необходимого медного кабеля КГ предлагается воспользоваться таблицей.


Для определения нужного алюминиевого кабеля предлагается воспользоваться следующей таблицей.


Почему важно определять сечение кабеля?

Способность кабеля проводить ток зависит от его сечения.

При использовании неправильно подобранного провода напряжение падает. При тонком слое изоляции и недостаточном сечении провода при аварийной ситуации может возникнуть замыкание, а изоляция расплавится. Это может привести к пожару. Оплавится может не только провод, но и розетка к которой он ведёт, также вилка прибора и его провод.

Перевод ватт в киловатт

Для электроприборов, которые используют больше электрического тока – утюг, плита, нагреватель, для немощных изделий, типа лампы накаливания, мощность указывается в ваттах. Возникает необходимость перевести ватт в киловатт или наоборот. В одном кВт содержится 1 тыс.Вт.

Определение провода для мощности 380В

При использовании приборов, требующих большую мощность электроэнергии, необходимо подсоединение к сети из трёх фаз. Электричество поступает по трём линиям, а не по двум, как обычно, таким образом, требуется меньшее сечение провода.

Каждая жила использует меньше напряжения на 1,75 на каждую фазу. Это необходимо учитывать в расчетах по таблице.

Рассчитать сечение трёхжильного провода


Многожильный провод состоит из трёх одножильных жилок. Принцип подсчета тот же, как и у одножильного. Можно использовать высокотехнический прибор, а можно обычные предметы. Диаметр каждой жилы считается отдельно. Сначала распушите жилу, сосчитайте, сколько жилок. И рассчитать диаметр по одному из трёх методов.

Затем полученное число умножить на количество проволок. Это и будет сечение всего кабеля.

Например, диаметр одной жилы КГ равен 2,52. По формуле: S = πr 2

2,52×2,52×3,14= 19,94

В данном случае, разделили на четыре готовый результат кабеля КГ, учитывая, что это не радиус, а диаметр одной жилы. Получаем сечение одного проводка КГ.

Затем рассчитываем общее сечение провода КГ = 4,98× 3 = 14,95

Для примерного расчёта можно вычислить общее значение без разделения на отдельные проволочки. Но необходимо учитывать воздушный зазор. Поэтому полученную величину умножить на 0,91.

По этому принципу вычисляется сечение многожильных кабелей.

Важный момент — соединение проводов. При объединении нескольких жил возникают потеря напряжения. Особенно возрастают потери при большом количестве соединений.

Выбираем материал

Лучшим материалом считается медь, так как обладает большей проводимостью и прочностью. Алюминий при сгибании легко ломается, окисляется при соединении с воздухом. Если алюминий контактирует с медью, он подвергается электрокорозии и разрушается. Контакты ухудшаются, провод греется, искрится. Это может привести к пожару.

Выбираем марку кабеля

Марка провода — это буквенное значение, означает характеристику материала, степень гибкости, изоляцию. В отечественных кабелях следующая маркировка:

1 буква — материал жилы (А — алюминий). Медь буквы не имеет.

2 буква — провод.

3 буква — состав изоляции (резина (Р), капрон (К), полиэтилен (П)).

В некоторых проводах стоит буква, означающая вид резиновой изоляции. Это может быть найритовая (Н) или поливинилхлорид (В).

4 буква — конструкция асфальтированная (А), бронированная лентами (Б), защищена оплеткой (О).


Например — АПП, ТРП, ПВС, АППВ.

Определение сечения кабеля является необходимым этапом для безопасного монтажа электропроводов и дальнейшей их эксплуатации. Значимым оно становится из-за использования многочисленных приборов. Сечение кабеля должно соответствовать напряжению, требуемому электроприборами.

Сечение кабеля по диаметру | Заметки электрика

Здравствуйте, дорогие посетители сайта «Заметки электрика».

Эта статья про то, как самостоятельно можно определить сечение кабеля по диаметру.

В прошлой своей статье про провод ПУНП я говорил Вам, что напишу серию статей как правильно выбрать марку и купить кабели и провода.

Так вот данная статья тоже имеет прямое отношение к этой теме.

Зачем нам нужно определять сечение кабеля или провода по его диаметру?

А нужно нам это по нескольким причинам.

1. Нет бирки на бухте провода или кабеля

Встречаются ситуации, когда на бухте кабеля или провода отсутствует бирка с его сечением и прочими характеристиками. Конечно, я как опытный электрик, который практически ежедневно сталкиваюсь с этим, могу определить сечение провода или кабеля «на глаз». Но скажу честно, иногда бывает и так, что определить сечение очень затруднительно.

2. Покупка проводов и кабелей

Второй причиной, служит покупка этих самых проводов и кабелей. Все Вы знаете, и не раз я Вам об этом рассказывал, что в современных рыночных отношениях кабельная и проводниковая продукция «иногда» не соответствует требованиям современных ГОСТов. Но об этом поговорим подробнее в следующих статьях. Кому интересно, то подписывайтесь на получение уведомлений о выходе новых статей на сайте.

Итак, как же определить сечение жил кабеля или провода по его диаметру?

Способ №1

Первый способ применяется для определения сечения жил однопроволочного кабеля или провода.

Для этого нам необходимо с помощью обычного штангенциркуля или микрометра произвести измерение диаметра жилы кабеля (провода) без изоляции. Микрометра у меня нет, а вот штангенциркуль в моем инструменте электрика присутствует всегда.

В качестве примера я приведу определение сечения жилы кабеля ВВГнг двумя способами. В итоге сравним полученные результаты.

Вот этот кабель.

Разделываем кабель и разводим жилы.

Берем одну жилку (я взял синюю) и зачищаем ее, т.е. снимаем изоляцию жилы. Для снятия изоляции лично я пользуюсь стриппером Книпекс 12 40 200 — рекомендую.

С помощью штангенциркуля производим замер диаметра этой жилы.

У меня получилось, что диаметр измеренной жилы равен 1,8 (мм).

Далее в нижеприведенную формулу расчета площади круга подставляем полученное значение диаметра.

Полученное значение 2,54 (кв.мм) — это и есть фактическое сечение жил нашего кабеля.

 

Способ №2

Второй способ применяется для определения сечения жил однопроволочного кабеля или провода по его диаметру без использования штангенциркуля или микрометра. Этот способ я считаю более сложным и трудоемким.

Лучше все таки воспользоваться первым способом, т.к. он проще и более точный.

Но если нет в наличии штангенциркуля или микрометра, то остается применить только второй способ. Для этого нам потребуется карандаш или ручка. Я воспользовался карандашом, но лучше взять ручку или что то более жесткое.

Все делается аналогично.

Разделываем кабель произвольной длины и откусываем любую жилу (я опять взял синюю жилку).

С провода этой жилы снимаем слой изоляции. А затем провод наматываем на карандаш.

Лучше намотать побольше витков — так измерение будет точнее. Саму намотку выполняем таким образом, чтобы виток плотно прилегал к другому витку (без зазоров).

Вот, что у меня получилось.

Далее считаем количество получившихся витков. У меня получилось 10 витков.

После этого измеряем длину намотки.

Длина намотки составляет 18 (мм).

Далее необходимо длину намотки разделить на количество витков.

Получаем 1,8 (мм). Это и есть искомый диаметр жилы.

Диаметр жилки интересующего нас кабеля ВВГнг известен. А теперь по уже известной нас формуле определяем фактическое его сечение.

Т.к. диаметр жилы обоими способами получился одинаковый, то соответственно, и сечение их одинаковое.

Что и требовалось доказать. 

Способ №3

Третий способ применяется для определения сечения жил многопроволочного (гибкого) кабеля или провода.

Сначала необходимо распушить жилу и посчитать в ней количество жилок. Дальше действуем аналогично по первому способу, определяя диаметр одной жилки с помощью штангенциркуля.

Например, количество жилок в пучке составляет 12 штук.

Измерив диаметр одной жилки, мы получили значение 0,4 (мм).

Опять же, применив формулу расчета площади круга, рассчитаем сечение одной жилки в пучке.

А теперь рассчитаем сечение всего многожильного провода, умножив полученное сечение 0,125 (кв.мм) на количество жилок в пучке.

Полученное значение 1,5 (кв.мм) — это и есть фактическое сечение жилки гибкого кабеля или провода.

 

Способ №4

Четвертый способ применяется для определения сечения жил многопроволочного (гибкого) кабеля или провода без применения штангенциркуля или микрометра.

Делаем все действия, согласно описанного выше способа №2. Разница заключается лишь в том, что на карандаш необходимо наматывать одну жилку из пучка.

Определив диаметр одной жилки из пучка интересующего нас гибкого кабеля или провода, находим его фактическое сечение по алгоритму способа №3.

P.S. Я Вам попытался наглядно продемонстрировать распространенные способы определения сечения кабеля по диаметру. Если возникли вопросы, то задавайте их в комментариях. В следующих статьях я расскажу Вам, что делать с полученным сечением жилы кабеля или провода, и  как узнать, что оно соответствует действующим ГОСТам или нет.  

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Сечение многожильного кабеля | Полезные статьи

Когда используется кабель многожильный, который не соответствует заявленным характеристикам, изготовлен не по ГОСТу, могут возникнуть нежелательные последствия. Причем в продаже можно встретить кабели, на маркировке и упаковке которых указаны недостоверные показатели. Заявленное сечение может не соответствовать истинной цифре. Получается, что жила кабеля, купленного с учетом конкретной нагрузки, не справляется с током, который должна пропускать. В результате изоляция плавится. Риск возникновения аварийной ситуации, в том числе короткого замыкания, возрастает в разы. Чтобы подобного не произошло, нужно знать, как определить сечение многожильного кабеля.

Особенности расчета сечения однопроволочной (монолитной) жилы

Итак, вы приобрели кабель с однопроволочной жилой и решили замерить его сечение. Чтобы это стало возможно, для начала необходимо обзавестись штангенциркулем, калькулятором, стриппером для снятия изоляции и канцелярским ножиком. Установите сечение по диаметру кабеля. Для этого сделайте следующее:

•    Снимите изоляцию с кабеля.
•    Измерьте диаметр жилы (при помощи штангенциркуля).
•    Вспомните школьную геометрию, а именно формулу, которая позволяет рассчитать площадь круга (токопроводящией жилы круглой формы):

S = π r2, где π = 3,14, а r — это радиус жилы.

Благодаря штангенциркулю можно узнать только диаметр, а требуется — радиус. Следует видоизменить формулу. Известно, что радиус составляет половину диаметра. Формула будет выглядеть так:

S = (π d2)/4, где d — диаметр жилы.

Для сокращения формулы можно поделить число π на 4. Получится стандартная формула для расчета сечения жилы по диаметру:

S = 0,785d2

Произведем расчет на примере кабеля ВВГ-П 2х1,5, у которого диаметр жил при измерении штангенциркулем равен 1,35 мм. Подставляем значение в формулу:

S = 0,785*1,352 = 1,43 мм²

Из расчетов видно, что фактическое сечение жилы на 4,7 % меньше заявленного, что является допустимым занижением.

Выполнить расчет однопроволочного проводника, как показывает практика, несложно. Главное — быть внимательным и не перепутать диаметр с радиусом и наоборот.

Тонкости расчета сечения многопроволочной жилы

Не все кабели имеют однопроволочные жилы, и в таких случаях возникает вопрос: как определить сечение многожильного кабеля с многопроволочными жилами?

Осведомленность в вопросе о том, как замерить сечение многожильного кабеля, позволит быть уверенными в безопасности и надежности использования изделия. Здесь также все предельно понятно. Площадь сечения многожильного кабеля с многопроволочными жилами нужно измерять, отталкиваясь от площади одной проволоки из жил. Действуйте в следующем порядке:

1.    Возьмите кабель и снимите с него оболочку и изоляцию с одной из жил.
2.    Распушите жилу и пересчитайте все проволоки.
3.    Произведите замер диаметра одной из проволок, из которых состоит жила.
4.    Воспользуйтесь указанной выше формулой для расчета однопроволочной жилы. Это позволит вам узнать площадь одной проволоки.
5.    Полученное значение умножьте на общее число жил.

Например, у вас есть кабель КГВВнг(A) 5х1,5. Зачистив, распушив жилу, замерив микрометром одну из проволок, а также посчитав количество проволок, получим следующие данные:

•    Количество проволок — 28 шт.
•    Диаметр одной проволоки — 0,26 мм

Для начала высчитаем сечение одной проволоки:

S = 0,785*0,262 = 0,053 мм²

Теперь полученное значение необходимо умножить на количество проволок в жиле — и получим сечение 1,378 мм²

Однако при расчете сечения многопроволочных жил необходимо также учитывать коэффициент укрутки проволок, который будет равен 1,053 для кабелей с многопроволочными жилами класса 5. В итоге получаем сечение жилы равное 1,45 мм² — фактическое сечение жилы также меньше заявленного на 3,3 %, что является допустимым.

Расчет сечения одножильного и многожильного кабеля может осуществить каждый желающий. Для этого необходимо лишь воспользоваться указанными выше формулами. Зная, как замерить сечение многожильного кабеля, удастся правильно выбрать изделие, и в итоге не возникнет никаких проблем. Поэтому перед проведением тех или иных манипуляций, связанных с использованием кабеля, обязательно производите данный расчет.

Компания «Кабель.РФ®» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку многожильного кабеля по выгодным ценам.

Как определить сечение провода

Капитальный ремонт это неизбежное мероприятие, которое предстоит сделать в любом жилом или хозяйственном помещении. Кроме внешних отделочных работ он предусматривает замену всех коммуникаций, в том числе и электропроводки, которую надо выбрать и купить. К сожалению, указанная на бирке или самом кабеле информация зачастую не соответствует действительности, хоть и на законных основаниях (в ГОСТах прописана допустимая погрешность) поэтому, чтобы обезопасить себя от покупки некачественного кабеля, надо знать как определить сечение провода.

Зачем надо уточнять сечения кабеля

На большинстве проводов и кабелей производитель обязан наносить маркировку, указывающую на их тип, количество токопроводящих жил и их сечение. Если провод промаркирован как 3х2,5 – это значит, что сечение провода по диаметру равно 2,5 мм². Фактические значения могут отличаться от указанных примерно на 30%, потому что некоторые виды проводки (в частности ПУНП) производятся по устаревшим нормам, допускающим погрешность на указанное количество процентов и в основном она появляется в меньшую сторону. В итоге, если использовать кабель меньшего сечения, чем расчетное, то для провода эффект будет примерно такой же, если бы тоненький полиэтиленовый шланг подключить к пожарному гидранту. Это может привести к опасным последствиям: перегреву электропроводки, оплавлению изоляции, изменению свойств металла. Поэтому, прежде чем сделать покупку, обязательно надо проконтролировать чтобы площадь поперечного сечения проводника не отличалась от той, что заявлена производителем.

Способы узнать реальный диаметр провода

Самый простой и точный метод измерить диаметр жилы провода – использовать специальные инструменты, такие как штангенциркуль или микрометр (электронный или механический). Чтобы измерение было точным измеряемый провод надо очистить от изоляции, чтобы инструмент за нее не цеплялся. Также надо осмотреть кончик провода, чтобы он был без перегибов – иногда они появляются если жила перекусывается тупыми кусачками. Когда диаметр измерен, можно приступать к вычислению площади сечения жилы провода.

 

Микрометр даст более достоверное значение, чем штангенциркуль.

В случае когда под рукой нет точного измерительного инструмента, есть еще один способ как узнать сечение – для него нужна будет отвертка (карандаш или любая трубка) и измерительная линейка. Также придется купить хотя бы один метр провода (хватит и 50 см, если только продадут такое количество) и снять с него изоляцию. Далее проволока наматывается плотно, без зазоров, на жало отвертки и длина намотанного участка замеряется линейкой. Полученная ширина намотки делится на количество витков и результатом будет искомый диаметр провода, по которому уже можно искать сечение.

Как проводить измерения подробно показано в этом видео:

Какие формулы надо использовать

Что такое сечение провода известно еще по азам геометрии или черчения – это пересечение объемной фигуры воображаемой плоскостью. По точкам их соприкосновения образуется плоская фигура, площадь которой вычисляется подходящими формулами. Жила провода чаще всего цилиндрической формы и в сечении дает круг, соответственно, поперечное сечение проводника можно рассчитать по формуле:

S = ϖ R²

R – радиус круга, равен половине диаметра;

ϖ = 3,14

Есть провода с плоскими жилами, но их мало и площадь сечения на них находить гораздо проще – просто перемножить стороны.

Чтобы получить более точный результат надо иметь в виду:

  1. Чем больше витков (их должно быть не меньше 15) накрутить на отвертку, тем точнее получится результат;
  2. Расстояний между витками быть не должно, из-за зазора погрешность будет выше;
  3. Нужно сделать несколько замеров, каждый раз меняя его начало. Чем их больше, тем выше точность расчетов.

Недостатком такого способа является то, что для замеров можно использовать проводники небольшой толщины, толстый кабель накрутить будет сложно.

Определяем сечение провода с помощью таблицы

Использование формул не дает гарантированного результата, да и как назло они забываются в самый нужный момент. Поэтому определение сечения лучше проводить согласно таблице, куда сведены результаты вычислений. Если получилось измерить диаметр жилы, то площадь сечения провода можно посмотреть в соответствующем столбце таблицы:

Если надо найти общий диаметр многопроволочной жилы кабеля, то придется отдельно вычислить диаметр каждого проводка, а полученные значения сложить. Дальше все делается так же, как и с однопроволочной жилой – результат находится по формуле или таблице.

При замерах сечения провода, его жила тщательно очищается от изоляции, так как не исключена возможность что ее толщина будет больше нормативной. Если в точности расчетов по каким-либо причинам есть сомнения, то лучше выбирать кабеля или провода с запасом мощности.

Чтобы приблизительно узнать сечение провода, который будет приобретаться, надо сложить мощности электрооборудования, что будет к нему подключено. Потребляемая мощность обязательно указывается в паспорте прибора. По известной мощности высчитывается суммарный ток, который будет протекать по проводнику, а исходя из него уже подбирается сечение.

Советы по выбору сечения провода

Сечение проводника – это не все, на что нужно обращать внимание. Немаловажное значение имеет материал, из которого он изготовлен. Жила из меди или алюминия имеет определенный цвет и если он вызывает сомнение, то вероятно в целях экономии здесь производителем используется сплав металла. Это может привести к опасным последствиям, так как проводимость тока будет меньше, чем у заявленных металлов.

Сечение провода определяется только по диаметру токоведущей жилы. Некоторые покупатели ошибочно пытаются вычислить сечение по общему диаметру (жила+изоляция), отнимая от результата предполагаемую толщину изоляции. Так делать ни в коем случае нельзя, так как погрешность измерения будет чрезмерно высокой. Кроме того, в целях экономии металла производителем может быть сделана толще сама изоляция, и на вид изделие кажется вполне нормальным.

Сечение по ГОСТу или ТУ

Большой ассортимент электротехнических товаров способствует быстрому решению задач, которые связаны с электромонтажными работами. Качество этой продукции играет очень важную роль и все товары должны соответствовать требованиям ГОСТ.

Часто производители, желая сэкономить, находят лазейки чтобы отступать от требований ГОСТов и сами разрабатывают технические условия производства (ТУ) с учетом разрешенных погрешностей.

Как итог – рынок перенасыщен некачественным и дешевым товаром, который требуется перепроверять перед покупкой.

Если имеющиеся в торговых точках кабели подходящей стоимости не соответствуют заявленным характеристикам, единственное что можно сделать – приобрести провод с запасом по поперечному сечению. Резерв мощности никогда отрицательно не скажется качестве электропроводки. Также будет нелишним обратить внимание на продукцию от производителей, дорожащих своим именем – хоть она и стоит дороже, но это гарантия качества, а замена проводки делается не так часто, чтобы на ней экономить.

Как можно узнать сечение кабеля по диаметру жилы

Каждый из нас хоть раз в жизни прошел через ремонт. В процессе ремонта приходится делать монтаж и замену электропроводки, ведь она приходит в негодность при длительной эксплуатации. К сожалению, на рынке сегодня можно встретить очень много некачественной кабельно-проводниковой продукции. За счет различных способов удешевления товара страдает его качество. Заводы-изготовители занижают толщину изоляции и сечение кабеля в процессе производства.

Один из способов удешевления − использование для изготовления токопроводящей жилы материалов низкого качества. Некоторые производители добавляют дешевые примеси при изготовлении проводов. За счет этого токопроводность провода снижается, а, значит, качество продукции оставляет желать лучшего.

Кроме того, заявленные характеристики проводов (кабелей) уменьшаются из-за заниженного сечения. Все уловки изготовителя приводят к тому, что в продаже появляется все больше некачественной продукции. Поэтому стоит отдавать предпочтение той кабельной продукции, которая имеет подтверждение качества в виде сертификатов.

Цена качественного кабеля – это единственный, и, пожалуй, главный недостаток, который перечеркивает массу достоинств этого изделия. Медное кабельно-проводниковое изделие, которое выпущено по ГОСТу, имеет заявленное сечение проводника, требуемые по ГОСТу состав и толщину оболочки и медной жилы, произведено с соблюдением всех технологий, будет стоить дороже той продукции, которая выпускалась в кустарных условиях. Как правило, в последнем варианте можно найти массу недостатков: заниженное сечение в 1,3-1,5 раза, придание жилам цвета за счет стальки с добавлением меди.

Покупатели опираются на цену при выборе товара. На поиске низкой цены сконцентрировано основное внимание. И многие из нас даже не в силах назвать производителя, не говоря уже о качестве кабеля. Нам важнее, что мы нашли кабель с нужной маркировкой, например, ВВГп3х1,5, а качество изделия нас не интересует.

Поэтому чтобы не попасть на брак в данной статье рассмотрим несколько способов, как можно определить сечение кабеля по диаметру жилы. В сегодняшнем мануале я покажу, как такие расчеты можно произвести и с помощью высокоточных измерительных инструментов, так и без них.

Проводим расчет сечения провода по диаметру

В последнее десятилетие особенно заметно снизилось качество выпускаемой кабельной продукции. Больше всего страдает сопротивление — сечения провода. На форуме я часто замечал, что народ недоволен подобными изменениями. И продолжаться это будет до тех пор, пока на это наглое воровство изготовителя не начнут реагировать.

Со мной произошел аналогичный случай. Мною было куплено метра два провода маркировки ВВГнг 3х2,5 кв. миллиметра. Первое что мне бросилось в глаза, это очень тонкий диаметр. Я подумал, что, скорее всего, мне подсунули провод меньшего сечения. Еще больше удивился, когда увидел надпись на изоляции ВВГнг 3х2.5 кв.мм.

Опытному электрику, ежедневно сталкивающемуся с проводами, легко определить «на глаз» сечение кабеля или провода. Но порой даже профессионал делает это с трудом, не говоря уже о новичках. Сделать расчет сечения провода по диаметру – это важная задача, которую нужно решить прямо в магазине. Поверьте, эта минимальная проверка обойдется вам дешевле и проще, чем восстановление ущерба от возгорания, которое может возникнуть из-за короткого замыкания.

Вы наверное спросите зачем необходимо проводить расчет сечения кабеля по диаметру? Ведь в магазине любой продавец подскажет, какой провод вы должны купить под вашу нагрузку, тем более на проводах есть надписи, на которых указано количество жил и сечение. Что тут сложного рассчитал нагрузку, купил провод, сделал электромонтаж. Однако не все так просто.

Порой на бухте провода или кабеля и вовсе нет бирки, на которой указаны технические характеристики. Скорее всего, эта та ситуация, о которой я рассказывал выше, − несоответствие проводниковой и кабельной продукции требованиям современных ГОСТов.

Чтобы никогда не становиться жертвой обмана, настоятельно рекомендую вам научиться определять сечение провода по диаметру самостоятельно.

Заниженное сечение провода — в чем опасность?

Итак, рассмотрим опасности, которые поджидают нас при использовании в быту проводов низкого качества. Понятно, что токовые характеристики токоведущих жил снижаются прямо пропорционально уменьшению их сечения. Нагрузочная способность провода из-за заниженного сечения падает. Согласно стандартам рассчитан ток, который может пропустить через себя провод. Он не разрушится, если по нему пройдет меньший ток.

Сопротивление между жилами уменьшается, если слой изоляции более тонкий, чем требуется. Тогда в аварийной ситуации при повышении питающего напряжения в изоляции может возникнуть пробой. Если наряду с этим сама жила имеет заниженное сечение, то есть не может пропустить тот ток, который по стандартам она должна пропускать, тонкая изоляция начинает постепенно расплавляться. Все эти факторы неизбежно приведут к короткому замыканию, а потом и к пожару. Пожар возникает от искр, появляющихся в момент короткого замыкания.

Приведу пример: трехжильный медный провод (например, сечением 2,5 кв. мм.) согласно нормативной документации может длительно пропускать через себя 27А, обычно, считают 25А.

Но попадающиеся мне в руки провода, выпущенные согласно ТУ, на самом деле имеют сечение от 1,8 кв. мм. до 2 кв. мм. (это при заявленном 2.5 кв.мм.). Исходя из нормативной документации провод сечением 2 кв. мм. может длительно пропускать ток 19А.

Поэтому случись такая ситуация, что по выбранному вами проводу, который якобы имеет сечение 2,5 кв. мм., потечет рассчитанный на такое сечение ток, провод перегреется. А при длительном воздействии произойдет оплавление изоляции, затем и короткое замыкание. Контактные соединения (например, в розетке) очень быстро разрушаться, если такие перегрузки будут происходить регулярно. Поэтому сама розетка, а также вилки бытовых приборов также могут подвергнуться оплавлению.

А теперь представьте последствия всего этого! Особенно обидно, когда сделан красивый ремонт, установлена новая техника, например, кондиционер, электрический духовой шкаф, варочная панель, стиральная машинка, электрический чайник, микроволновка. И вот вы поставили печься булочки в духовку, запустили стиральную машину, включили чайник, да еще и кондиционер, так как стало жарко. Этих включенных приборов достаточно, чтобы пошел дым из распределительных коробок и розеток.

Потом вы услышите хлопок, который сопровождается вспышкой. А после этого пропадет электричество. Все еще хорошо закончится, если у вас имеются защитные автоматы. А если они низкого качества? Тогда хлопком и вспышкой вы не отделаетесь. Начнется пожар, который сопровождается искрами от проводки, горящей в стене. Проводка будет гореть в любом случае, даже если она замурована наглухо под плиткой.

Описанная мной картина дает ясно понять, насколько ответственно нужно выбирать провода. Ведь вы будете использовать их в своем жилище. Вот что значит, следовать не ГОСТам, а ТУ.

Формула сечения провода по диаметру

Итак, хотелось бы подвести итог всему вышесказанному. Если среди вас есть те, кто не читал статью до этого абзаца, а просто перепрыгнул, повторюсь. На кабельной и проводниковой продукции зачастую отсутствует информация о нормах, согласно которым она изготавливалась. Поинтересуйтесь у продавца, по ГОСТ или по ТУ. Продавцы порой и сами не могут ответить на этот вопрос.

Можно смело утверждать, что провода, изготовленные по ТУ, в 99,9 % случаев имеют не только заниженное сечение токоведущих жил (на 10−30%), но и меньший допустимый ток. Также в таких изделиях вы обнаружите тонкую внешнюю и внутреннюю изоляцию.

Если вы обошли все магазины, а проводов, выпущенных по ГОСТ, так и не нашли, то берите провод с запасом +1 (если он выпущен по ТУ). Например, вам нужен провод 1,5 кв. мм., тогда следует брать 2,5 кв. мм. (выпущенный то ТУ). На практике его сечение окажется равным 1,7-2,1 кв. мм.

Благодаря запасу сечения обеспечится запас по току, то есть нагрузка может быть немного превышена. Тем лучше для вас. Если же вам нужен провод сечением 2,5 кв. мм., то возьмите с сечением 4 кв. мм., так как его реальное сечение будет равно 3 кв.мм.

Итак вернемся к нашему вопросу. Проводник имеет поперечное сечение в виде круга. Наверняка, вы помните, что в геометрии площадь круга рассчитывается по конкретной формуле. В эту формулу достаточно подставить полученное значение диаметра. Сделав все расчеты, вы получите сечение провода.

  • π — это константа в математике равная 3.14;
  • R — радиус круга;
  • D — диаметр круга.

Это и есть формула для расчета сечения провода по диаметру, которую многие почему то боятся. К примеру, вы провели измерения диаметра жилы и получили значение 1,8 мм. Подставив это число в формулу, получим следующее выражение: (3.14/4)*(1.8)2=2,54 кв. мм. Значит, провод, диаметр жилы которого вы измеряли, имеет сечение 2,5 кв.мм.

Расчет монолитной жилы

Когда вы идете в магазин за проводом, возьмите с собой микрометр или штангенциркуль. Последний более распространен в качестве измерительного прибора сечения провода.

Скажу сразу расчет сечения кабеля по диаметру в данной статье я буду выполнять для кабеля ВВГнг 3*2.5 мм2 трех разных фирм производителей. То есть суть всей работы будет разбита на три этапа (это только для монолитного провода). Посмотрим что получится.

Чтобы узнать сечение провода (кабеля), состоящего из одной проволоки (монолитная жила), необходимо взять обычный штангенциркуль или микрометр и сделать замер диаметра жилы провода (без изоляции).

Для этого нужно предварительно очистить небольшой участок измеряемого провода от изоляции, а потом уже приступить к измерению токоведущей жилы. Другими словами, берем одну жилу и снимаем изоляцию, а затем измеряем диаметр этой жилы штангенциркулем.

Пример №1. Кабель ВВГ-Пнг 3*2.5 мм2 (производитель неизвестен). Общее впечатление — сечение показалось сразу маловато, поэтому и взял для опыта.

Снимаем изоляцию, меряем штангенциркулем. У меня получилось диаметр жилы равен 1.5 мм. (маловато однако).

Теперь возвращаемся к нашей вышеописанной формуле и подставляем в нее полученные данные.

Имеем:

Получается фактическое сечение составляет 1.76 мм2 вместо заявленного 2.5 мм2.

Пример №2. Кабель ВВГ-Пнг 3*2.5 мм2 (производитель «Азовкабель»). Общее впечатление — сечение вроде бы нормальное, изоляция тоже хорошая, плотная с виду не экономили на материалах.

Делаем все аналогично, снимаем изоляцию, меряем, получаем следующие цифры: диаметр — 1.7 мм.

Подставляем в нашу формулу для расчета сечения по диаметру, получаем:

Фактическое сечение составляет 2.26 мм2.

Пример №3. Итак остался последний пример кабель ВВГ-Пнг 3*2.5 мм2 производитель неизвестен. Общее впечатление — сечение также показалось заниженным, изоляция вообще голыми руками снимается (прочности ни какой).

В этот раз диаметр жилы составил 1.6 мм.

Фактическое сечение составляет 2.00 мм2.

Также хотелось бы добавить в сегодняшний мануал как определить сечение провода по диаметру при помощи штангенциркуля еще один пример, кабель ВВГ 2*1.5 (как раз завалялся кусок). Просто захотелось сравнить, сечения 1.5-го формата тоже занижают.

Проделываем все тоже самое: снимаем изоляцию, берем штангенциркуль. Получилось диаметр жилы 1.2 мм.

Фактическое сечение составляет 1.13 мм2 (вместо заявленных 1.5 мм2).

Расчет без штангенциркуля

Этот способ расчета применяется для нахождения сечения провода с одной жилой. При этом измерительные инструменты не используются. Бесспорно, применение штангенциркуля или микрометра для этих целей считается самым оптимальным. Но ведь эти инструменты не всегда есть в наличии.

В таком случае найдите предмет цилиндрической формы. Например, обычную отвертку. Берем любую жилу в кабеле, длина произвольная. Снимаем изоляцию, чтобы жила была полностью чистой. Наматываем оголенную жилу провода на отвертку или же карандаш. Измерение будет тем точнее, чем больше витков вы сделаете.

Все витки должны располагаться как можно более плотно друг к другу, чтобы не было зазоров. Подсчитываем, сколько витков получилось. Я насчитал 16 витков. Теперь нужно измерять длину намотки. У меня получилось 25 мм. Делим длину намотки на число витков.

  1. L — длина намотки, мм;
  2. N — количество полных витков;
  3. D — диаметр жилы.

Полученное значение является диаметром провода. Для нахождения сечения пользуемся выше описанной формулой. D = 25/16 = 1.56 мм2. S = (3.14/4)*(1.56)2 = 1.91 мм2. Получается при измерении штангенциркулем сечение составляет 1.76 мм2, а при измерении линейкой 1.91 мм2 — ну погрешность есть погрешность.

Как определить сечение многожильного провода

В основе расчета лежит тот же принцип. Но если вы будете измерять диаметр сразу всех проволочек, из которых состоит жила, то рассчитаете сечение неправильно, ведь между проволочками есть воздушный зазор.

Поэтому сначала нужно распушить жилу провода (кабеля) и посчитать количество проволочек. Теперь по вышеописанному способу необходимо измерять диаметр одной жилки.

К примеру, у нас есть провод, состоящий из 27 жилок. Зная, что диаметр одной жилки составляет 0,2 мм, мы можем определить сечение этой жилки, используя все то же выражение для расчета площади круга. Полученное значение необходимо умножить на количество жилок в пучке. Так можно узнать сечение всего многожильного провода.

В качестве многожильного провода ПВС 3*1.5. В одном проводе 27 отдельных жилок. Берем штангенциркуль меряем диаметр, у меня получилось диаметр составляет 0.2 мм.

Теперь нужно определить поперечное сечение этой жилки, для этого используем все туже формулу. S1 = (3.14/4)*(0.2)2 = 0.0314 мм2 — это сечение одной жилки. Теперь умножаем это число на количество жил в проводе: S = 0.0314*27= 0.85 мм2.

Друзья предлагаю в данной теме «как рассчитать сечение кабеля по диаметру» так сказать хвастаться рекордами у кого какие измерения получились: например у меня максимум что попадалось кабеля ВВГ-Пнг 3х2,5 фактическое сечение 1,7 кв.мм (занижено на – 32 %).

Понравилась статья — поделись с друзьями!

 

Как определить сечение провода

Диаметр провода.

Для того, чтобы удачно купить провод, перед покупкой необходимо измерить диаметр провода, иначе можно стать жертвой обмана. Также измерять сечение провода придется, если будете добавлять новую электрическую точку на старой проводке, так как буквенной маркировки на ней может не быть. Информация, приведенная ниже, поможет вам правильно выбрать методику измерения диаметра провода и эффективно ее использовать на практике.

При этом у вас сразу возникнет вопрос: «Какой смысл компании портить свою репутацию?» Объяснений этому может быть несколько:Но все дело в том, что даже совершив правильные расчеты сечения провода, вы все равно можете столкнуться с проблемой, несмотря на то, что купите провод с подходящим диаметром. Авария может произойти из-за того, что на маркировке проводов будет указано сечение жил, которое не соответствует действительному. Это может случится в результате того, что завод-производитель сэкономил на материале, или же компанией, выпускающей данную продукцию, не были соблюдены все характеристики изделия. Также на прилавках можно найти провода, на которых совсем отсутствует маркировка, что изначально заставляет усомниться в их качественности.

1. В целях экономии. Например, завод сделал диаметр провода меньше всего лишь на 2 мм. кв. при 2,5-миллиметровой жиле, что дало возможность выиграть на одном погонном метре несколько килограмм металла, не говоря уже о прибыли при массовом производстве.

2. В результате большой конкуренции компания снижает цену на электропроводку, пытаясь переманить к себе большую часть потребителей. Естественно, это происходит за счет уменьшения диаметра провода, что невозможно определить невооруженным глазом.

И первый, и второй вариант имеет место быть на рынке продаж, поэтому вам лучше перестраховаться и сделать самостоятельно точные вычисления, о которых и пойдет речь дальше.

Зачем надо точное значение

Узнают сечение покупаемых кабелей, чтобы подобрать подходящий для определенной цели. Если проводник не будет соответствовать по этому параметру, то возникает повышенная опасность возгорания. Так, нельзя брать кабель или электропровод, у которого этот параметр ниже допустимой нормы, так как он будет сильно греться во время эксплуатации. Такой нагрев постепенно будет снижать запас прочности изоляции и по итогу произойдет ее пробой и, возможно – последующее возгорание.

Кроме необходимости перепроверки указанного в спецификации значений при покупке нового провода, узнать точное сечение может быть нужно и в других ситуациях. Одна из самых распространенных – это необходимость замены уже отработавшего токопроводного элемента. Его параметры нельзя посмотреть, так как такие сведения редко помнят или сохраняют где-то записанными. Если брать новый провод «на глаз», то также возможно его возгорание после ввода в эксплуатацию.

Как делается расчёт потребляемой мощности

Рассчитать приблизительное сечение кабеля можно и самостоятельно — необязательно прибегать к помощи квалифицированного специалиста. Полученные в результате расчётов данные можно использовать для покупки провода, однако, сами электромонтажные работы следует доверять только опытному человеку.

Последовательность действий при расчёте сечения такова:

  1. Составляется подробный список всех находящихся в помещении электрических приборов.
  2. Устанавливаются паспортные данные потребляемой мощности всех найденных устройств, после чего определяется непрерывность работы того или иного оборудования.
  3. Выявив значение потребляемой мощности от устройств, работающих постоянно, следует суммировать это значение, добавив к нему коэффициент, равный значению периодически включающийся электроприборов (то есть, если прибор будет работать всего 30% времени, то следует прибавить треть от его мощности).
  4. Далее ищем полученные значения в специальной таблице расчёта сечения провода. Для большей гарантии рекомендуется к полученному значению потребляемой мощности добавить 10-15%.

Для определения необходимых вычислений по подбору сечения кабелей электропроводки согласно их мощности внутри сети важно использовать данные о количестве электрической энергии, потребляемой устройствами и приборами тока. На этом этапе необходимо учесть очень важный момент – данные электропотребляемых приборов дают не точное, а приближенное, усредненное значение

Поэтому к такой отметке необходимо добавлять около 5% от параметров, указанных компанией-производителем оборудования

На этом этапе необходимо учесть очень важный момент – данные электропотребляемых приборов дают не точное, а приближенное, усредненное значение. Поэтому к такой отметке необходимо добавлять около 5% от параметров, указанных компанией-производителем оборудования.

Большинство далеко не самых компетентных и квалифицированных электриков уверены в одной простой истине – для того, чтобы правильно провести электрические провода для источников освещения (к примеру, для светильников), необходимо брать провода с сечением, равным 0,5 мм², для люстр – 1,5 мм², а для розеток – 2,5 мм².

Об этом думают и так считают только некомпетентные электрики. Но что, если, например, в одном помещении одновременно работают микроволновка, чайник, холодильник и освещение, для которых нужны провода с разным сечением? Это может привести, к самым разным ситуациям: короткому замыканию, быстрой порче проводки и изоляционного слоя, а также к возгоранию (это редкий случай, но все же возможный).

Точно такая же не самая приятная ситуация может произойти, если человек будет подключать к одной и той же розетке мультиварку, кофеварку и, допустим, стиральную машину.

Зачем нужно проводить расчет нагрузки кабеля?

Этот вопрос часто возникает при прокладке проводки в квартире или своём доме. Сначала считаются все планируемые нагрузки, а потом определяется необходимое сечение провода. Потом приобретается нужный материал в магазине и производится монтаж электропроводки в доме.

В результате эксплуатации новой проводки сначала «выбивает» автомат на электрощитке, а потом обнаруживается повреждение провода. Причём он часто оказывается полностью расплавленным, в результате чего и произошло короткое замыкание. Получается, что сделаны неправильные расчёты, и как узнать минимально допустимое значение сечение провода в таком случае?

Чтобы избежать серьёзных перегрузок, необходимо подсчитать, сколько электрических приборов в квартире будет задействовано одновременно. Среди самых мощных бытовых приборов, которые обычно используются дома при приготовлении пищи и создания нашего комфорта, можно выделить:

  • электроплиту;
  • кондиционер;
  • микроволновку;
  • электрочайник;
  • утюг;
  • стиральную и посудомоечную машины;
  • кофемолку;
  • пылесос.

Потребляемая мощность этой бытовой техники колеблется от 1 до 2 киловатт (за исключением электроплиты).

Расчет по длине

Ну и последний способ, позволяющий рассчитать сечение кабеля – по длине. Суть следующих вычислений заключается в том, что каждый проводник имеет свое сопротивление, которое с увеличением протяженности линии способствует потерям напряжения (чем больше расстояние, тем больше и потери). В том случае, если величина потерь превысит отметку в 5%, необходимо выбрать проводник с жилами покрупнее.

Для вычислений используется следующая методика:

  • Нужно рассчитать суммарную мощность электроприборов и силу тока (выше мы предоставили соответствующие формулы).
  • Выполняется расчет сопротивления электропроводки. Формула имеет следующий вид: удельное сопротивление проводника (p) * длину (в метрах). Получившееся значение необходимо разделить на выбранное поперечное сечение кабеля.

R=(p*L)/S, где p — табличная величина

Обращаем Ваше внимание на то, что длина прохождения тока должна умножаться в два раза, т.к. ток изначально идет по одной жиле, а потом возвращается назад по другой

Рассчитываются потери напряжения: сила тока умножается на рассчитанное сопротивление.

Uпотерь=Iнагрузки*Rпровода

ПОТЕРИ=(Uпотерь/Uном)*100%

  • Определяется величина потерь: потери напряжения делятся на напряжение в сети и умножаются на 100%.
  • Итоговое число анализируется. Если значение меньше 5%, оставляем выбранное сечение жилы. В противном случае подбираем более «толстый» проводник.

Допустим мы рассчитали, что сопротивление жил у нас 0,5 Ома, а ток 16 Ампер, тогда:

Uпотерь=16*0,5=8 Вольт

ПОТЕРИ=(8/220)*100%=0,03636*100%=3,6%

Что вполне допустимо для большинства случаев, согласно ГОСТ 29322-14 «Стандартные напряжения». Подробнее в статье: https://samelectrik.ru/kakoe-otklonenie-napryazheniya-v-seti-schitaetsya-predelnym.html.

Таблица удельных сопротивлений:

Если Вы протягиваете линию на довольно протяженное расстояние, обязательно производите расчет с учетом потерь по длине, иначе будет высокая вероятность неправильного выбора сечения кабеля.

Таблица соответствия диаметров проводов и их площадь сечения

Проводить расчеты в магазине или на рынке не всегда хочется или есть возможность. Чтобы не тратить время на расчеты или не ошибиться, можно воспользоваться таблицей соответствия диаметров и сечений проводов, в которой есть наиболее распространенные (нормативные) размеры. Ее можно переписать, распечатать и захватить с собой.

Диаметр проводникаСечение проводника
0,8 мм0,5 мм2
0,98 мм0,75 мм2
1,13 мм1 мм2
1,38 мм1,5 мм2
1,6 мм2,0 мм2
1,78 мм2,5 мм2
2,26 мм4,0 мм2
2,76 мм6,0 мм2
3,57 мм10,0 мм2
4,51 мм16,0 мм2
5,64 мм25,0 мм2

Как работать с этой таблицей? Как правило, на кабелях есть маркировка или бирка, на которой указаны его параметры. Там указывается маркировка кабеля, количество жил и их сечение. Например, ВВНГ 2х4. Нас интересуют параметры жилы а это цифры, которые стоят после знака «х». В данном случае заявлено, что есть два проводника, имеющих поперечное сечение 4 мм 2 . Вот и будем проверять, соответствует ли эта информация действительности.

Как работать с таблицей

Чтобы проверить, проводите измерение диаметра любым из описанных методов, после сверяетесь с таблицей. В ней указано, что при таком сечении в четыре квадратных миллиметра, размер провода должен быть 2,26 мм. Если измерения у вас такие же или очень близкие (погрешность измерений существует, так как приборы неидеальные), все нормально, можно данный кабель покупать.

Заявленные размеры далеко не всегда соответствуют реальным

Но намного чаще фактический диаметр проводников значительно меньше заявленного. Тогда у вас два пути: искать провод другого производителя или взять большего сечения. За него, конечно, придется переплатить, но первый вариант потребует достаточно большого промежутка времени, да и не факт, что вам удастся найти соответствующий ГОСТу кабель.

Второй вариант потребует больше денег, так как цена существенно зависит от заявленного сечения. Хотя, не факт — хороший кабель, сделанный по всем нормам, может стоит еще дороже. Это и понятно — расходы меди, а, часто, и на изоляцию, при соблюдении технологии и стандартов — значительно больше. Потому производители и хитрят, уменьшая диаметр проводов — чтобы снизить цену. Но такая экономия может обернуться бедой. Так что обязательно проводите измерения перед покупкой. Даже и проверенных поставщиков.

И еще: осмотрите и пощупайте изоляцию. Она должна быть толстой, сплошной, иметь одинаковую толщину. Если кроме изменения диаметра еще и с изоляцией проблемы — ищите кабель другого производителя. Вообще, желательно найти продукцию, отвечающую требованиям ГОСТа, а не сделанную по ТУ. В этом случае есть надежда на то, что кабель или провод буде служить долго и без проблем

Сегодня это сделать непросто, но если вы разводите проводку в доме или подключаете электричество от столба, качество очень важно. Потому, стоит, наверное, поискать

P=IU

Данные формулы используют в случаях активной нагрузки (потребители в жилых помещениях, лампочки, утюги). Для реактивной нагрузки в основном используется коэффициент от 0,7 до 0,9 (для работы мощных трансформаторов, электродвигателей, обычно в промышленности).

В следующей таблице предложены исходные параметры – потребляемый ток и мощность, а определяемые величины – сечение провода и ток отключения защитного автоматического выключателя.

Исходя из потребляемой мощности и тока – выбор площади поперечного сечения провода и автоматического выключателя.

Зная мощность и ток, в нижеприведенной таблице можно выбрать сечение провода.

Таблица 2.

Макс. мощность,
кВт

Макс. ток нагрузки,
А

Сечение
провода, мм2

Ток автомата,
А

1

4.5

1

4-6

2

9.1

1.5

10

3

13.6

2.5

16

4

18.2

2.5

20

5

22.7

4

25

6

27.3

4

32

7

31.8

4

32

8

36.4

6

40

9

40.9

6

50

10

45.5

10

50

11

50.0

10

50

12

54.5

16

63

13

59.1

16

63

14

63.6

16

80

15

68.2

25

80

16

72.7

25

80

17

77.3

25

80

Критические случаи в таблице выделены красным цветом, в этих случаях лучше перестраховаться, не экономя на проводе, выбрав более толстый провод, нежели указано в таблице. А ток автомата наоборот поменьше.

По таблице можно без труда выбрать сечение провода по току, или сечение провода по мощности. Под заданную нагрузку выбрать автоматический выключатель.

В данной таблице все данные приведены для следующего случая.

  • Одна фаза, напряжение 220 В
  • Температура окружающей среды +300С
  • Прокладка в воздухе либо коробе (находится в закрытом пространстве)
  • Провод трехжильный, в общей изоляции (провод)
  • Используется наиболее распространенная система TN-S с отдельным проводом заземления
  • В очень редких случаях потребитель достигает максимальную мощность. В таких случаях, максимальный ток может действовать длительно без отрицательных последствий.

Рекомендовано выбирать большее сечение (следующее из ряда), в случаях, когда температура окружающей среды будет на 200С выше, либо в жгуте будет несколько проводов

Это особо важно в тех случаях, если значение рабочего тока, приближено к максимальному

В сомнительных и спорных моментах, таких как:

большие пусковые токи; возможное в будущем увеличение нагрузки; пожароопасные помещения; большие перепады температур (например, провод находится на солнце), необходимо увеличить толщину проводов. Либо же для достоверной информации, обратиться к формулам и справочникам. Но в основном, табличные справочные данные применимы для практики.

Также толщину провода можно узнать эмпирическим (полученным опытным путем) правилом:

Правило выбора площади сечения провода для максимального тока.

Нужную площадь сечения для медного провода, исходя из максимального тока, можно подобрать применяя правило:

Необходимая площадь сечения провода равна максимальному току, деленному на 10.

Расчеты по этому правилу без запаса, поэтому полученный результат нужно округлить в большую сторону до ближайшего типоразмера. Например, нужен провод сечением мм, а ток 32 Ампер. Необходимо брать ближайший, конечно, в большую сторону – 4 мм . Видно, что данное правило вполне укладывается в табличные данные.

Следует заметить, что данное правило хорошо работает для токов до 40 Ампер. Если же токи больше (за пределами жилого помещения, такие токи на вводе) – нужно выбирать провод с еще большим запасом, и делить уже не на 10, а на 8 (до 80 А).

Это же правило и для поиска максимального тока через медный провод, если известна его площадь:

Максимальный ток равен площади сечения, умножить на 10.

Для чего нужен расчет сечения кабеля

К выбору сечения нужно подходить со всей ответственностью. Чтобы знать, кабель 3х4 сколько выдерживает киловатт, надо уметь расшифровать цифры.  Такая маркировка обозначает то, что в кабель имеет три жилы, с сечением по 4 мм2. Далее уже можно смотреть по таблице напряжения и мощности для выбора сечения.

Правильно подобранное сечение кабеля позволит смонтированным сетям не перегреваться, выдерживать даже кратковременные нагрузки, в 2-3 раза превышающие номинальную величину. Это создаёт определённый запас по току в случае увеличения количества и мощности включённых в сеть потребителей. Нагруженный по максимуму провод не будет нагреваться и создавать опасность самовозгорания, повлекшую за собой пожар на объекте.

В квартире при скрытой проводке обнаружить точное место повреждения сложно, требуется замена всего участка с выполнением штробы и последующего ремонта помещения.

Общая информация о кабеле и проводе

При работе с проводниками необходимо понимать их обозначение. Существуют провода и кабеля, которые отличаются друг от друга внутренним устройством и техническими характеристиками. Однако многие люди часто путают эти понятия.

Проводом является проводник, имеющий в своей конструкции одну проволоку или группу проволок, сплетенных между собой, и тонкий общий изоляционный слой. Кабелем же называется жила или группа жил, имеющих как собственную изоляцию, так и общий изоляционный слой (оболочку).

Каждому из типов проводников будут соответствовать свои методы определения сечений, которые почти схожи.

Материалы проводников

Количество энергии, какую передает проводник, зависит от ряда факторов, главный из которых – это материал токопроводящих жил. Материалом жилок проводов и кабелей могут выступать следующие цветные металлы:

  1. Алюминий. Дешевые и легкие проводники, что является их преимуществом. Им присуще такие отрицательные качества, как низкая электропроводность, склонность к механическим повреждением, высокое переходное электросопротивление окисленных поверхностей;
  2. Медь. Наиболее популярные проводники, имеющие, по сравнению с другими вариантами, высокую стоимость. Однако им присуще малое электрическое и переходное на контактах сопротивление, достаточно высокая эластичность и прочность, легкость в спайке и сварке;
  3. Алюмомедь. Кабельные изделия с жилами из алюминия, которые покрыты медью. Им свойственна чуть меньшая электропроводность, чем у медных аналогов. Также им присуще легкость, среднее сопротивление при относительной дешевизне.

Различные вида кабелей по материалу изготовления жил

Важно! Некоторые способы определения сечения кабелей и проводов будут зависеть именно от материала их жильной составляющей, который напрямую влияет на пропускную мощность и силу тока (метод определения сечения жил по мощности и току)

Материал изготовления провода

Как известно, медный и алюминиевый провода имеют разное сопротивление, равно как и различный срок службы, из чего можно сделать вывод, что и расчеты по мощности или току их сечения требуется производить отдельно.

Медный провод, как уже упоминалось, требуется меньшей толщины, чем алюминиевый, при одинаковой нагрузке на кабель, и вот почему. Удельное сопротивление у алюминия выше, чем у меди, а потому токовые потери больше. А как раз за счет этого и идет нагрев кабеля, так как бытовые электроприборы не разбирают, посредством какого материала на них поступило напряжение. Они берут именно столько, сколько им необходимо.

А вот медь, которая имеет сопротивление, равное 0,017 Ом*кВ мм/м. потребляет на нагрев меньшее количество электроэнергии, чем алюминий с его удельным сопротивлением в 0.028 Ом*кв. мм/м. В результате нагрев меди меньший, провод необходим тоньше, а коэффициент полезного действия медного кабеля выше.

Именно по этому, несмотря на высокую стоимость по сравнению с алюминием, медные провода более востребованы на рынке электротехники.


Разница между сечениями проводов на 220 и 380 вольт

Зачем надо уточнять сечения кабеля

На большинстве проводов и кабелей производитель обязан наносить маркировку, указывающую на их тип, количество токопроводящих жил и их сечение. Если провод промаркирован как 3х2,5 – это значит, что сечение провода по диаметру равно 2,5 мм². Фактические значения могут отличаться от указанных примерно на 30%, потому что некоторые виды проводки (в частности ПУНП) производятся по устаревшим нормам, допускающим погрешность на указанное количество процентов и в основном она появляется в меньшую сторону. В итоге, если использовать кабель меньшего сечения, чем расчетное, то для провода эффект будет примерно такой же, если бы тоненький полиэтиленовый шланг подключить к пожарному гидранту. Это может привести к опасным последствиям: перегреву электропроводки, оплавлению изоляции, изменению свойств металла. Поэтому, прежде чем сделать покупку, обязательно надо проконтролировать чтобы площадь поперечного сечения проводника не отличалась от той, что заявлена производителем.

Способы узнать реальный диаметр провода

Самый простой и точный метод измерить диаметр жилы провода – использовать специальные инструменты, такие как штангенциркуль или микрометр (электронный или механический). Чтобы измерение было точным измеряемый провод надо очистить от изоляции, чтобы инструмент за нее не цеплялся. Также надо осмотреть кончик провода, чтобы он был без перегибов – иногда они появляются если жила перекусывается тупыми кусачками. Когда диаметр измерен, можно приступать к вычислению площади сечения жилы провода.

Микрометр даст более достоверное значение, чем штангенциркуль.

В случае когда под рукой нет точного измерительного инструмента, есть еще один способ как узнать сечение – для него нужна будет отвертка (карандаш или любая трубка) и измерительная линейка. Также придется купить хотя бы один метр провода (хватит и 50 см, если только продадут такое количество) и снять с него изоляцию. Далее проволока наматывается плотно, без зазоров, на жало отвертки и длина намотанного участка замеряется линейкой. Полученная ширина намотки делится на количество витков и результатом будет искомый диаметр провода, по которому уже можно искать сечение.

Как проводить измерения подробно показано в этом видео:

Какие формулы надо использовать

Что такое сечение провода известно еще по азам геометрии или черчения – это пересечение объемной фигуры воображаемой плоскостью. По точкам их соприкосновения образуется плоская фигура, площадь которой вычисляется подходящими формулами. Жила провода чаще всего цилиндрической формы и в сечении дает круг, соответственно, поперечное сечение проводника можно рассчитать по формуле:

S = ϖ R²

R – радиус круга, равен половине диаметра;

ϖ = 3,14

Есть провода с плоскими жилами, но их мало и площадь сечения на них находить гораздо проще – просто перемножить стороны.

Чтобы получить более точный результат надо иметь в виду:

  1. Чем больше витков (их должно быть не меньше 15) накрутить на отвертку, тем точнее получится результат;
  2. Расстояний между витками быть не должно, из-за зазора погрешность будет выше;
  3. Нужно сделать несколько замеров, каждый раз меняя его начало. Чем их больше, тем выше точность расчетов.

Недостатком такого способа является то, что для замеров можно использовать проводники небольшой толщины, толстый кабель накрутить будет сложно.

Определяем сечение провода с помощью таблицы

Использование формул не дает гарантированного результата, да и как назло они забываются в самый нужный момент. Поэтому определение сечения лучше проводить согласно таблице, куда сведены результаты вычислений. Если получилось измерить диаметр жилы, то площадь сечения провода можно посмотреть в соответствующем столбце таблицы:

Если надо найти общий диаметр многопроволочной жилы кабеля, то придется отдельно вычислить диаметр каждого проводка, а полученные значения сложить. Дальше все делается так же, как и с однопроволочной жилой – результат находится по формуле или таблице.

При замерах сечения провода, его жила тщательно очищается от изоляции, так как не исключена возможность что ее толщина будет больше нормативной. Если в точности расчетов по каким-либо причинам есть сомнения, то лучше выбирать кабеля или провода с запасом мощности.

Чтобы приблизительно узнать сечение провода, который будет приобретаться, надо сложить мощности электрооборудования, что будет к нему подключено. Потребляемая мощность обязательно указывается в паспорте прибора. По известной мощности высчитывается суммарный ток, который будет протекать по проводнику, а исходя из него уже подбирается сечение.

Способы определения

Существует несколько способов определения сечения кабеля. Все они сводятся к тому, чтобы сначала вычислить диаметр жилы, после чего с помощью небольших расчетов узнать окончательное значение.

Способ №1 – Приборы в помощь!

На сегодняшний день существуют инженерные приборы, с помощью которых можно запросто определить диаметр жилы провода либо кабеля. К таким приборам относятся штангенциркуль и микрометр (увеличьте фото нажатием, чтобы просмотреть все инструменты).

Данный способ определения наиболее точный, но «обратная сторона медали» заключается в стоимости самого штангенциркуля/микрометра. Цена, конечно, не космическая, но для единоразового использования нет смысла приобретать данный инструмент.

Чаще всего такой вариант выбирают профессиональные электрики, чья жизнь непосредственно связана с монтажом электропроводки. Имея штангенциркуль можно точнее всего определить сечение провода своими силами. Преимущество данной методики заключается в том, что замерить диаметр жил можно даже на участке работающей линии (к примеру в розетке).

После измерения необходимо воспользоваться следующей формулой:

Не забываем, что число «Пи» составляет 3,14. Для максимального упрощения формулы можно 3,14 разделить на 4, после чего вычисления сведутся к умножению 0,785 на диаметр в квадрате!

Способ №2 – Использование линейки

Если Вы не желаете тратить деньги (а правильно и делаете!), то рекомендуем использовать простой «дедовский» способ для того чтобы определить сечение провода по его диаметру. Если имеются проволока, простой карандаш и линейка, найти ответ можно за считанные минуты. Все что Вам нужно — зачистить жилу от изоляции, после чего плотно накрутить ее на карандаш (как показано на картинке) и линейкой измерить общую длину намотки.

Суть способа заключается в том, что необходимо измерить общую длину намотанного проводника и разделить ее на количество жил. Значение, которое получиться – диаметр, который Вам нужно определить.

Несмотря на свою простоту, вычисления имеют свою особенность:

  • чем больше жил будет намотано на карандаш, тем точнее выйдет результат, минимальное количество витков – 15;
  • витки обязательно должны быть вплотную прижаты друг к другу, чтобы не было свободного пространства, которое значительно увеличит погрешность;
  • определение необходимо осуществлять несколько раз (меняя начальную сторону замера, переворачивая линейку и т.д.). Опять-таки, чем больше вычислений – тем меньше погрешность.

Обращаем Ваше внимание на существенные недостатки данного способа. Во-первых, для измерения подойдут только тонкие проводники (из соображений того, что толстый кабель будет сложно накручивать)

Во-вторых, в магазине перед покупкой для такой методики необходимо отдельно приобрести небольшой кусочек изделия.

После всех измерений необходимо воспользоваться все той же формулой, которую мы указали выше. На видео демонстрируется пример определения сечения проводника с помощью линейки:

Применение линейки и формул

Способ №3 – Использование таблиц

Вместо того, чтобы определять сечение кабеля по формуле, можно просто использовать готовые таблицы, которые сократят Ваше время и сделают результат наиболее точным.

Таблица довольно простая: в одной колонке указаны диаметры жил, во второй – их поперечные сечения в квадратах.

Проводим расчет сечения провода по диаметру

В последнее десятилетие особенно заметно снизилось качество выпускаемой кабельной продукции. Больше всего страдает сопротивление — сечения провода. На форуме я часто замечал, что народ недоволен подобными изменениями. И продолжаться это будет до тех пор, пока на это наглое воровство изготовителя не начнут реагировать.

Со мной произошел аналогичный случай. Мною было куплено метра два провода маркировки ВВГнг 3х2,5 кв. миллиметра. Первое что мне бросилось в глаза, это очень тонкий диаметр. Я подумал, что, скорее всего, мне подсунули провод меньшего сечения. Еще больше удивился, когда увидел надпись на изоляции ВВГнг 3х2.5 кв.мм.

Опытному электрику, ежедневно сталкивающемуся с проводами, легко определить «на глаз» сечение кабеля или провода. Но порой даже профессионал делает это с трудом, не говоря уже о новичках. Сделать расчет сечения провода по диаметру – это важная задача, которую нужно решить прямо в магазине. Поверьте, эта минимальная проверка обойдется вам дешевле и проще, чем восстановление ущерба от возгорания, которое может возникнуть из-за короткого замыкания.

Вы наверное спросите зачем необходимо проводить расчет сечения кабеля по диаметру? Ведь в магазине любой продавец подскажет, какой провод вы должны купить под вашу нагрузку, тем более на проводах есть надписи, на которых указано количество жил и сечение. Что тут сложного рассчитал нагрузку, купил провод, сделал электромонтаж. Однако не все так просто.

Порой на бухте провода или кабеля и вовсе нет бирки, на которой указаны технические характеристики. Скорее всего, эта та ситуация, о которой я рассказывал выше, − несоответствие проводниковой и кабельной продукции требованиям современных ГОСТов.

Чтобы никогда не становиться жертвой обмана, настоятельно рекомендую вам научиться определять сечение провода по диаметру самостоятельно.

Это интересно: Как подключить вентилятор через реле — разъясняем по пунктам

Для чего нужен расчёт сечения кабеля

В главную очередь, проведение этой несильно сложной процедуры необходимо для обеспечения безопасности как самого помещения, так и находящихся в нём людей. На сегодня человечеством не изобретено более удобного метода распределения и доставки электрической энергии до потребителя, как по проводам. Людям практически ежедневно необходимы услуги электрика — кто-то нуждается в подключении розетки, кому-то необходимо установить светильник и т. д. Из этого выходит, что с операцией подбора требуемого сечения связана даже такая, казалось бы, незначительная процедура, как установка нового светильника. Что же тогда говорить о подключении электрической плиты или водонагревателя?

Несоблюдение норм может привести к нарушению целостности проводки, что нередко становится причиной короткого замыкания или даже поражения электрическим током.

Если при выборе сечения кабеля допустить ошибку, и приобрести кабель с меньшей площадью проводника, то это приведёт к постоянному нагреву кабеля, что станет причиной разрушения его изоляции. Естественно, все это негативно влияет на продолжительность эксплуатации проводки — нередки случаи, когда через месяц после успешного монтажа электропроводка переставала работать, и требовалось вмешательство специалиста.

Следует помнить, что от правильно подобранного значения сечения кабеля напрямую зависит электро и пожаробезопасность в здании, а значит, и жизнь самих жильцов.


Виды клемм для соединения проводов: советы по выбору


Схема подключения УЗО: инструкция, методы, ошибки

Конечно, каждый собственник желает как можно больше сэкономить, но не стоит делать это ценой своей жизни, ставя её под угрозу — ведь в результате короткого замыкания может случиться пожар, который вполне может уничтожить все имущество.

Во избежание этого, перед началом электромонтажных работ следует подобрать кабель оптимального сечения. Для подбора необходимо учитывать несколько факторов:

  • общее количество электротехнических устройств, находящихся в помещении;
  • совокупную мощность всех приборов и потребляемую ими нагрузку. К полученному значению следует добавить «про запас» 20–30%;
  • затем, путём нехитрых математических расчётов, перевести полученное значение в сечение провода, учитывая при этом материал проводника.

Расчёт для многожильного провода

Многожильный провод (многопроволочный) представляет собой свитые вместе одножильные проволоки. Кто хоть немного дружит с математикой, тот прекрасно понимает, что необходимо посчитать количество этих проволочек в многожильном проводе. После этого измеряется сечение одной тонкой проволочки и умножается на их общее количество. Рассмотрим следующие варианты.

Расчёт с помощью штангенциркуля

Измерение проводится штангенциркулем с обычной шкалой (или микрометром). У опытных мастеров этот инструмент всегда находится под рукой, но не все же профессионально занимаются электрикой.

Для этого на примере кабеля ВВГнг разрежьте ножом толстую оболочку и разведите жилы в разные стороны.

Потом выберете одну жилу и зачистите ножом или ножницами. Далее произведите замер этой жилы. Должен получиться размер 1,8 мм. В качестве доказательства правильности измерения обратитесь к расчетам.

Полученная в результате вычисления цифра 2,54 мм2 – это фактическое сечение жилы.

Измерение с помощью ручки или карандаша

Если у вас не оказалось под рукой штангенциркуля, то можно воспользоваться подручными методами, используя карандаш и линейку. Сначала возьмите измеряемый провод, зачистите его и намотайте на карандаш или ручку так, чтобы витки ложились вплотную друг другу. Чем больше витков, тем лучше. Теперь подсчитаем количество намотанных витков и измерим их общую длину.

К примеру, получилось 10 витков с общей длиной намотки 18 мм. Нетрудно подсчитать диаметр одного витка, для этого общую длину делим на количество витков.

В результате всех производимых расчётов по формуле получите искомый диаметр жилы. В этом случае он составляет 1,8 мм. Так как диаметр одной жилы известен, то нетрудно посчитать сечение всего провода ВВГнг по известной уже формуле.

Можно заметить, что результаты получились равными.

Использование таблиц

Как можно узнать и измерить сечение кабеля, если под рукой не оказалось ни штангенциркуля, ни линейки, ни микрометра. Вместо того чтобы ломать себе голову над сложными математическими формулами, достаточно вспомнить, что есть уже готовые таблицы значений для измерения сечения кабеля. Существуют, конечно, очень сложные таблицы с множеством параметров, но, в принципе, для начала достаточно воспользоваться самой простой из двух колонок. В первой колонке вписывается диаметр проводника, а во второй колонке приводятся готовые значения сечения провода.

Таблица сечения проводя для закрытой проводки

Существует и другой «приблизительный» метод, который не требует измерения толщины отдельных проводков. Можно просто измерить сечение (диаметр) всего толстого свитка. Таким методом обычно пользуются опытные электрики. Они могут узнать сечение кабеля как «на глаз», так и с помощью инструментов.

{SOURCE}

Как узнать сечение провода по диаметру: вычисления, таблица

Определить какого сечения провода вам нужны — это только полдела. Надо еще требуемое сечение найти. Дело в том, что некоторые производители для увеличения прибыли выпускают кабели с проводами намного меньшего сечения, чем заявлено в сопроводительных документах. Например, заявлены жилы по 4 мм2, а в реале — 3,6 мм2 или даже меньше. Это приличная разница. Если ее во время не заметить, проводка может греться а это, в свою очередь, может привести к пожару. Потому дальше будем говорить о том, как узнать сечение провода по диаметру, ведь диаметр всегда можно измерить. Дальше по результатам измерений узнаем фактические параметры жилы. 

Содержание статьи

Способы измерения диаметра проводника

При покупке электрического кабеля или провода для проверки сечения жилы необходимо измерить ее диаметр. Для этого есть несколько способов. Можно использовать измерительные приборы типа штангенциркуля или микрометра. Ими измеряют размер оголенной части проводника. Прибор просто приставляется к жиле, зажимается между губками, а результат отображается на шкале.

Как измерить диаметр жилы — взять штангенциркуль или микрометр

Для частного применения измерения достаточно точные, с небольшой погрешностью. Особенно, если приборы электронные.

Для второго способа нужны только линейка и какой-то ровный стержень. Но в этом случае еще придется заниматься расчетами, правда, очень простыми. Об этом способе — дальше.

Линейка+стержень

Если измерительных приборов в хозяйстве нет, можно обойтись обычной линейкой и любым стержнем одинакового диаметра. Этот метод имеет высокую погрешность, но если постараться будет достаточно точно.

Берем кусок провода длиной около 10-20 см, снимаем изоляцию. Оголенную медную или алюминиевую проволоку накручиваем на стержень одинакового диаметра (подойдет любая отвертка, карандаш, ручка и т.п.). Витки укладываем аккуратно, вплотную один к другому. Количество витков — 5-10-15. Считаем количество полных витков, берем линейку и измеряем расстояние, которое на стержне занимает намотанный провод. Затем делим это расстояние на количество витков. В результате получаем диаметр проводника.

Как измерить диаметр провода без приборов

Например, намотали 10 витков (считать проще), на стержне они заняли 3,8 см (или 38 мм). Далее делим расстояние на количество витков, 38/10=3,8 мм, получаем что диаметр намотанного провода 3,8 мм.

Как видите, тут присутствует погрешность. Во-первых, можно неплотно уложить провод. Во-вторых, недостаточно точно провести измерения. Но если делать все тщательно, расхождения с реальными размерами будут не такими уж большими.

Как измерять диаметр многожильного провода

Если вам надо узнать диаметр многожильного провода, измерения проводят с одной из проволочек, его составляющих. Процесс такой же: снять изоляцию, удалить оплетку (если она есть), распушить проволочки, выделив одну, провести измерения любым способом (микрометром или намотав на стержень).

Как определить сечение провода по диаметру если жил много?

Найденный размер умножить на количество проволочек в одном проводнике (распушите и пересчитайте). Вот и все, диаметр многожильного проводника вы нашли. Осталось узнать, как узнать сечение провода по диаметру, потому что при планировании проводки используется именно площадь сечения проводов.

Как вычислить по формуле

Так как сечение провода — круг, использовать будем формулу площади круга (на фото).  Как видим, рассчитать сечение провода можно используя измеренный диаметр или высчитать радиус (поделить диаметр на 2). Для наглядности приведем пример. Пусть измеренный размер провода 3,8 мм. Подставляем эту цифру в формулу и получаем: 3,14 / 4 * 3,82 = 11.3354 мм2. Можно результат округлить — это будет 11,3 мм2. Внушительный кабель.

Формула сечения кабеля по диаметру

Вторая часть формулы использует радиус. Это — половина диаметра. То есть, чтобы найти радиус, диаметр делим на 2, получаем 3,8 / 2 = 1,9 мм2. Далее подставляем в формулу и получаем: 3,14 * 1,92 = 11.3354 мм2.

Цифры совпадают, что и должно быть. Итак, при диаметре провода 3,8 мм, площадь его сечения — 11,34 мм2. Вы знаете, как узнать сечение провода по формуле. Но не всегда есть возможность заниматься подсчетами. В этом случае могут помочь таблицы.

Определение сечения провода по диаметру по таблицам

Для кабельно-проводниковой продукции есть определенный набор сечений, которые прописаны в нормативах. Зная какое сечение вам требуется, по таблице находим диаметр проводника. Далее только надо найти продукцию с нужными параметрами.

Сечение проводникаДиаметр
0,5 мм20,8 мм
0,75 мм20,98 мм
1,0 мм21,13 мм
1,5 мм21,38 мм
2,0 мм21,6 мм
2,5 мм21,78 мм
4,0 мм22,26 мм
6,0 мм22,76 мм
10,0 мм 23,57 мм

Теперь немного о том, как работать с этой таблицей. Вы идете за продукцией с определенными параметрами. Например, вы знаете, что вам нужен кабель с сечением жилы 4 мм2. Найдя по таблице соответствующее значение, ищем требуемые параметры в кабельной продукции. В данном случае надо будет найти провода диаметром 2,26 мм. Если в магазине или на рынке находим близкие параметры — это уже хорошо. Случается, что указанные на бирке параметры завышены, т.е. реальное сечение проводников меньше.

Есть два пути найти требуемое. Первый — искать продукцию, которая соответствует заявленным параметрам. Возможно, потратив какое-то время, вам удастся найти. Но времени на поиски уйдет много. Слишком мало стало ответственных производителей. Есть, кстати признак, по которому можно ориентироваться. Это цена. Она значительно выше средней. Это потому, что потрачено большее количество меди или алюминия. Если пользоваться этим признаком, времени уйдет меньше.

Второй вариант — посмотреть продукцию с заявленным большим номиналом. В нашем случае рассуждаем так: нам нужен провод в 4 квадрата. Следующий по — 6 мм2. Очень вероятно, что параметры этого кабеля в реале будут близки к требуемым 4 квадратам. Возможно, сечение проводников будет больше, но это хорошо — проводка точно не будет греться. Минус этого варианта в том, что потратите вы больше денег, так как такие кабели стоят больше.

В общем, вы знаете не только как узнать сечение провода по диаметру, но и то, как выбрать нужный. Даже если заявленные характеристики не совпадают с реальными.

Простые расчеты для протяжки кабеля

Даже если ваша бригада приняла все необходимые меры предосторожности при раскладке кабеля и обращении с катушками, тяга кабеля все равно может испортиться, если вы повредите внешнюю изоляцию кабеля во время процесса. Однако с помощью нескольких расчетов и практических знаний арифметики вы можете предотвратить проблемы в недавно включенных фидерах, рассчитав максимально допустимое растягивающее усилие для любой установки — и вам даже не нужно знать расчет.

Помимо математических навыков, вам необходимо знать следующие параметры установки:

  • Размер дорожки качения
  • Конфигурация кабеля
  • Поправочный коэффициент для веса кабеля
  • Потенциал заклинивания
  • Зазор между проводниками
  • Давление на подшипник боковой стенки

Теперь давайте посмотрим, как эти факторы применяются в примере расчета растягивающего усилия.

Образец установки питателя

Предположим, вы участвуете в проекте по проектированию / строительству бумажной фабрики, и вашему клиенту требуется питатель на 400 А, 15 кВ для работы, как показано на Рис.1 . Рис. 1. Схема предлагаемой фидерной установки 15кВ.

Заказчик потребовал, чтобы все питатели на объекте были выдвижными, в трубах из жесткой оцинкованной стали (GRS). Заказчик также установил, что вы должны использовать одножильные кабели среднего напряжения с заземленной нейтралью 90 ° C с ленточным экраном; Изоляция из сшитого полиэтилена; и комбинезон из ПВХ. Обращаясь к таблице 310.73 NEC, выберите размер питателя 500 тыс. См. При наличии этих требований обратитесь к производителю кабеля, и вы обнаружите, что нужный вам кабель среднего напряжения имеет внешний диаметр (d) 1.60 дюймов и вес 2,2 фунта / фут.

Пришло время определить размер кабелепровода. В таблице 1 главы 9 NEC указано, что допустимый процент заполнения проводника составляет 40%. Вы можете рассчитать общую площадь трех кабелей среднего напряжения, используя следующее уравнение:

Площадь = 3 x (pi ÷ 4) x d 2
Площадь = 3 x 0,785 x 1,60 2
Площадь = 6,03 кв. Дюйма

В этой ситуации Таблица 4 (Жесткий металлический кабелепровод) в главе 9 NEC требует 5-дюймового. канал. Такой размер кабелепровода позволит вам проскользнуть ниже допустимого процента заполнения проводника на 10%.

Позиция имеет значение

Это может показаться неважным, но геометрическое положение каждого кабеля ( Рис. 2 )) оказывает уникальное влияние на величину силы трения или сопротивления, которое проводят проводники во время протяжки. Кроме того, расположение влияет на весовой коэффициент. Используя отношение внутреннего диаметра дорожки качения (D) к внешнему диаметру проводника (d), вы можете определить, какое геометрическое положение вы можете ожидать увидеть.

Рис. 2. Количество одножильных кабелей одинакового веса и диаметра, а также отношение внутреннего диаметра кабельной дорожки к внешнему диаметру проводника определяют геометрические положения, в которых располагаются кабели.

Хотя положение одного кабеля легко предсказать (см. Вариант А на рис. 2), другие положения не так очевидны:

  • Треугольный (вариант B на рис. 2): это происходит, когда вы вытаскиваете три отдельных проводника из трех отдельных катушек, и их отношение D / d меньше 2,5. Если вы вытащите отдельные тройные проводники с одной катушки, они также будут сидеть в этом положении.
  • Подставка (вариант C на рис. 2): это положение может возникнуть, когда вы вытаскиваете три отдельных проводника с трех отдельных катушек, и их отношение D / d находится в пределах 2.5 и 3.0. Это положение наименее благоприятно, потому что оно дает наихудший сценарий сопротивления во время тяги.
  • Diamond (вариант D на рис. 2): это положение возникает, когда вы вытаскиваете четыре отдельных проводника с четырех отдельных катушек, и их отношение D / d меньше 3,0. Если вы вытащите четыре отдельных проводника с одной катушки, многожильный кабель также будет находиться в этом положении.

Чтобы определить, как проводники будут сидеть в кабелепроводе, обратитесь к Таблице 4 для определения внутреннего диаметра (D) 5-дюймовой муфты.Кабелепровод GRS, который составляет 5,07 дюйма. Используйте отношение внутреннего диаметра кабелепровода (D) к внешнему диаметру кабеля (d), чтобы определить, как отдельные проводники будут сидеть в кабелепроводе. В данном случае это соотношение:

D ÷ d
5.07in. ÷ 1,60 дюйма
= 3,17

Поскольку это соотношение приводит к числу, превышающему 3,0, отдельные проводники будут располагаться в кабелепроводе в виде опоры.

Проводники «весят» больше, чем вы думаете

Теперь, когда вы знаете расположение кабеля, необходимо определить, как вес проводников повлияет на тягу.

Коэффициент коррекции веса важен, потому что, когда вы протягиваете два или более проводов в дорожке качения, сумма сил, возникающих между проводниками и дорожкой качения, всегда больше, чем сумма весов отдельных проводников.

Уравнения в Таблица 1 для определения поправочного коэффициента веса для конкретных установок основаны на внутреннем диаметре дорожки качения и внешнем диаметре проводника.

Таблица 1. Уравнения поправочного коэффициента веса.

Когда у вас есть три одиночных проводника одинакового диаметра и веса (что является наиболее распространенным сценарием), вы можете ожидать более высокий весовой коэффициент для положения подставки, чем для треугольного положения. Что это значит для тебя? Это означает, что вы должны предположить, что проводники будут сидеть в положении опоры (если вы не вытягиваете тройные отдельные проводники с одной катушки), потому что это приведет к более высокому и более консервативному расчету растягивающего натяжения. Используйте следующее уравнение, чтобы найти поправочный коэффициент веса:

Вт = 1 + {(4 ÷ 3) x [d ÷ (D-d) 2 }
Вт = 1 + {(4 ÷ 3) x [160 ÷ (3.47) 2 }
W = 1,28

Не зажимайте эти кабели

При выборе размера вашей системы кабельных каналов всегда следует учитывать возможность заклинивания или заклинивания кабелей. Обычно это происходит, когда у вас есть три или более отдельных проводника, лежащих бок о бок в одной плоскости. Когда вы протягиваете проводники через изгиб, кривизна изгиба стремится сжимать проводники вместе.

Однако, если вы протягиваете одно- или двухжильный кабель, многожильный кабель с общей оболочкой или многожильный кабель без оболочки, сделанный из тройной или четырехпроводной сборки проводов, вам, вероятно, не нужно беспокоиться о защемлении.

Используйте следующую формулу для определения вероятности заклинивания. Используйте внутренний диаметр дорожки качения и внешний диаметр отдельного проводника:

.

1.05 х (D ÷ d)

Постоянный коэффициент 1,05 отражает тот факт, что изгибы на самом деле имеют овальную форму в разрезе.

  • Если значение меньше 2,5, проблем с заклиниванием не будет.
  • Если значение меньше 3,0, но больше 2,8, очень возможно заклинивание.
  • Если значение больше 3,0, проблем с заклиниванием не возникнет.

Примечание : Не допускайте заклинивания от 2,8 до 3,2 для силовых кабелей с экструдированным диэлектриком типа MV.

Используя значения внутреннего диаметра дорожки качения и внешнего диаметра отдельного проводника из примера, вы получите следующее значение:

1,05 x (D ÷ d)
1,05 x (5,07 дюйма ÷ 1,60 дюйма)
= 3,33

Поскольку в результате этого вычисления получается число больше 3.0, у вас, вероятно, не возникнет проблемы с глухим.

Проводникам тоже нужен запас по высоте

Не забывайте, что у вас также должен быть достаточный зазор между самым верхним проводником и верхней частью дорожки качения, чтобы обеспечить безопасное и легкое вытягивание. Для прямой тяги у вас может быть зазор всего дюйма, и вы при этом будете в безопасности. Для более сложных вытяжек у вас должно быть от ½ дюйма до 1 дюйма

Воспользуйтесь уравнениями из , таблица 2, (которые основаны на наихудших сценариях), чтобы найти зазор для данной кабельной дорожки и положения кабеля.

Таблица 2 . Уравнения зазора.

Обратите внимание, что эти уравнения включают увеличение на 5% (коэффициент 1,05) для компенсации отклонений в диаметрах кабелей и дорожек качения, а также овальной формы секций дорожек качения на изгибах. Однако, поскольку проводники в данном примере будут находиться в положении держателя, вам не нужно будет проверять зазор , а не .

Расчет тягового усилия

Теперь, когда вы проверили большинство факторов, влияющих на протягивание кабеля, пора приступить к расчету растягивающего натяжения, используя следующее уравнение:

T = Д x Ш x Ш x Ш

, где T — общее растягивающее усилие (фунты), L — длина (футы) кабельного фидера, который вы протягиваете, w — общий вес (фунт / фут) проводов, f — коэффициент трения (обычно 0 .5 для условий с хорошей смазкой), а W — коэффициент поправки на вес. (См. Таблица 3 , где указаны коэффициенты трения для различных конфигураций дорожки качения / кабеля.)

Таблица 3. Коэффициенты трения дорожки качения / конфигурации кабеля.

Предполагая, что вы тянете от точки A к точке H, вам следует начинать расчет поэтапно. См. Таблица 4 для значений множителя изгиба.

Таблица 4. Множители натяжения для различных радиусов изгиба.Примечание. Эти множители основаны на коэффициенте трения 0,5. Если коэффициент трения равен 1,0, вы должны возвести множитель в квадрат. Если коэффициент трения равен 0,75, вы должны поднять множитель в 1 1/2 степени.

Шаг 1: T A-B = 10 футов x 6,6 фунта / фут x 0,5 x 1,28
T A-B = 42 фунта

Шаг 2: T A-C = T A-B Множитель изгиба 90 °
T A-C = 42 фунта x 2,2
T A-C = 92 фунта

Шаг 3: T C-D = 75 футов x 6.6 фунтов / фут x 0,5 x 1,28
T C-D = 317 фунтов

Шаг 4: T A-D = T A-C + T C-D
T A-D = 92 фунта + 317 фунтов
T A-D = 409 фунтов

Шаг 5: T A-E = T A-D x множитель изгиба 90 °
T A-E = 409 фунтов x 2,2
T A-E = 900 фунтов

Шаг 6: T E-F = 635 футов x 6,6 фунта / фут x 0,5 x 1,28
T E-F = 2,682 фунта

Шаг 7: T A-F = T A-E + T E-F
T A-F = 900 фунтов + 2682 фунта
T A-F = 3582 фунтов

Шаг 8: T A-G = T A-F множитель изгиба на 90 °
T A-G = 3,582 фунта x 2.2
T A-G = 7 880 фунтов

Шаг 9: T G-H = 30 футов x 6,6 фунт / фут x 0,5 x 1,28
T G-H = 127 фунтов

Шаг 10: T A-H = 7880 фунтов + 127 фунтов
T A-H = 8007 фунтов

Основываясь на правильных расчетах, вам понадобится примерно 8000 фунтов растягивающего усилия, чтобы протянуть проводники 15 кВ, но вы еще не закончили.

Кабели чувствительны к давлению на их стенки

Последним этапом процесса протяжки кабеля является определение того, повлияет ли растягивающее натяжение на предел давления на опору боковой стенки проводника.Когда вы протягиваете кабель или отдельные проводники через изгиб дорожки качения или вокруг шкива, между кабелем или стенкой проводника и изгибом или шкивом возникает давление подшипника на боковую стенку (SWBP).

Это давление оказывает очень сильное влияние на конструкцию системы кабельных каналов питателя, поскольку оно напрямую связано с радиусами изгибов, растягивающим натяжением и весом кабеля или проводов. В большинстве случаев вы можете опустить этот весовой коэффициент при расчете SWBP, потому что он относительно невелик по сравнению с натяжением на растяжение.

Обычно SWBP выражается в единицах напряжения вне изгиба (фунты), деленных на радиус изгиба (футы). Расчетный результат — это единица силы на единицу длины. Используйте уравнения в Таблица 5 , чтобы найти SWBP для различных конфигураций кабеля / кабельных каналов и изгибов с определенным радиусом.

Таблица 5. Уравнения давления в опоре на боковую стенку (SWBP). Если вы протягиваете многожильный кабель, используйте уравнение для одножильного кабеля. Из таблицы 5 видно, что по мере увеличения на радиуса изгиба на SWBP уменьшается на .Кроме того, каждое уравнение определяет конкретный проводник в каждом положении проводника, который будет испытывать максимальную силу раздавливания:

  • Положение подставки: центральный провод.
  • Позиция ромба: самый нижний провод.
  • Треугольное положение: два нижних провода.
См. Таблица 6 , где указаны рекомендуемые пределы SWBP для различных типов и конструкций кабелей. Таблица 6. Рекомендуемые пределы SWBP для различных типов и конструкций кабелей.

Эти ограничения можно использовать при проектировании системы дорожек качения. Например, если проект предусматривает протягивание трех одножильных проводников из сшитого полиэтилена 600 В вокруг изгиба, а расчет растягивающего натяжения дает значение 3600 фунтов, то минимальный радиус изгиба будет составлять 3600 фунтов, разделенных на 1200 фунтов / фут, или 3 фута. Убедитесь, что три изгиба на 90 ° имеют достаточный радиус, чтобы ограничить SWBP на проводниках до 750 фунтов.

Поскольку натяжение T A-C (92 фунта) относительно невелико, вы можете использовать стандартные колена и не беспокоиться о превышении предела SWBP в 750 фунтов.Напряжение T A-G , однако, другое дело — совершенно необходимо, чтобы вы не превышали предел SWBP в 750 фунтов.

Используйте уравнение SWBP для положения с опорой и решите для радиуса (R):

SWBP = [(3W — 2) x T] ÷ 3R
750 = {[(3 x 1,28) — 2] x 7,880} ÷ 3R
R = 14,499 ÷ 2,250 = 6,44 фута

Это означает, что вам нужно согнуть кабель длиной 10 футов в трубку большого радиуса. (Вам понадобится дополнительная длина, чтобы компенсировать изгиб.)

Вытягивание кабеля достаточно сложно, если вы знаете, что делаете, поэтому несоблюдение надлежащей процедуры может сделать работу намного более сложной, не говоря уже о бессмысленной, если ваши кормушки выйдут из строя вскоре после протяжки.Поскольку даже малейшие упущения в определении максимально допустимого тягового усилия могут вызвать проблемы в новых питателях, очень важно, чтобы вы выполнили правильные расчеты, чтобы работа была выполнена правильно с первого раза.

Сечения кабеля | Внутри кабеля

Кабели разных типов имеют разные функции, и любой кабель легко рассматривать как единое целое. Но каждый кабель состоит из разных слоев, каждый из которых выполняет свою функцию.Изучение того, как эти части взаимодействуют, упрощает понимание того, как работает кабель и что можно сделать, чтобы не повредить кабель.

Поперечное сечение коаксиального кабеля

Коаксиальный кабель — один из наиболее распространенных типов кабеля, который используется уже более 100 лет. Хотя технология со временем улучшилась, базовая схема коаксиальных кабелей сегодня во многом такая же, как и во время их изобретения. Современные коаксиальные кабели чаще всего используются для телевидения, радио, Интернета и подключения камер видеонаблюдения.

Внешний слой кабеля — это оболочка, предназначенная для защиты более уязвимых внутренних компонентов. Куртки чаще всего изготавливаются из пластика и бывают нескольких различных разновидностей. Наряду с защитой от внешних элементов оболочки также действуют как внешний изолятор, сдерживая любые электрические или магнитные сигналы, которые проходят через другие слои.

Следующий слой — это экран, который может быть плетеным или фольгированным. Хотя экран действительно помогает удерживать электрический кабель сигнала, он больше предназначен для защиты от других сигналов.Если коаксиальный кабель находится рядом с чем-то еще, что излучает сильные сигналы, которые потенциально могут вызвать помехи, например, мощные линии электропередач или вышка сотовой связи, экран сокращает потенциальные проблемы.

Далее следует диэлектрик, изолятор, который удерживает сигнал коаксиального кабеля внутри центрального проводника. Диэлектрики предназначены для минимизации утечки, сохраняя сигнал, передаваемый по кабелю, сфокусированным и сильным. Они действительно помогают удерживать внешние сигналы от создания помех, но это скорее второстепенная функция, поскольку в идеальных условиях помехи не должны проходить мимо экрана.

Последняя часть — это центральный проводник в сердечнике кабеля. Это токопроводящая металлическая линия (обычно сделанная из меди или стали с медным покрытием), предназначенная для передачи сигнала, проходящего через кабель. Сердечник может быть сплошным или многожильным. Как наиболее важная часть кабеля, он надежно защищен первыми тремя слоями. Повреждение трех других слоев может сделать кабель слабее, но повреждение проводника с большей вероятностью приведет к поломке кабеля.

Ethernet в разрезе

Кабель Ethernet

похож на коаксиальный, с металлическими жилами, защищенными несколькими другими слоями.Ключевое отличие состоит в том, что Ethernet состоит из нескольких проводов меньшего размера, содержащихся в основном кабеле.

Подобно коаксиальному кабелю и многим другим кабелям, внешняя оболочка Ethernet в основном служит для защиты более мелких и уязвимых частей внутри. Оболочка чаще всего изготавливается из пластика, доступны разные типы в зависимости от того, в какой среде будет находиться кабель.

Если кабель Ethernet экранирован, экран будет расположен непосредственно под оболочкой. Экраны кабеля Ethernet можно приклеить к оболочке с помощью какого-либо клея, например алюминиевой ленты или майларовой ленты.Некоторые даже используют липкий гель; Хотя гель отлично работает как изолятор, работать с ним может быть немного неудобно. Многие кабели Ethernet также включают в себя разрывной шнур, небольшой пушистый кусочек волокна, предназначенный для отслаивания экрана и обнажения внутренних проводов.

Внутри оболочки восемь проводов меньшего размера. Каждый провод имеет цветовую маркировку, поэтому пользователи могут легко отличить их друг от друга. В соответствии с отраслевым стандартом эти провода соединяются попарно и скручиваются друг с другом. Это позволяет тонким проводам поддерживать друг друга и предотвращать повреждение кабеля при изгибах, скручиваниях и поворотах.Он также позволяет выровнять провода для наиболее распространенных распиновок Ethernet. Эти провода покрыты изоляцией из полиэтилена высокой плотности, поэтому сигналы проходят по каждому проводу отдельно.

Сердцевиной каждого провода является металлический провод, который может быть одножильным или многожильным. Эти жилы подключаются к металлическим контактам ( контакты ) на разъемах Ethernet для передачи сигналов. Жилы хрупкие, и их повреждение может ослабить передачу сигнала или полностью остановить работу кабеля. С помощью тестера сигналов можно проверить, какой из внутренних проводов не функционирует.

Телефонный профиль

Телефонный кабель намного проще, чем многие другие типы кабелей. Простые плоские телефонные шнуры обычно используются в местах, где электрические помехи не являются проблемой, например в офисе или гостиной. В результате не всегда требуется экранирование. Наружная оболочка по-прежнему действует как изолятор, но в большей степени направлена ​​на поддержание правильной и равномерной формы внутренних проводов, чем что-либо еще.

Как и кабели Ethernet, телефонные кабели содержат отдельные провода меньшего размера, которые имеют цветовую маркировку.Эти цветные кабели не всегда подключаются к разъемам одинаково; в зависимости от приложения они могут использовать прямую или обратную распиновку. Количество проводов тоже не всегда одинаковое. В новых кабелях используется шесть проводов, а в старых шнурах — четыре. Шнуры с большим количеством проводов могут обрабатывать дополнительные линии при разделении одного кабеля между несколькими телефонами, факсами и другими устройствами.

Круглые версии телефонных кабелей также существуют, но, как правило, используются для специальных функций. Эти кабели включают в себя функции, отсутствующие в стандартных телефонных кабелях, такие как двойное экранирование для кабелей интернет-модема или ультрафиолетовых лучей (солнечный свет) и водонепроницаемость для кабелей, предназначенных для установки вне помещений / для прямой прокладки кабелей.Поскольку эти кабели имеют круглую форму, их внутреннее расположение больше соответствует внутренней части кабеля Ethernet, чем других телефонных шнуров.

Информация по установке проводов и кабелей в соответствии с действующими стандартами

Давление на боковые стенки кабеля на изгибах

Давление на боковую стенку (SP) возникает из-за натяжения кабеля, действующего горизонтально, и веса кабеля, действующего вертикально. Давление на боковые стенки не должно превышать значение, указанное в таблице ниже.

Тип кабеля Максимально допустимое давление на боковую стенку (SP) — фунты / фут.
Неэкранированный силовой кабель на 600 В и 1 кВ (например, THHN / THWN, USE, RHH / RHW и т. Д.) 1000

Для одножильного кабеля: SP = Tc / R (R — радиус изгиба в футах)
Для трех одножильных кабелей в опоре: SP = (3wf — 2) * Tc / (3R)
Для трех одножильных кабелей кабели треугольные: SP = wf * Tc / (3R)

Где:

Tc = растяжение на выходе из изгиба в фунтах
R = радиус изгиба в футах
wf = поправочный коэффициент веса (см. Ниже)
SP = давление на боковую стенку в фунтах / футах.

Весовой поправочный коэффициент — конфигурация проводов влияет на натяжение проводников, и поправочный весовой коэффициент (wf) используется для этого. Значение wf рассчитывается следующим образом:
Однопроволочный: wf = 1 Три проводника (треугольные): wf = 1 / Sqrt (1- (d / Dd)) [D = внутренний диаметр кабелепровода, d = внешний диаметр проводника] Три проводника (с опорой) : wf = 1 + 4/3 * (d / (Dd)) 2 Четыре проводника или более: wf = 1,4

Расчет натяжения троса

Не цепляйтесь за наполовину установленный трос, потому что вы забыли рассчитать натяжение тяги.

Стив Эккардт, инженер по продукту
SUPERIOR ESSEX
Член NEMA, ICEA

Оглавление
Предисловие
Максимальное растягивающее усилие на тросе
Максимально допустимая длина протяжки
Натяжение кабельного зажима
Расчетное растягивающее усилие — прямой участок кабелепровода
Расчетное растягивающее усилие — изогнутый (изогнутый) участок кабелепровода
Максимальное давление на боковую стенку на изгибах
Общие указания по протяжке кабеля

Следующие ниже данные предназначены для использования в качестве общего руководства при прокладке кабелей внутри каналов, кабельных каналов или кабелепровода.Эти рекомендации основаны на исследовании, спонсируемом ICEA (Ассоциация инженеров по изолированным кабелям). Информация, содержащаяся в данном документе, не является исчерпывающим набором инструкций. Следует проконсультироваться с инженером или техником, имеющим опыт установки, для конкретных приложений, где существуют или могут возникнуть необычные условия.

Предисловие (В начало)
Перед установкой кабелей рекомендуется тщательно проверить прокладку, чтобы избежать изгибов и / или растягивающих напряжений, превышающих указанные пределы.Хорошая конструкция воздуховода, дорожки качения или самого канала вместе с прокладкой важна для обеспечения безаварийной установки и полного срока службы всех компонентов.

Максимальное натяжение троса (вверху)
Для кабеля, оснащенного проушиной или тяговым болтом, приведенная ниже формула используется для расчета максимально допустимого натяжения кабеля для всей трассы.

T м = K x n x CMA ( Формула 1 )
Где: T м = максимальное тяговое усилие (фунт.) (расчет натяжения см. в Приложении A)
K = постоянная
• 0,008 для медных проводников
• 0,006 для алюминиевых проводников
n = количество проводников
CMA = круглая площадь в мил для одного проводника

Максимально допустимая длина тяги (вверху)
Максимальная длина кабеля, который можно безопасно протянуть через кабелепровод, рассчитывается, как показано ниже.

длина м = высота м / (ширина x ширина) ( Formula 2 )
Где: L м = максимальная длина тяги, фут
T м = максимальное тяговое усилие, фунт.
W = вес кабеля, фунт / фут.
f = коэффициент трения (если неизвестно, используйте 0,5)

Натяжение троса (вверху)
Когда кабельный захват используется поверх кабеля без свинцовой оболочки, натяжение при растяжении не должно превышать 1000 фунтов. или 1000 фунтов. на захват (при использовании с многожильными кабелями) и натяжение, рассчитанное по формуле 1.

Расчетное растягивающее усилие — прямой участок трубы (Наверх)

T s = Д x Ш x В ( Formula 3 )
Где: T s = растягивающее усилие в конце прямого участка, фунт.
L = длина прямого участка, фут
W = вес кабеля, фунт / фут.
f = коэффициент трения (если неизвестно, используйте 0,5)

Расчетное растягивающее усилие — криволинейный (изогнутый) участок трубы (вверх)

T b = T s x e fa ( Формула 4 )
Где: T b = растягивающее усилие в конце изгиба, фунт.
T s = растягивающее усилие на конце прямого участка, входящего в изгиб, фунт.
е = основание наперского бревна (2,718)
f = коэффициент трения (если неизвестно, используйте 0,5)
a = угол изгиба (радианы)
(См. Таблицу 1 со значениями e fa для общих углов и Таблицы 2 и 3 для минимальных радиусов изгиба)

Максимальное давление на боковую стенку на изгибах (вверх)
Давление на боковые стенки вызывается натяжением кабеля, действующим горизонтально, и весом кабеля, действующим вертикально. Как правило, натяжение кабеля сразу после выхода из изгиба не должно превышать 300-кратного радиуса изгиба (в футах), а максимальное давление на боковую стенку не должно превышать 300 фунтов./ фут. Ниже показаны формулы для расчета максимально допустимого натяжения на изгибе и фактического давления на боковую стенку.

T bm = 300 x r ( Формула 5 )
Где: T bm = максимально допустимое растягивающее усилие при изгибе, фунт.
r = радиус изгиба, футы

P = T b / r ( Формула 6 )
Где: P = фактическое давление на боковую стенку кабеля, фунт / фут.
T b = натяжение при изгибе и изгибе, фунт.
r = радиус изгиба, футы

Максимально допустимое растягивающее усилие при изгибе (T bm ) — это предел, с которым следует сравнивать расчетное растягивающее усилие (T b ). Если T b больше, чем T bm , следует рассмотреть возможность изменения конструкции или изменения маршрута.

Пример — 1/0 AWG THHN, вес кабеля = 0,37 фунта / фут.

МАКСИМАЛЬНОЕ НАПРЯЖЕНИЕ НА ВЫДВИЖЕНИЕ, Tm

    Tm =.008 x 1 x 105600 = 846 фунтов.

МАКСИМАЛЬНАЯ ДОПУСТИМАЯ ДЛИНА ТЯГА, Лм

    Лм = 845 / (0,37 x 0,5) = 4568 футов

ВЫТЯНИЕ ОТ ТОЧКИ «A»

    Натяжение @ A = ноль
    Напряжение @ B (Ts1) = 200 x 0,37 x 0,5 = 37 фунтов.
    Напряжение @ C (Tb1) = 37 x 1,48 = 55 фунтов. [PB-C = 55/10 = 5,5 фунта / фут]
    Напряжение @ D (Ts2) = 55 + [70 x 0,37 x 0,5] = 68 фунтов.
    Напряжение @ E (Tb2) = 68 x 2.19 = 149 фунтов. [PD-E = 149/10 = 14,9 фунтов / фут]
    Напряжение @ F (Ts3) = 149 + [100 x 0,37 x 0,5] = 168 фунтов.
    Натяжение @ G (Tb3) = 168 x 1,48 = 249 фунтов. [PF-G = 249/10 = 24,9 фунта / фут]
    Напряжение @ H (Ts4) = 249 + [50 x 0,37 x 0,5] = 258 фунтов.

ВЫТЯГИВАНИЕ ОТ ТОЧКИ «H»

    Натяжение при H = ноль
    Натяжение @ G (Ts1) = 50 x 0,37 x 0,5 = 9 фунтов.
    Напряжение @ F (Tb1) = 9 x 1,48 = 13 фунтов. [PG-H = 13/10 = 1.3 фунта / фут]
    Напряжение @ E (Ts2) = 13 + [100 x 0,37 x 0,5] = 32 фунта.
    Натяжение @ D (Tb2) = 32 x 2,19 = 70 фунтов. [PE-D = 70/10 = 7 фунтов / фут]
    Напряжение @ C (Ts3) = 70 + [70 x 0,37 x 0,5] = 83 фунта.
    Напряжение @ B (Tb3) = 83 x 1,48 = 123 фунта. [PC-B = 123/10 = 12,3 фунта / фут]
    Напряжение @ A (Ts4) = 123 + [200 x 0,37 x 0,5] = 160 фунтов.

Вытягивание в любом направлении не приведет к превышению предельного значения натяжения или давления на боковую стенку (846 фунтов.& 300 фунтов / фут). Однако вытягивание из точки «H» приведет к уменьшению натяжения кабеля примерно на 40%. Поэтому желательно тянуть из точки «Н».

Общие указания по протяжке кабеля (Вверх)
ПОДГОТОВКА:

  1. Определите направление тяги, основываясь на расчетах безопасного растягивающего натяжения и давления на боковые стенки.
  2. Выберите проушины, болты или захваты подходящего размера.
  3. Расположите подающие катушки, катушки и т. Д. Так, чтобы натяжение на подающей стороне было минимальным.
  4. Используйте тянущее оборудование, обеспечивающее плавное регулирование скорости.
  5. Выберите тяговый трос с требуемой прочностью на разрыв.
  6. Перед тем как тянуть, убедитесь, что кабелепровод чист и на нем нет грязи, воды, окалины и т. Д.
  7. При длительных и / или тяжелых затяжках предварительно смажьте кабелепровод и тяговый трос, особенно при использовании ПВХ.
  8. Установите динамометр.
ТЯГА КАБЕЛЯ:
  1. Обильно нанесите тянущую смазку (состав) во время установки.
  2. Если возможно, используйте двустороннюю связь на обоих концах участка, особенно на длинных участках.
  3. Медленно и плавно увеличивайте скорость до постоянной скорости тяги.
  4. Не позволяйте тросу останавливаться во время тяги. При повторном запуске тяги трение значительно увеличивается.
ПОСЛЕ ВЫДВИЖЕНИЯ:
  1. Закройте концы установленного кабеля, чтобы влага не попала внутрь кабеля.
  2. Перед установкой и после нее рекомендуется испытание высоким напряжением.

FM 55-501 ГЛАВА 12 (ПРОДОЛЖЕНИЕ)

ВСТАВЛЕНИЕ ГЛАЗА В ПРОВОДУ

12-99. В этом абзаце обсуждается, как установить на трос временную и постоянную проушины. Временная проушина может быть вставлена ​​в трос с помощью зажимов для троса или с помощью полевого устройства, известного как «поспешный глаз» или сращивание «Молли Хоган».Соединение «Ливерпуль» — это общепринятый метод установки постоянной проушины на конце троса. При наличии надлежащего оборудования и небольшой практики сварной трос «Ливерпуль» можно установить менее чем за 15 минут.
ИНСТРУМЕНТЫ ДЛЯ СОЕДИНЕНИЯ
12-100. На рис. 12-38 показаны инструменты, необходимые для сварки, за исключением ножа. Используйте marlinespike для раскрытия прядей в стоячей части троса и для обработки прядей, которые нужно соединить с стоящей частью.Используйте кусачки для обрезки прядей после завершения соединения. Используйте гидравлический резак для троса, чтобы отрезать отрезок троса, который будет сращиваться. Используйте наперсток, чтобы провода не двигались, а тиски не раздавили их, когда делается мягкий проушин. Сращивание глаз может производиться с наперстком или без него. Всегда используйте наперсток всякий раз, когда накладывают глазной сращиватель, если особые обстоятельства не запрещают это. Наконечник защищает трос от резких изгибов и абразивного воздействия. Эффективность хорошо сделанного стыка с прочным наконечником варьируется от 70 до 90 процентов.После сращивания мягкого ушка снимите наперсток. Когда глаз должен иметь наперсток в качестве постоянной части, наперсток имеет размер желаемого глаза.
ВРЕМЕННЫЙ ГЛАЗ С ИСПОЛЬЗОВАНИЕМ КАНАТНЫХ ЗАЖИМОВ
12-101. Временная проушина может быть вставлена ​​в проволоку с помощью зажимов для троса. На Рис. 12-39 показаны правильные и неправильные способы использования этих зажимов. П-образный болт всегда проходит через горький конец, а стержень — на стоячую часть. Разместите зажимы на расстоянии, равном шести диаметрам проволоки.После того, как веревка окажется в напряжении, снова затяните зажимы. На действующих тросах затягивайте зажимы каждые несколько часов и внимательно осматривайте трос. Осмотрите места на веревке, где есть зажимы. Обратите особое внимание на проволоку на самом дальнем от глаза зажиме, поскольку здесь гасятся вибрация и биение, и могут возникнуть усталостные поломки.


Рисунок 12-38. Отдельные компоненты комплекта груза такелажа


Рисунок 12-39.Правильное и неправильное использование зажимов для проводов

12-102. Чтобы получить максимальную прочность от временной проушины, используйте проволочные зажимы правильного размера и количества. Размер указан на стержне между двумя отверстиями. Правильное количество зажимов для использования с тросами различных размеров показано на Рисунке 12-40.

12-103. Или используйте следующую формулу:

    3 X диаметр каната + 1 =
    количество зажимов (округление)
12-104. Правильное расстояние между зажимами:
    6 X диаметр каната =
    правильный интервал (дюймы)

РАЗМЕР КАНАТА

НОМЕР

(ДЮЙМЫ)

ЗАЖИМОВ

1/2

2

5/8

3

3/4

3

7/8

4

1

4

1 1/8

5

1 1/4

5

1 1/2

6

Рисунок 12-40.Размер и количество зажимов для проводов

12-105. Усовершенствованный тип зажима для троса, показанный на Рисунке 12-41, имеет несколько преимуществ по сравнению с более старым типом. Обе половины идентичны и обеспечивают опорную поверхность для обеих частей каната. Поэтому его нельзя неправильно надеть и он не деформирует провод. Это также позволяет полный ход с помощью гаечного ключа.


Рисунок 12-41. Улучшенный тип зажима для троса

ПРЕПАРАТ ДЛЯ БЫСТРОГО ГЛАЗА («МОЛЛИ ХОГАН»)
12-106.Иногда возникает необходимость в создании полевого устройства, называемого поспешным глазом или сваркой «Молли Хоган». Это соединение может быть легко и быстро выполнено, но оно ограничено примерно 70 процентами прочности троса. Никогда не используйте этот соединитель для подъема тяжелых грузов. Используйте это соединение только при работе с предварительно сформованным тросом. Чтобы сделать это соединение, сделайте следующие шаги.
  • Шаг 1.
  • С помощью шипа, отвертки или, при необходимости, гвоздя; разделите трос на две трехпрядные секции.Эти секции должны быть сняты в четыре раза больше диаметра желаемого глаза. Если вам нужна проушина диаметром 1 фут, откиньте секции назад на 4 фута (Рисунок 12-42).
  • Шаг 2. Используйте две части, чтобы сформировать петлю желаемого диаметра для глаза. Затем сложите пряди вокруг друг друга, чтобы получился глаз (Рисунок 12-43).
  • Шаг 3. После того, как пряди будут наложены друг на друга и сформировано ушко, зажмите провод, чтобы завершить соединение (Рисунок 12-44).

Рисунок 12-42. Делаем поспешный глаз (Молли Хоган)
Splice, Step 1

Рисунок 12-43. Создание склейки на глаз
(Молли Хоган), шаг 2


Рисунок 12-44. Делая поспешный взгляд
(Молли Хоган) Сращивание, Шаг 3

СПЛИЦЫ ДЛЯ ЛИВЕРПУЛЯ
12-107. Сварка «Ливерпуль» — самый простой и распространенный способ сращивания проволоки.Это первичное соединение, используемое, когда требуется постоянная проушина.

12-108. Чтобы найти расстояние, на котором жилы должны быть развязаны для сращивания глаз, умножьте диаметр провода на 36 дюймов. (Пример: трос 5/8 дюйма — 5/8 X 36/1 = 180/8 = 22 1/2 или 23 дюйма.) Отмерьте это расстояние на тросе и поместите заедание в этой точке.

12-109. Далее отрезаем заедание на концах и аккуратно развязываем пряди. Обвяжите концы каждой пряди парусным шпагатом или фрикционной лентой.

12-110.Сформируйте проушину желаемого размера и вставьте проушину в тиски такелажа так, чтобы незакрепленные пряди были справа от вас, когда вы смотрите на тиски. Вытяните стоящую часть проволоки, зажмите и привяжите ее, и все готово.

Примечание. При сращивании проволоки всегда вставляйте марлиновую иглу в пучок проволоки и следите за тем, чтобы не протолкнуть ее через сердечник. Сердечник должен находиться с левой стороны шипа.

Выполнение первой вытачки первой, второй и третьей прядей
12-111.В соединении «Ливерпуль» (рис. 12-45) первая нить проходит под тремя нитью, вторая нить идет в том же месте, но только под двумя нитью, а нить номер три входит в то же отверстие, но только под одной нитью. Все пряди входят в одну точку, но выходят в разных местах.

12-112. Затем проведите шип за тремя прядями, под которые заправлены первые три, но над первыми тремя прядями, как заправленными. Удерживая марлиновый шип под углом 90 градусов к стоящей части, поверните шип против часовой стрелки примерно на четверть оборота и проденьте стержень через стоящую часть.Это называется «погружением ядра». Убедитесь, что сердцевина вставлена ​​под шип. Потяните сердечник вниз и протяните его в стык.


Рисунок 12-45. Подтачивание прядей сращивания Liverpool

Заправка четырех, пяти и шести прядей
12-113. Помните, что сердцевина была между третьей и четвертой прядями и что пряди пронумерованы по часовой стрелке. Чтобы заправить четвертую прядь, поместите марлиновый шип под прядь слева от того места, где один, два и три проходили через стоящую часть.Поверните шип против часовой стрелки вокруг стоящей части и заправьте прядь. Затяните его и протяните шипом вниз. Заправьте четыре нити вокруг одной нити четыре раза. Зафиксируйте каждую складку на месте, удерживая прядь вниз и продвигая шип вверх.

12-114. Протолкните марлиновый шип под следующую более высокую прядь на стоящей части и оберните пятую прядь вокруг нее четыре раза, используя ту же процедуру, что и с четвертой прядью. Затем шесть четыре раза подверните прядь. Это завершает четвертую, пятую и шестую пряди.

Запуск ядра
12-115. Закапывание сердечника в центре стыка в стоячей части называется «подъемом сердечника вверх». Не вся жила накручивается, а лишнее обрезается. Это делается перед тем, как первая, вторая и третья пряди заправляются еще три раза.

12-116. Проведите шип под теми же тремя прядями, под которыми была пропущена первая прядь. Держа иглу в левой руке, а стержень — в правой, переместите иглу влево и вниз, а правой рукой потяните стержень вверх, чтобы затянуть.Затем переместите шип вправо. Проденьте сердечник в центр стыка и отрежьте лишнее.

Подтачивание одной, второй и третьей прядей
12-117. Чтобы пряди не перекручивались на последних складках, вставьте иглу и проденьте ее по проволоке. Следуйте за иглой вверх с прядью, засуньте ее под иглу и туго натяните. Сохраняя натяжение пряди, вяжите шип и прядь обратно вокруг и вниз вместе. Удерживая прядь там, проденьте шип обратно по проволоке.Завершите прядь и сделайте последнюю вытачку. Верните прядь вниз и удерживайте ее там. Перед тем как вытащить штырь, поднимите его, пока пряди стоячей проволоки не свяжут рабочую прядь на месте (см. Также Рисунок 12-46). Таким же образом сделайте вторую и третью складки с оставшимися прядями.


Рисунок 12-46. Как избежать перегиба

Завершение сварки
12-118.Рекомендуемый порядок завершения соединения — заправить пряди номер три, две и одну. Каждую подвернуть три раза подряд, получив в итоге четыре вытачки каждая. Выньте проволоку из тисков, возьмите молоток и измельчите стык, придав ему форму, и отрежьте концы подгибающих прядей рядом с местом стыка.

Сращивание НЕЙЛОНОВОЙ ЛИНИИ 2-В-1 ДВОЙНОЙ ПЛЕТЕНОЙ (Принципы сращивания оплетки Samson 2-в-1)

12-119. Двойной плетеный нейлон имеет плетеный сердечник внутри плетеного чехла.Ее обычно называют плетеной нейлоновой леской 2-в-1. Для соединения этого типа линии требуются специальные инструменты и процедуры.

12-120. Ниже описываются процедуры изготовления стандартного соединения глаз и стыка «конец-в-конец». Компания Samson Cordage Works разработала как соединители, так и используемую линию. Следующая информация используется с разрешения и любезности Samson Ocean Systems, Inc., Бостон, Массачусетс.

СПЕЦИАЛЬНЫЕ УСЛОВИЯ
12-121.Соблюдайте следующие термины при выполнении стандартного соединения глаз и соединения «конец-в-конец».
  • Трубка фид.
  • Полый стальной инструмент, используемый для вставки крышки и сердечника (см. Рисунок 12-47).
  • Проволока металлическая фид.
  • Для лески диаметром более 1 дюйма (см. Рисунок 12-48).
  • Длина одной ручки.
  • Полная длина одной трубчатой ​​крышки; два полных отрезка проволочного фида.
  • Отрывок фид.
  • Расстояние от открытого конца до отметок на корпусе фид.Примерно 35 процентов от полной длины.
  • Толкатель.
  • Инструмент, похожий на ледоруб, используется для извлечения керна из укрытия и для облегчения скольжения троса через элементы троса (см. Рисунок 12-49).
  • Глаз.
  • Замкнутая петля, образованная на конце каната в результате сращивания.
  • Кроссовер.
  • Точка пересечения крышки и сердечника, созданная при сварке.
  • Доение.
  • Прерывистое сжимающее-вытягивающее-скользящее движение руки, используемое для приведения покрытия к сердечнику при формировании стыка.
  • Smooth Out.
  • Чтобы «выдоить» провисание определенного участка в процессе сварки.
  • Точка X.
  • Точка извлечения; поместите на крышку, откуда первоначально извлекается сердцевина.
  • Точка пр.
  • Контрольная точка; отметка, сделанная после измерения длины одного пальца от конца крышки, обмотанного лентой.
  • Точка T.
  • Точка, от которой отсчитывается конусность.
  • Точка Z.
  • Точка на крышке, из которой будет выходить основной хвост; расположен на полпути ниже точки X.
  • Strand.
  • Прядь тесьмы представляет собой группу из одного или нескольких скрученных концов пряжи, составляющих одну петлю или рис. Обычное количество покрывающих прядей в плетеной косе Samson — 16, 20, 24 или 32. (Примечание: поскольку большинство покрывающих прядей имеет два конца на прядь, в книге для сращивания они упоминаются как пары прядей).
  • Конец.
  • Конец — это сложенный компонент пряжи тесьмы. В покровной нити находятся от одного до четырех концов. В сердечнике может быть от двух до шести концов.
Примечание. На многих плетениях Samson 2-в-1 можно различить покрытие и сердцевину следующим образом: на крышке есть голубая индикаторная нить, а в сердцевине нет видимой индикаторной нити.


Рисунок 12-47. Тублар Фид


Рисунок 12-48. Металлическая проволока Fid


Рисунок 12-49. Толкатель

СПЕЦИАЛЬНЫЕ ИНСТРУМЕНТЫ И ТЕХНИКА
12-122.Ниже приведены специальные инструменты и методы, необходимые для выполнения стандартного сращивания глаз.
Для соединения с наперстком
12-123. ШАГ 1 процедуры стандартного сращивания глаз, параграф 12-133, рассказывает, как определить размер глаза.

12-124. Минимальная длина петли и петли для оплетки 2-в-1 составляет пять длин от точки извлечения X до метки извлечения X, независимо от диаметра троса. Размер глаза не влияет на минимальную длину (см. Рис. 12-50).

12-125. Точная общая длина сростков с проушинами определяется с учетом использования дополнительной веревки для сращивания. Для каждого стыка длина дополнительной веревки равна половине длины фида плюс половина окружности глаза.

12-126. При закапывании обнаженной сердцевины, как в ШАГЕ 8, закопайте до пересечения и вставьте наперсток в проушину перед тем, как полностью доить крышку. При использовании наперстка с ушками, как в ШАГЕ 5, вставьте сердечник через кольца (ушки) и сдвиньте наперсток за отметку 3 перед тем, как вставить крышку в сердечник.Выполните сварку в соответствии с инструкциями.

Примечание. Перед окончательным закапыванием сдвиньте наперсток так, чтобы закрыть сторону глаза.


Рисунок 12-50. Минимальная длина для стандартного соединения с проушиной

12-127. Чтобы плотно закрепить готовый глаз вокруг наперстка, либо взбейте горло, либо окуните глаз в горячую воду на несколько минут. Горячая вода плотно сжимает наперсток.

12-128.Минимальная бесконечная петля (втулка) с оплеткой 2-в-1 составляет 10 отрезков длины между меткой извлечения X и меткой извлечения X, независимо от диаметра веревки. Выполните стыковку «конец-конец», как показано на Рисунке 12-51.

Для линии диаметром менее 1 дюйма (окружность 3 дюйма)
12-129. Для каждой размерной линии требуется трубчатая крышка разного размера. Используйте крышку вместе с толкателем, чтобы вставить крышку в сердечник и наоборот. Также используйте ручку в качестве измерительного прибора.Знаки писца указывают на короткую часть фида.
Для лески диаметром более 1 дюйма (окружность 3 дюйма)
12-130. Для сращивания линий большего размера используйте только металлическую проволочную заглушку (толкатель не нужен). Как и в случае с трубчатой ​​крышкой, для каждого размера линии существуют проволочные крышки разных размеров. Измерения крышки и центра производятся с помощью проволочной крышки так же, как и с трубчатой ​​крышкой.


Рисунок 12-51.Минимальная длина для стыковки конца в конец

12-131. Плотно заклейте конец плетеной крышки или центр после извлечения (ШАГ 2 процедуры сращивания). Вдавите выступы крышки в крышку или по центру сразу за лентой.

12-132. Приклейте проволочную ленту к оплетке, обернув ленту плотной, гладкой спиралью, начиная с оплетки и наматывая ее в направлении круглого кончика пальца. Держите ленту гладкой, чтобы облегчить продвижение через оплетку. Затем круглый конец крышки можно вставить и протолкнуть без толкателя.

СТАНДАРТНАЯ ЗАМЕТКА ДЛЯ ГЛАЗ
12-133. Этот сращивание глаз Samson предназначено только для новой линейки. Он сохраняет около 90 процентов средней прочности новой лески.
  • ШАГ 1 — Отметка измерений.
  • Конец ленты соединяется одним тонким слоем ленты. Затем измерьте длину одной трубчатой ​​крышки (две длины проволочной крышки, потому что проволочная крышка имеет половинный размер) от конца линии и отметьте. Это точка R (см. Рис. 12-52). Из R сформируйте петлю размером желаемого глаза и наметьте.Это точка X (где вы извлекаете ядро ​​из укрытия). Если вы используете наперсток, сделайте петлю вокруг него. Завяжите тугой узел скольжения примерно на пять футов длины от точки X. ЭТО ДОЛЖНО БЫТЬ СДЕЛАНО. Если вам требуется, чтобы линия с готовым стыком (-ами) имела определенную общую длину, см. Параграфы 12-125.


Рисунок 12-52. Отметка измерений (шаг 1)

  • ШАГ 2 — Извлеките сердцевину.
  • Резко согните леску в точке X. С помощью толкателя или любого острого инструмента, такого как ледоруб, шило или шип, расправьте защитные нити, чтобы обнажить сердцевину. Подденьте, а затем полностью вытяните сердечник из крышки от точки X до конца лески, обмотанного лентой. Поместите один слой ленты на конец жилы (см. Рисунок 12-53).
Примечание: НЕ тяните защитные пряди от лески при разбрасывании, так как это приведет к излишней деформации веревки.


Рисунок 12-53.Извлечение ядра (шаг 2)

Удерживая открытый сердечник, сдвиньте крышку как можно дальше назад к туго завязанному узлу скольжения. Затем плотно сгладьте крышку от узла скольжения по направлению к концу, покрытому лентой. Снова разгладьте, пока не будет устранена вся слабина покрытия. Затем отметьте стержень там, где он выходит из крышки; это Марк 1.
  • ШАГ 3 — Маркировка сердечника. Снова сдвиньте крышку к узлу скольжения, чтобы обнажить больше сердцевины. От отметки 1 по сердечнику к точке X измерьте расстояние, равное короткому участку трубчатого зажима (два коротких участка с проволочным зажимом), и сделайте две толстые отметки.Это отметка 2. От отметки 2 измерьте в том же направлении одну длину fid плюс еще один короткий отрезок fid (с проволочной fid, двойные измерения). Сделайте три жирных метки для метки 3 (см. Рисунок 12-54).


Рисунок 12-54. Маркировка сердечника (шаг 3)

  • ШАГ 4 — Разметка крышки для сужения.
  • Обратите внимание на характер оплетки крышки. Состоит из прядей — одной или двух (пары).При осмотре вы можете увидеть, что половина прядей вращается вправо вокруг веревки, а половина — влево. Начиная с точки R и продвигаясь к обмотанному лентой концу покрытия, отсчитайте восемь последовательных прядей (одиночных или парных), которые поворачиваются вправо (или влево). Отметьте восьмую нить. Это точка T (см. Рис. 12-55). Отметьте точку T полностью вокруг крышки. Начиная с точки T и продвигаясь к концу обложки, обмотанной лентой, подсчитайте и отметьте каждую пятую правую и левую прядь (одиночную или парную), пока не дойдете до конца обложки с лентой.


Рисунок 12-55. Маркировка крышки для сужения

  • ШАГ 5 — Установка крышки внутрь сердечника.
  • Вставьте фиксатор в сердечник на отметке 2. Проденьте его и вытащите на отметке 3. Добавьте дополнительную ленту к концу крышки; затем плотно вставьте его в полый конец крышки (см. Рисунок 12-56). Слегка удерживая сердечник на отметке 3, поместите наконечник толкателя в конец, обмотанный лентой, и протолкните крышку и крышку от отметки 2 и наружу к отметке 3.Вдавите штыри проволоки в крышку. Затем заклейте их лентой. После того, как крышка надета, оплетите молочную оплетку на нее, протягивая ее от отметки 2 к отметке 3. Снимите крышку с крышки. Продолжайте протягивать хвостовик крышки через сердечник, пока точка R на крышке не выйдет из отметки 3. Затем снимите ленту с конца крышки.


Рисунок 12-56. Установка крышки внутри сердечника

  • ШАГ 6 — Выполнение конуса. Убедитесь, что лента снята с конца крышки. Начиная с последней отмеченной пары закрывающих жил по направлению к концу, отрежьте и полностью вытяните их (см. Рисунок 12-57). Обрежьте и удалите следующие отмеченные пряди и продолжайте с каждой отмеченной правой и левой прядью, пока не дойдете до точки T. НЕ обрезайте дальше этой точки (см. Рисунок 12-57). В результате должно получиться постепенное сужение, заканчивающееся острием. Очень осторожно протяните крышку через сердечник до тех пор, пока точка T не выйдет из отметки 2 на сердечнике.


Рисунок 12-57.Выполнение конуса

  • ШАГ 7 — Повторная установка сердечника в крышку.
  • От точки X на крышке измерьте приблизительно половину длины пальца до узла скольжения на линии и отметьте это как точку Z (см. Рисунок 12-58). Теперь вы готовы поместить сердечник обратно в крышку от точки T до точки Z. Вставьте зажим в точку T. Плотно вставьте конец сердечника с лентой в конец зажима. С помощью толкателя протолкните крышку и стержень через «туннель» укрытия, минуя точку X, в укрытие в точке Z и через него.При использовании проволочного зажима прикрепите его к обмотанному лентой сердечнику. После того, как fid включен, оплетите молочную оплетку на fid, протягивая из точки T в точку Z. При продвижении fid мимо точки X к точке Z убедитесь, что fid не захватывает внутренние пряди сердечника.
Примечание. В зависимости от размера глаза fid может быть недостаточно длинным, чтобы добраться от точки T до точки Z за один проход. Если нет, вытащите крышку через крышку, вытяните стержень и снова вставьте крышку в то отверстие, в котором она вышла. Сделайте это столько раз, сколько необходимо, чтобы добраться до точки Z.


Рисунок 12-58.Повторная установка сердечника в крышку

  • ШАГ 8 — Маркировка хвостового сердечника уменьшенного объема.
  • Поочередно потяните за хвостовик сердечника в точке Z, затем потяните за коническую крышку в точке 3. Затяните переходник, пока он не станет примерно равным диаметру лески (см. Рисунок 12-59). Полностью разгладьте покрытие глаза от точки пересечения в точке T к точке X, чтобы убрать провисание в области глаз. ОТМЕТЬТЕ ЯДРО ХВОСТ ЧЕРЕЗ КРЫШКУ В ТОЧКЕ X.Вытягивайте хвостовик сердечника до тех пор, пока отметка на только что сделанном сердечнике не станет видна в точке Z. Уменьшите объем сердечника в этой точке, разрезая и удаляя одну прядь в каждой группе, продвигаясь по окружности веревки (см. Рисунок 12-59). Измерьте одну треть длины фидера от начала обрезающих разрезов до конца и отметьте. Отрежьте оставшийся хвост на этом месте. Сделайте надрез под углом 45 o , чтобы не получить тупой конец (см. Вставку). Одной рукой возьмитесь за кроссовер — Mark T. Плотно и полностью выровняйте закрывающую часть проушины от кроссовера к X; конусообразный хвостовой стержень должен исчезнуть в укрытии в точке Z.Сгладьте профиль сердечника от пересечения к отметке 3, и конус крышки исчезнет в сердечнике.


Рисунок 12-59. Маркировка хвостовика уменьшенного объема

  • ШАГ 9 — Захоронение обнаженной жилы.
  • Удерживайте веревку за узел скольжения, а другой рукой держите крышку для молока по направлению к стыку, сначала осторожно, затем крепче (см. Рисунок 12-60). Обложка будет скользить по отметке 3, отметке 2, кроссоверу, точкам T и R.(Иногда может потребоваться сглаживание проушины во время доения, чтобы конусообразный хвост не зацепился за горло стыка.) Если происходит скопление в месте пересечения, препятствующее полному закапыванию, разгладьте крышку от точки Т до точки X. Возьмитесь за перекресток в точке Т одной рукой а затем плотно разгладьте провисание прикрытия (женская сторона глаза) другой рукой по направлению к точке X горла. При необходимости повторите, пока не исчезнет скопление. Продолжайте доение до тех пор, пока не будет устранена вся слабина между узлом и горлом глаза.

СОВЕТ: Перед тем, как закопать крышку над кроссовером, сделайте следующее:

    — Закрепите петлю скользящего узла, привязав его к неподвижному объекту перед началом закапывания.Затем вы можете использовать обе руки и вес тела, чтобы упростить закопывание крышки поверх сердечника и кроссовера (последние два вида на иллюстрации).

    — Крепко удерживайте переходник и выдоите все лишнее покрытие от точки R до точки X.

    Согните и ослабьте шнур в точке перехода во время заключительного процесса закапывания. Забивание крышки в точке X поможет ослабить пряди. С более крупными веревками полезно надежно закрепить узел скольжения, прикрепить небольшую веревку к плетеной сердцевине на переходе и механически усилить натяжение с помощью блока и подъемника, шпиля, удлиненной лебедки или механической лебедки.Натяжение уменьшит диаметр сердечника и переходника для облегчения закапывания (последний вид на иллюстрации).


Рисунок 12-60. Захоронение открытого ядра

  • ШАГ 10 — Завершите соединение глаз с помощью челночного стежка. Стыки челночного стежка для предотвращения раскрытия нити из-за неправильного обращения. Используйте нейлоновый или полиэфирный шпагат примерно одной длины, примерно того же размера, что и пряди в строчке, которую вы сшиваете.Вы также можете использовать те же пряди, отрезанные от линии, которую вы сшиваете (см. Рисунок 12-61).


Рисунок 12-61. Окончательная обработка глазков челночным стежком

  • ШАГ 11 — Продолжайте прямую строчку. Продолжайте вставлять, как показано на Рисунке 12-62, пока не получите как минимум три полных стежка.


Рисунок 12-62.Непрерывное прямое шитье

  • ШАГ 12 — Завершите прямое шитье. Поверните сращиваемую часть линии на 90 градусов и снова вставьте конец A в зону сращивания так же, как и раньше. Убедитесь, что строчка не затягивается слишком сильно. Завершите последний стежок так, чтобы конец A вышел через то же отверстие в оплетке, что и конец B. Свяжите их квадратным узлом и снова вставьте задние концы в оплетку между крышкой и сердцевиной, как показано на Рисунке 12-63.


Рисунок 12-63. Завершение челночного стежка

Теперь стык будет сшит в двух плоскостях, перпендикулярных друг другу. Конфигурация поперечного сечения после завершения показана на Рисунке 12-64.


Рисунок 12-64. Конфигурация сечения

СОЕДИНИТЕЛЬ КОНЦЕВОЙ
12-134.Стандартное стыковое соединение Samson может быть выполнено как на новой, так и на бывшей в употреблении линии (см. Рисунок 12-65). Это универсальная техника сращивания, разработанная для людей, которые сращивают старые линии так же часто, как и новые. Он сохраняет до 85 процентов средней прочности новой лески и до 85 процентов оставшейся прочности оставшейся использованной лески.


Рисунок 12-65. Стандартное соединение «конец в конец»

  • ШАГ 1 — Отметка измерений. Обмотайте конец каждой линии одним тонким слоем ленты. Положите две линии, которые необходимо соединить, рядом и отмерьте длину одной трубки (две длины проволоки) от конца каждой линии и сделайте отметку. Это точка R (см. Рис. 12-66). От точки R отмерьте длину одного короткого отрезка пальца и сделайте отметку еще раз. Это точка X, в которой вы должны извлечь ядро ​​из-под крышки. Убедитесь, что обе линии обозначены одинаково. Завяжите тугой узел проскальзывания примерно на пять футов от точки X. Если вам требуется, чтобы линия с готовым стыком имела определенную общую длину, см. Специальные инструменты и методы, параграф 12-122.


Рисунок 12-66. Разметка измерений

  • ШАГ 2 — Извлечение ядер. Резко согните линию в точке X. Толкателем или любым острым инструментом, например ледорубом, шилом или шипом, расправьте нити покрытия, чтобы обнажить сердцевину. Сначала подденьте, затем полностью вытяните сердечник из укрытия от точки X до конца лески. Поместите только один слой ленты на конец жилы (см. Рисунок 12-67).Чтобы быть уверенным в правильном расположении метки 1, сделайте следующее: Удерживая открытый сердечник, сдвиньте крышку как можно дальше назад к туго завязанному узлу скольжения. Затем плотно сгладьте крышку от узла скольжения по направлению к концу, покрытому лентой. Снова разгладьте, пока не будет устранена вся слабина покрытия. Затем отметьте стержень там, где он выходит из укрытия. Это Марка 1. Проделайте то же самое с обеими строками.


Рисунок 12-67. Извлечение ядер

  • ШАГ 3 — Маркировка жил. Удерживая одну жилу на отметке 1, сдвиньте крышку назад, чтобы открыть больше жил (см. Рисунок 12-68). От отметки 1 и следуя по центру к точке X, измерьте расстояние, равное короткому участку fid, и сделайте две толстые отметки. Это отметка 2. Отмерьте одну длину пальца плюс еще один короткий участок от отметки 2 в том же направлении и сделайте три толстых отметки. Это отметка 3. Отметьте вторую жилу, положив ее рядом с первой и используя в качестве точного ориентира.


Рисунок 12-68.Маркировка жил

  • ШАГ 4 — Разметка крышки для сужения. Обратите внимание на характер оплетки крышки (см. Рисунок 12-69). Он состоит из прядей. При осмотре вы можете увидеть, что половина прядей вращается вправо вокруг линии, а половина — влево. Начиная с точки R и двигаясь к обмотанному лентой концу крышки, отсчитайте восемь последовательных пар нитей покрытия, которые поворачиваются вправо (или влево). Отметьте восьмую пару.Это точка Т (см. Вставку). Заставьте Mark T полностью обойти укрытие. Начиная с точки T и продвигаясь к обмотанному лентой конце крышки, подсчитайте и пометьте каждую вторую правую пару прядей, всего шесть. Снова, начиная с точки Т, посчитайте и отметьте каждую вторую левую пару прядей, всего шесть (см. Вставку). Отметьте обе линии одинаково.


Рисунок 12-69. Маркировка крышки для сужения

  • ШАГ 5 — Выполнение конуса. Удалите ленту с конца крышки. Начиная с последней отмеченной пары защитных жил по направлению к концу, отрежьте и полностью вытяните их (см. Рисунок 12-70). Обрежьте и удалите следующие отмеченные пряди и продолжайте с каждой отмеченной правой и левой прядью, пока не дойдете до точки T. Не обрезайте дальше этой точки (см. Рисунок 12-70). Закрепите конический конец лентой. Обрежьте и удалите отмеченные пряди на другой отмеченной крышке, снова остановившись в точке T. Заново заклейте конический конец.


Рисунок 12-70.Выполнение конуса

  • ШАГ 6 — Перемещение линий. Измените положение линий для сварки, как показано на Рисунок 12-71. Обратите внимание, как покрытие одной линии было соединено с ядром противоположной линии. Избегайте скручивания.


Рисунок 12-71. Перемещение линий

  • ШАГ 7 — Установка крышки внутрь сердечника. Вставьте крышку в один стержень на отметке 2 и вытащите ее на отметке 3. Добавьте дополнительную ленту к конусообразному концу крышки и плотно вставьте ее в полый конец крышки (см. Рисунок 12-72). Слегка удерживая сердечник у метки 3, поместите наконечник толкателя в конический конец, выталкивая крышку с крышкой из метки 2 в точку 3. При использовании проволочной крышки прикрепите ее к крышке. Затем протяните крышку от метки 2 к метке 3. Протяните хвостовик крышки через сердечник, пока метка T на крышке не совпадет с меткой 2 на сердечнике. Таким же образом вставьте в сердечник другую крышку.


Рисунок 12-72. Установка крышки внутрь сердечника

  • ШАГ 8 — Повторная установка сердечника в крышку. Теперь поместите сердечник обратно в крышку от точки T до точки X (см. Рисунок 12-73). Вставьте крышку в точку T, плотно заклейте проклеенный сердечник в конце крышки. С помощью толкателя протолкните крышку и сердечник через крышку, вынув ее в точке X. При использовании проволочного зажима прикрепите его к сердечнику, обмотанному лентой. Затем протяните шнур и оплетите его от точки T до точки X.Сделайте это с обоими ядрами. Снимите ленту с конца крышки. Плотно подтяните кроссовер, потянув за основной хвост и за конический прикрытый хвост. Крепко держите кроссовер, расправляя всю лишнюю косу от кроссовера в каждом направлении. Обрежьте конец конической крышки под углом, чтобы исключить тупой конец. Коническая хвостовая часть крышки исчезнет в точке 3. Отрежьте хвостовую часть сердечника под углом, близким к точке X.


Рисунок 12-73. Повторная установка сердечника в крышку

  • ШАГ 9 — Захоронение обнаженной жилы. Удерживайте леску за узел скольжения, а другой рукой прижмите крышку для молока к стыку, сначала осторожно, а затем более твердо (см. Рисунок 12-74). Крышка скользит по метке 3, метке 2, кроссоверу и точке R. Повторите то же самое с другой стороной стыка. Продолжайте закапывать до тех пор, пока не будет устранена вся слабина между узлом и стыком.


Рисунок 12-74. Захоронение открытого ядра

  • ШАГ 10 — Завершение стыка. Соединение выполняется, когда все провисания крышки устранены и в соединении имеется отверстие, длина которого примерно равна диаметру линии (см. Рисунок 12-75). Если одна сторона стыка в отверстии заметно длиннее другой, что-то не так. Проверьте шаги с 1 по 9 и при необходимости переделайте. Теперь развяжите узлы скольжения.


Рисунок 12-75. Завершение соединения

НОВОСТИ ПИСЬМО

Присоединяйтесь к GlobalSecurity.список рассылки org


Эластичность: напряжение и деформация | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Закон штата Гука.
  • Объясните закон Гука, используя графическое представление между деформацией и приложенной силой.
  • Обсудите три типа деформаций, такие как изменение длины, сдвиг в сторону и изменение объема.
  • Опишите на примерах модуль Юнга, модуль сдвига и модуль объемной упругости.
  • Определите изменение длины с учетом массы, длины и радиуса.

Теперь мы переходим от рассмотрения сил, влияющих на движение объекта (таких как трение и сопротивление), к тем, которые влияют на форму объекта. Если бульдозер втолкнет машину в стену, машина не сдвинется с места, но заметно изменит форму. Изменение формы из-за приложения силы представляет собой деформацию .Известно, что даже очень небольшие силы вызывают некоторую деформацию. При малых деформациях наблюдаются две важные характеристики. Во-первых, объект возвращается к своей исходной форме, когда сила снимается, то есть деформация является упругой для небольших деформаций. Во-вторых, размер деформации пропорционален силе, то есть при малых деформациях соблюдается закон Гука. В форме уравнения Закон Гука определяется как

F = к Δ L ,

, где Δ L — величина деформации (например, изменение длины), создаваемая силой F , а k — константа пропорциональности, которая зависит от формы и состава объекта и направления сила.Обратите внимание, что эта сила является функцией деформации Δ L — она ​​не постоянна, как кинетическая сила трения. Переставляем это на

[латекс] \ displaystyle \ Delta {L} = \ frac {F} {k} [/ latex]

дает понять, что деформация пропорциональна приложенной силе. На рисунке 1 показано соотношение по закону Гука между удлинением Δ L пружины или человеческой кости. Для металлов или пружин область прямой линии, к которой относится закон Гука, намного больше.Кости хрупкие, эластичная область небольшая, а перелом резкий. В конце концов, достаточно большое напряжение материала приведет к его разрушению или разрушению.

Закон Гука

F = kΔL ,

, где Δ L — величина деформации (например, изменение длины), создаваемая силой F , а k — константа пропорциональности, которая зависит от формы и состава объекта и направления сила.

[латекс] \ displaystyle \ Delta {L} = \ frac {F} {k} [/ latex]

Рис. 1. График деформации ΔL в зависимости от приложенной силы F. Прямой сегмент — это линейная область, где соблюдается закон Гука. Наклон прямой области [латекс] \ frac {1} {k} [/ latex]. Для больших сил график изогнут, но деформация остается упругой — ΔL вернется к нулю, если сила будет устранена. Еще большие силы деформируют объект до тех пор, пока он окончательно не сломается.Форма кривой возле трещины зависит от нескольких факторов, в том числе от того, как прикладывается сила F . Обратите внимание, что на этом графике наклон увеличивается непосредственно перед трещиной, указывая на то, что небольшое увеличение F дает большое увеличение L рядом с трещиной.

Константа пропорциональности k зависит от ряда факторов для материала. Например, гитарная струна из нейлона растягивается при затягивании, и удлинение Δ L пропорционально приложенной силе (по крайней мере, для небольших деформаций).Более толстые нейлоновые струны и струны из стали меньше растягиваются при одной и той же приложенной силе, что означает, что у них больше k (см. Рисунок 2). Наконец, после снятия силы все три струны возвращаются к своей нормальной длине, при условии, что деформация мала. Большинство материалов будут вести себя таким образом, если деформация будет меньше примерно 0,1% или примерно 1 часть на 10 3 .

Рис. 2. Одна и та же сила, в данном случае груз (w), приложенная к трем различным гитарным струнам одинаковой длины, вызывает три различных деформации, показанные заштрихованными сегментами.Левая нить из тонкого нейлона, посередине — из более толстого нейлона, а правая — из стали.

Растянись немного

Как бы вы измерили константу пропорциональности k резиновой ленты? Если резинка растянулась на 3 см, когда к ней была прикреплена 100-граммовая масса, то насколько она растянулась бы, если бы две одинаковые резинки были прикреплены к одной и той же массе — даже если соединить их параллельно или, наоборот, если связать вместе последовательно?

Теперь мы рассмотрим три конкретных типа деформаций: изменение длины (растяжение и сжатие), сдвиг в сторону (напряжение) и изменения объема.Все деформации считаются небольшими, если не указано иное.

Изменения длины — растяжение и сжатие: модуль упругости

Изменение длины Δ L происходит, когда к проволоке или стержню прилагается сила, параллельная ее длине L 0 , либо растягивая (натяжение), либо сжимая. (См. Рисунок 3.)

Рис. 3. (a) Напряжение. Стержень растягивается на длину ΔL , когда сила прилагается параллельно его длине. (б) Сжатие.Тот же стержень сжимается силами той же величины в противоположном направлении. Для очень малых деформаций и однородных материалов ΔL примерно одинаково для одинаковой величины растяжения или сжатия. При больших деформациях площадь поперечного сечения изменяется при сжатии или растяжении стержня.

Эксперименты показали, что изменение длины (Δ L ) зависит только от нескольких переменных. Как уже отмечалось, Δ L пропорциональна силе F и зависит от вещества, из которого сделан объект.Кроме того, изменение длины пропорционально исходной длине L 0 и обратно пропорционально площади поперечного сечения проволоки или стержня. Например, длинная гитарная струна растягивается больше, чем короткая, а толстая струна растягивается меньше, чем тонкая. Мы можем объединить все эти факторы в одно уравнение для Δ L :

[латекс] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex],

, где Δ L — изменение длины, F — приложенная сила, Y — коэффициент, называемый модулем упругости или модулем Юнга, который зависит от вещества, A — площадь поперечного сечения, и L 0 — исходная длина.В таблице 1 приведены значения Y для нескольких материалов — те, которые имеют большой Y , как говорят, имеют большую прочность на разрыв , потому что они меньше деформируются при заданном растяжении или сжатии.

Таблица 1. Модули упругости
Материал Модуль Юнга (растяжение – сжатие) Y (10 9 Н / м 2 ) Модуль сдвига S (10 9 Н / м 2 ) Модуль объемной упругости B (10 9 Н / м 2 )
Алюминий 70 25 75
Кость — напряжение 16 80 8
Кость — компрессия 9
Латунь 90 35 75
Кирпич 15
Бетон 20
Стекло 70 20 30
Гранит 45 20 45
Волосы (человеческие) 10
Твердая древесина 15 10
Чугун литой 100 40 90
Свинец 16 5 50
Мрамор 60 20 70
Нейлон 5
Полистирол 3
шелк 6
Паутинка 3
Сталь 210 80 130
Сухожилие 1
Ацетон 0.7
Этанол 0,9
Глицерин 4,5
Меркурий 25
Вода 2,2

Модули Юнга не указаны для жидкостей и газов в таблице 1, потому что они не могут быть растянуты или сжаты только в одном направлении. Обратите внимание, что существует предположение, что объект не ускоряется, поэтому на самом деле существуют две приложенные силы величиной F , действующие в противоположных направлениях.Например, струны на рисунке 3 натягиваются вниз силой величиной w и удерживаются потолком, который также оказывает силу величиной w .

Пример 1. Растяжение длинного кабеля

Подвесные тросы используются для перевозки гондол на горнолыжных курортах. (См. Рис. 4). Рассмотрим подвесной трос, длина которого без опоры составляет 3 км. Рассчитайте степень растяжения стального троса. Предположим, что кабель имеет диаметр 5,6 см и максимальное натяжение, которое он может выдержать, равно 3.0 × 10 6 Н.

Рис. 4. Гондолы перемещаются по подвесным тросам на горнолыжном курорте Гала Юдзава в Японии. (Источник: Руди Херман, Flickr)

Стратегия

Сила равна максимальному натяжению, или F = 3,0 × 10 6 Н. Площадь поперечного сечения π r 2 = 2,46 × 10 –3 м 2 . Уравнение [latex] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex] можно использовать для определения изменения длины.{2}} \ right) \ left (\ text {3020 m} \ right) \\ & = & \ text {18 m}. \ End {array} [/ latex]

Обсуждение

Это довольно большая длина, но только около 0,6% от длины без опоры. В этих условиях влияние температуры на длину может быть важным.

Кости в целом не ломаются от растяжения или сжатия. Скорее они обычно ломаются из-за бокового удара или изгиба, что приводит к срезанию или разрыву кости. Поведение костей при растяжении и сжатии важно, потому что оно определяет нагрузку, которую кости могут нести.Кости классифицируются как несущие конструкции, такие как колонны в зданиях и деревья. Несущие конструкции обладают особенностями; колонны в здании имеют стальные арматурные стержни, а деревья и кости — волокнистые. Кости в разных частях тела выполняют разные структурные функции и подвержены разным нагрузкам. Таким образом, кость в верхней части бедренной кости расположена в виде тонких пластин, разделенных костным мозгом, в то время как в других местах кости могут быть цилиндрическими и заполненными костным мозгом или просто твердыми.Люди с избыточным весом имеют тенденцию к повреждению костей из-за длительного сжатия костных суставов и сухожилий.

Другой биологический пример закона Гука встречается в сухожилиях. Функционально сухожилие (ткань, соединяющая мышцу с костью) должно сначала легко растягиваться при приложении силы, но обеспечивать гораздо большую восстанавливающую силу для большего напряжения. На рисунке 5 показана зависимость напряжения от деформации человеческого сухожилия. Некоторые сухожилия имеют высокое содержание коллагена, поэтому деформация или изменение длины относительно невелико; другие, например, опорные сухожилия (например, в ноге) могут изменять длину до 10%.Обратите внимание, что эта кривая напряжения-деформации является нелинейной, поскольку наклон линии изменяется в разных областях. В первой части растяжения, называемой областью пальца, волокна в сухожилии начинают выравниваться в направлении напряжения — это называется распаковка . В линейной области фибриллы будут растягиваться, а в области разрушения отдельные волокна начнут разрываться. Простую модель этой взаимосвязи можно проиллюстрировать параллельными пружинами: разные пружины активируются при разной длине растяжения.Примеры этого приведены в задачах в конце этой главы. Связки (ткань, соединяющая кость с костью) ведут себя аналогичным образом.

Рис. 5. Типичная кривая «напряжение-деформация» для сухожилия млекопитающих. Показаны три области: (1) область пальца ноги (2) линейная область и (3) область разрушения.

В отличие от костей и сухожилий, которые должны быть прочными и эластичными, артерии и легкие должны быть легко растяжимыми. Эластичные свойства артерий важны для кровотока. Когда кровь выкачивается из сердца, давление в артериях увеличивается, и стенки артерий растягиваются.Когда аортальный клапан закрывается, давление в артериях падает, и артериальные стенки расслабляются, чтобы поддерживать кровоток. Когда вы чувствуете свой пульс, вы чувствуете именно это — эластичное поведение артерий, когда кровь хлынет через каждый насос сердца. Если бы артерии были жесткими, вы бы не почувствовали пульс. Сердце также является органом с особыми эластичными свойствами. Легкие расширяются за счет мышечного усилия, когда мы вдыхаем, но расслабляемся свободно и эластично, когда мы выдыхаем. Наша кожа особенно эластична, особенно для молодых.Молодой человек может подняться от 100 кг до 60 кг без видимого провисания кожи. С возрастом снижается эластичность всех органов. Постепенное физиологическое старение за счет снижения эластичности начинается в начале 20-х годов.

Пример 2. Расчет деформации: насколько укорачивается нога, когда вы стоите на ней?

Рассчитайте изменение длины кости верхней части ноги (бедренной кости), когда мужчина весом 70,0 кг поддерживает на ней 62,0 кг своей массы, предполагая, что эта кость эквивалентна стержню, равному 40.0 см в длину и 2,00 см в радиусе.

Стратегия

Сила равна поддерживаемому весу, или F = мг = (62,0 кг) (9,80 м / с 2 ) = 607,6 Н, а площадь поперечного сечения π r 2 = 1,257 × 10 –3 м 2 . Уравнение [latex] \ displaystyle \ Delta {L} = \ frac {1} {Y} \ text {} \ frac {F} {A} L_0 [/ latex] можно использовать для определения изменения длины.

Решение

Все величины, кроме Δ L , известны.{-5} \ text {m.} \ End {array} [/ latex]

Обсуждение

Это небольшое изменение длины кажется разумным, поскольку, по нашему опыту, кости жесткие. Фактически, даже довольно большие силы, возникающие при напряженных физических нагрузках, не сжимают и не сгибают кости в больших количествах. Хотя кость более жесткая по сравнению с жиром или мышцами, некоторые из веществ, перечисленных в таблице 1, имеют более высокие значения модуля Юнга Y . Другими словами, они более жесткие и обладают большей прочностью на разрыв.

Уравнение изменения длины по традиции перестраивается и записывается в следующем виде:

[латекс] \ displaystyle \ frac {F} {A} = Y \ frac {\ Delta {L}} {L_0} [/ latex].

Отношение силы к площади, [латекс] \ frac {F} {A} [/ latex], определяется как напряжение (измеряется в Н / м 2 ), а отношение изменения длины к длина, [латекс] \ frac {\ Delta {L}} {L_0} [/ latex], определяется как деформация (безразмерная величина). Другими словами, напряжение = Y × деформация.

В этой форме уравнение аналогично закону Гука с напряжением, аналогичным силе, и деформацией, аналогичной деформации. Если снова переписать это уравнение к виду

[латекс] \ displaystyle {F} = YA \ frac {\ Delta {L}} {L_0} [/ latex],

мы видим, что он совпадает с законом Гука с константой пропорциональности

[латекс] \ displaystyle {k} = \ frac {YA} {L_0} [/ latex].

Эта общая идея о том, что сила и вызываемая ею деформация пропорциональны небольшим деформациям, применима к изменениям длины, боковому изгибу и изменениям объема.

Напряжение

Отношение силы к площади, [латекс] \ frac {F} {A} [/ латекс], определяется как напряжение, измеренное в Н / м. 2 .

Штамм

Отношение изменения длины к длине, [латекс] \ frac {\ Delta {L}} {L_0} [/ latex], определяется как деформация (безразмерная величина). Другими словами, напряжение = Y × деформация.

Боковое напряжение: модуль сдвига

На рисунке 6 показано, что подразумевается под боковым напряжением или срезающей силой .Здесь деформация называется Δ x , и она перпендикулярна L 0 , а не параллельна, как при растяжении и сжатии. Деформация сдвига аналогична растяжению и сжатию и может быть описана аналогичными уравнениями. Выражение для деформации сдвига : [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex], где S — модуль сдвига ( см. Таблицу 1) и F — сила, приложенная перпендикулярно к L 0 и параллельно площади поперечного сечения A .Опять же, чтобы препятствовать ускорению объекта, на самом деле есть две равные и противоположные силы F , приложенные к противоположным граням, как показано на рисунке 6. Уравнение логично — например, легче согнуть длинный тонкий карандаш (маленький A ), чем короткий толстый, и оба гнуть легче, чем аналогичные стальные стержни (большие S ).

Рис. 6. Сила сдвига прилагается перпендикулярно длине L 0 и параллельно области A , создавая деформацию Δx.Вертикальные силы не показаны, но следует иметь в виду, что в дополнение к двум силам сдвига, F , должны существовать поддерживающие силы, препятствующие вращению объекта. Искажающие эффекты этих поддерживающих сил игнорируются при этом лечении. Вес объекта также не показан, поскольку он обычно незначителен по сравнению с силами, достаточно большими, чтобы вызвать значительные деформации.

Деформация сдвига

[латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex],

, где S — модуль сдвига, а F — сила, приложенная перпендикулярно к L 0 и параллельно площади поперечного сечения A .

Изучение модулей сдвига в таблице 1 выявляет некоторые характерные закономерности. Например, для большинства материалов модули сдвига меньше модулей Юнга. Кость — замечательное исключение. Его модуль сдвига не только больше, чем модуль Юнга, но и такой же, как у стали. Это одна из причин того, что кости могут быть длинными и относительно тонкими. Кости могут выдерживать нагрузки, сопоставимые с бетонными и стальными. Большинство переломов костей возникает не из-за сжатия, а из-за чрезмерного скручивания и изгиба.

Позвоночный столб (состоящий из 26 позвоночных сегментов, разделенных дисками) обеспечивает основную опору для головы и верхней части тела. Позвоночник имеет нормальную кривизну для стабильности, но эту кривизну можно увеличить, что приведет к увеличению силы сдвига на нижние позвонки. Диски лучше выдерживают силы сжатия, чем силы сдвига. Поскольку позвоночник не является вертикальным, вес верхней части тела влияет на обе части. Беременным женщинам и людям с избыточным весом (с большим животом) необходимо отвести плечи назад, чтобы поддерживать равновесие, тем самым увеличивая искривление позвоночника и тем самым увеличивая сдвигающий компонент напряжения.Увеличенный угол из-за большей кривизны увеличивает поперечные силы вдоль плоскости. Эти более высокие усилия сдвига увеличивают риск травмы спины из-за разрыва дисков. Пояснично-крестцовый диск (клиновидный диск под последними позвонками) особенно подвержен риску из-за своего расположения.

Модули сдвига для бетона и кирпича очень малы; они слишком изменчивы, чтобы их можно было перечислить. Бетон, используемый в зданиях, может выдерживать сжатие, как в колоннах и арках, но очень плохо противостоит сдвигу, который может возникнуть в сильно нагруженных полах или во время землетрясений.Современные конструкции стали возможны благодаря использованию стали и железобетона. Практически по определению жидкости и газы имеют модули сдвига, близкие к нулю, потому что они текут в ответ на сдвигающие силы.

Пример 3. Расчет силы, необходимой для деформации: гвоздь не сильно изгибается под нагрузкой

Найдите массу картины, висящей на стальном гвозде, как показано на рисунке 7, учитывая, что гвоздь изгибается только на 1,80 мкм. (Предположим, что модуль сдвига известен с двумя значащими цифрами.)

Рис. 7. Гвоздь, вид сбоку с прикрепленным к нему изображением. Гвоздь очень слабо прогибается (показан намного больше, чем на самом деле) из-за срезающего воздействия поддерживаемого веса. Также показано направленное вверх усилие стенки на гвоздь, иллюстрирующее равные и противоположные силы, приложенные к противоположным поперечным сечениям гвоздя. См. Пример 3 для расчета массы изображения.

Стратегия

Сила F на гвоздь (без учета собственного веса гвоздя) — это вес изображения w .Если мы сможем найти w , то масса изображения будет просто [латекс] \ frac {w} {g} [/ latex]. Уравнение [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex] может быть решено для F .

Решение

Решая уравнение [латекс] \ displaystyle \ Delta {x} = \ frac {1} {S} \ frac {F} {A} L_0 [/ latex] для F , мы видим, что все остальные величины могут быть найдены :

[латекс] \ displaystyle {F} = \ frac {SA} {L_0} \ Delta {x} [/ latex]

S находится в таблице 1 и составляет S = 80 × 10 9 Н / м 2 .{-6} \ text {m} \ right) = 51 \ text {N} [/ latex]

Эта сила 51 Н составляет вес w изображения, поэтому масса изображения [латекс] m = \ frac {w} {g} = \ frac {F} {g} = 5.2 \ text {kg} [ /латекс].

Обсуждение

Это довольно массивное изображение, и впечатляет то, что гвоздь прогибается всего на 1,80 мкм — величину, невидимую невооруженным глазом.

Изменения объема: модуль объемной упругости

Объект будет сжиматься во всех направлениях, если внутренние силы приложены равномерно ко всем его поверхностям, как показано на рисунке 8.Относительно легко сжимать газы и чрезвычайно сложно сжимать жидкости и твердые тела. Например, воздух в винной бутылке сжимается, когда она закупорена. Но если вы попытаетесь закупорить бутылку с полными краями, вы не сможете сжать вино — некоторые из них необходимо удалить, чтобы вставить пробку. Причина такой разной сжимаемости заключается в том, что атомы и молекулы разделены большими пустыми пространствами в газах, но плотно упакованы в жидкостях и твердых телах. Чтобы сжать газ, вы должны сблизить его атомы и молекулы.Чтобы сжать жидкости и твердые тела, вы должны действительно сжать их атомы и молекулы, и очень сильные электромагнитные силы в них препятствуют этому сжатию.

Рис. 8. Внутренняя сила на всех поверхностях сжимает этот куб. Его изменение в объеме пропорционально силе на единицу площади и его первоначальному объему и связано со сжимаемостью вещества.

Мы можем описать сжатие или объемную деформацию объекта уравнением. Во-первых, отметим, что сила, «приложенная равномерно», определяется как имеющая одинаковое напряжение или отношение силы к площади [латекс] \ frac {F} {A} [/ латекс] на всех поверхностях.Произведенная деформация представляет собой изменение объема Δ V , которое, как было обнаружено, ведет себя очень аналогично сдвигу, растяжению и сжатию, обсуждавшимся ранее. (Это неудивительно, поскольку сжатие всего объекта эквивалентно сжатию каждого из его трех измерений.) Связь изменения объема с другими физическими величинами определяется выражением [латекс] \ displaystyle \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 [/ latex], где B — модуль объемной упругости (см. Таблицу 1), V 0 — исходный объем, а [латекс] \ frac {F} {A} [/ latex] — это сила на единицу площади, равномерно приложенная внутрь ко всем поверхностям.Обратите внимание, что объемные модули для газов не приводятся.

Какие есть примеры объемного сжатия твердых тел и жидкостей? Одним из практических примеров является производство алмазов промышленного качества путем сжатия углерода с чрезвычайно большой силой на единицу площади. Атомы углерода перестраивают свою кристаллическую структуру в более плотно упакованный узор алмазов. В природе аналогичный процесс происходит глубоко под землей, где чрезвычайно большие силы возникают из-за веса вышележащего материала. Еще один естественный источник больших сжимающих сил — давление, создаваемое весом воды, особенно в глубоких частях океанов.Вода оказывает внутреннее воздействие на все поверхности погружаемого объекта и даже на саму воду. На больших глубинах вода ощутимо сжата, как показано в следующем примере.

Пример 4. Расчет изменения объема при деформации: насколько вода сжимается на глубинах огромного океана?

Рассчитайте частичное уменьшение объема [латекс] \ left (\ frac {\ Delta {V}} {V_0} \ right) [/ latex] для морской воды на глубине 5,00 км, где сила на единицу площади составляет 5,00 × 10 7 Н / м 2 .

Стратегия

Уравнение [латекс] \ displaystyle \ Delta {V} = \ frac {1} {B} \ frac {F} {A} V_0 [/ latex] является правильным физическим соотношением. Все величины в уравнении, кроме [latex] \ frac {\ Delta {V}} {V_0} [/ latex], известны.

Решение

Решение неизвестного [латекса] \ frac {\ Delta {V}} {V_0} [/ latex] дает [latex] \ displaystyle \ frac {\ Delta {V}} {V_0} = \ frac {1} {B } \ frac {F} {A} [/ латекс].

Замена известных значений значением модуля объемной упругости B из таблицы 1,

[латекс] \ begin {array} {lll} \ frac {\ Delta {V}} {V_0} & = & \ frac {5.2} \\ & = & 0.023 = 2.3 \% \ end {array} [/ latex]

Обсуждение

Хотя это можно измерить, это не является значительным уменьшением объема, учитывая, что сила на единицу площади составляет около 500 атмосфер (1 миллион фунтов на квадратный фут). Жидкости и твердые вещества чрезвычайно трудно сжимать.

И наоборот, очень большие силы создаются жидкостями и твердыми телами, когда они пытаются расшириться, но им это мешает, что эквивалентно их сжатию до меньшего, чем их нормальный объем.Это часто происходит, когда содержащийся в нем материал нагревается, поскольку большинство материалов расширяются при повышении их температуры. Если материалы сильно стеснены, они деформируют или ломают свой контейнер. Другой очень распространенный пример — замерзание воды. Вода, в отличие от большинства материалов, расширяется при замерзании, и она может легко сломать валун, разорвать биологическую клетку или сломать блок двигателя, который встанет у нее на пути.

Другие типы деформаций, такие как кручение или скручивание, ведут себя аналогично рассмотренным здесь деформациям растяжения, сдвига и объемной деформации.

Сводка раздела

  • Закон Гука определяется выражением [латекс] F = k \ Delta {L} [/ latex], где [latex] \ Delta {L} [/ latex] — величина деформации (изменение длины), F — приложенная сила, а k — константа пропорциональности, которая зависит от формы и состава объекта, а также направления силы. Связь между деформацией и приложенной силой также может быть записана как [latex] \ displaystyle \ Delta L = \ frac {1} {Y} \ frac {F} {A} {L} _ {0} [/ latex] , где Y — это модуль Юнга , который зависит от вещества, A — это площадь поперечного сечения, а [латекс] {L} _ {0} [/ latex] — исходная длина.
  • Отношение силы к площади, [латекс] \ frac {F} {A} [/ латекс], определяется как напряжение , измеренное в Н / м 2 .
  • Отношение изменения длины к длине, [латекс] \ frac {\ Delta L} {{L} _ {0}} [/ latex], определяется как деформация (безразмерная величина). Другими словами, [латекс] \ текст {напряжение} = Y \ times \ text {напряжение} [/ латекс].
  • Выражение деформации сдвига [латекс] \ displaystyle \ Delta x = \ frac {1} {S} \ frac {F} {A} {L} _ {0} [/ latex], где S — модуль сдвига и F — это сила, приложенная перпендикулярно [латексу] {L} _ {\ text {0}} [/ latex] и параллельно площади поперечного сечения A .
  • Связь изменения объема с другими физическими величинами определяется выражением [latex] \ displaystyle \ Delta V = \ frac {1} {B} \ frac {F} {A} {V} _ {0} [/ latex ], где B — объемный модуль, [latex] {V} _ {\ text {0}} [/ latex] — исходный объем, а [latex] \ frac {F} {A} [/ latex] — сила на единицу площади, равномерно приложенная внутрь ко всем поверхностям.

Концептуальные вопросы

  1. Эластические свойства артерий важны для кровотока. Объясните важность этого с точки зрения характеристик кровотока (пульсирующего или непрерывного).
  2. Что вы чувствуете, когда щупаете пульс? Измерьте частоту пульса в течение 10 секунд и 1 минуты. Есть ли разница в 6 раз?
  3. Изучите разные типы обуви, включая спортивную обувь и шлепанцы. С точки зрения физики, почему нижние поверхности устроены именно так? Какие различия будут иметь для этих поверхностей сухие и влажные условия?
  4. Ожидаете ли вы, что ваш рост будет отличаться в зависимости от времени суток? Почему или почему нет?
  5. Почему белка может спрыгнуть с ветки дерева на землю и убежать целой, а человек может сломать кость при таком падении?
  6. Объясните, почему беременные женщины часто страдают растяжением спины на поздних сроках беременности.
  7. Уловка старого плотника, чтобы удерживать гвозди от сгибания, когда они забиваются в твердый материал, заключается в том, чтобы крепко удерживать центр гвоздя плоскогубцами. Почему это помогает?
  8. Когда стеклянная бутылка, полная уксуса, нагревается, и уксус, и стекло расширяются, но уксус расширяется значительно больше с температурой, чем стекло. Бутылка разобьется, если наполнить ее до плотно закрытой крышки. Объясните, почему, а также объясните, как воздушный карман над уксусом предотвратит разрыв.(Это функция воздуха над жидкостями в стеклянных контейнерах.)

Задачи и упражнения

  1. Во время циркового номера один артист качается вверх ногами, висит на трапеции, держа другого, также перевернутого, за ноги. Если восходящая сила, действующая на более низкую спортсменку, в три раза превышает ее вес, насколько растягиваются кости (бедра) в ее верхних конечностях? Вы можете предположить, что каждый из них эквивалентен одинаковому стержню длиной 35,0 см и радиусом 1,80 см. Ее масса 60.0 кг.
  2. Во время схватки борец 150 кг ненадолго встает на одну руку во время маневра, призванного сбить с толку его и без того умирающего противника. Насколько укорачивается длина кости плеча? Кость может быть представлена ​​однородным стержнем длиной 38,0 см и радиусом 2,10 см.
  3. (a) «Грифель» в карандашах представляет собой состав графита с модулем Юнга примерно 1 × 10 9 Н / м 2 . Вычислите изменение длины грифеля в автоматическом карандаше, если постучите им прямо по карандашу с силой 4.0 Н. Шнур диаметром 0,50 мм и длиной 60 мм. б) разумен ли ответ? То есть согласуется ли это с тем, что вы наблюдали при использовании карандашей?
  4. антенн телевещания — самые высокие искусственные сооружения на Земле. В 1987 году физик весом 72,0 кг разместил себя и 400 кг оборудования на вершине одной антенны высотой 610 м для проведения гравитационных экспериментов. Насколько была сжата антенна, если считать ее эквивалентом стального цилиндра радиусом 0,150 м?
  5. (a) На сколько стоит 65.Альпинист весом 0 кг натягивает нейлоновую веревку диаметром 0,800 см, когда она висит на 35,0 м ниже скалы? б) Соответствует ли ответ тому, что вы наблюдали для нейлоновых веревок? Имел бы смысл, если бы веревка была на самом деле эластичным шнуром?
  6. Полый алюминиевый флагшток высотой 20,0 м по жесткости эквивалентен твердому цилиндру диаметром 4,00 см. Сильный ветер изгибает полюс так же, как горизонтальная сила в 900 Н. Насколько далеко в сторону прогибается вершина шеста?
  7. По мере бурения нефтяной скважины каждая новая секция бурильной трубы выдерживает собственный вес, а также вес трубы и бурового долота под ней.Рассчитайте растяжение новой стальной трубы длиной 6,00 м, которая поддерживает 3,00 км трубы, имеющей массу 20,0 кг / м, и буровое долото 100 кг. Труба эквивалентна по жесткости сплошному цилиндру диаметром 5 см.
  8. Рассчитайте усилие, которое настройщик рояля применяет для растяжения стальной рояльной струны на 8,00 мм, если проволока изначально имеет диаметр 0,850 мм и длину 1,35 м.
  9. Позвонок подвергается действию силы сдвига 500 Н. Найдите деформацию сдвига, принимая позвонок в виде цилиндра 3.00 см в высоту и 4,00 см в диаметре.
  10. Диск между позвонками позвоночника подвергается действию силы сдвига 600 Н. Найдите его деформацию сдвига, принимая модуль сдвига 1 × 10 9 Н / м 2 . Диск эквивалентен сплошному цилиндру высотой 0,700 см и диаметром 4,00 см.
  11. При использовании ластика для карандашей вы прикладываете вертикальное усилие 6,00 Н на расстоянии 2,00 см от соединения ластика с твердой древесиной. Карандаш имеет диаметр 6,00 мм и держится под углом 20 °.0º к горизонтали. а) Насколько дерево прогибается перпендикулярно своей длине? б) Насколько он сжат в продольном направлении?
  12. Чтобы учесть влияние проводов, подвешенных на столбах, мы возьмем данные из рисунка 9, на котором было рассчитано натяжение проводов, поддерживающих светофор. Левая проволока образовывала угол 30,0 ° ниже горизонтали с вершиной своего столба и выдерживала натяжение 108 Н. Полый алюминиевый столб высотой 12,0 м по жесткости эквивалентен твердому цилиндру диаметром 4,50 см.а) Насколько он наклонен в сторону? б) Насколько он сжат?

    Рисунок 9. Светофор подвешен на двух тросах. (б) Некоторые из задействованных сил. (c) Здесь показаны только силы, действующие на систему. Также показана схема свободного движения светофора. (d) Силы, проецируемые на вертикальную ( x ) и горизонтальную ( x ) оси. Горизонтальные составляющие натяжения должны уравновешиваться, а сумма вертикальных составляющих натяжений должна равняться весу светофора.{-2} [/ латекс]). Какую силу на единицу площади вода может оказывать на емкость при замерзании? (В этой задаче допустимо использовать объемный модуль упругости воды.) (B) Удивительно ли, что такие силы могут разрушать блоки двигателя, валуны и тому подобное?

  13. Эта проблема возвращается к канатоходцу, изученному на рисунке 10, который создал натяжение 3,94 × 10 3 Н в тросе, образующем угол 5,0 ° ниже горизонтали с каждой опорной стойкой. Подсчитайте, насколько это натяжение растягивает стальную проволоку, если она изначально была длиной 15 м и равной 0.50 см в диаметре.

    Рис. 10. Вес канатоходца вызывает провисание каната на 5,0 градуса. Интересующая здесь система — это точка на проволоке, на которой стоит канатоходец.

  14. Полюс на Рисунке 11 находится под изгибом 90,0º в линии электропередачи и поэтому подвергается большей силе сдвига, чем полюса на прямых участках линии. Натяжение в каждой линии составляет 4,00 × 10 4 Н при показанных углах. Шест 15,0 м в высоту, 18,0 см в диаметре и, как считается, имеет вдвое меньшую жесткость, чем древесина твердых пород.(а) Рассчитайте сжатие полюса. (б) Найдите, насколько он изгибается и в каком направлении. (c) Найдите натяжение троса, используемого для удержания вехи прямо, если она прикреплена к верхней части столба под углом 30,0 ° к вертикали. (Ясно, что растяжка должна быть в направлении, противоположном изгибу.)

Рис. 11. Этот телефонный столб находится под углом 90 ° к линии электропередачи. Оттяжка прикрепляется к вершине мачты под углом 30º к вертикали.

Глоссарий

Сила сопротивления: F D , пропорциональная квадрату скорости объекта; математически

[латекс] \ begin {array} \\ F _ {\ text {D}} \ propto {v} ^ 2 \\ F _ {\ text {D}} = \ frac {1} {2} C \ rho {Av } ^ 2 \ end {array} [/ latex],

, где C — коэффициент лобового сопротивления, A — площадь объекта, обращенного к жидкости, а ρ — плотность жидкости.

Закон Стокса: F s = 6 πrη v , где r — радиус объекта, η — вязкость жидкости, а v — величина объекта. скорость.

Решения проблем и упражнения

1. 1.90 × 10 −3 см

3. (а) 1 мм; (б) Это кажется разумным, поскольку кажется, что поводок немного сжимается, когда вы на него нажимаете.

5. (а) 9 см; (б) Это кажется разумным для нейлоновой веревки для лазания, поскольку она не должна сильно растягиваться.

7. 8,59 мм

9. 1.49 × 10 −7 м

11. (а) 3.99 × 10 −7 м; (б) 9,67 × 10 −8 м

13. 4 × 10 6 Н / м 2 . Это примерно 36 атм, больше, чем может выдержать обычная банка.

15. 1,4 см


Ювелирные изделия из проволоки 101 | Кольца и вещи Принадлежности для изготовления ювелирных изделий

Проволока для изготовления ювелирных изделий дает вам безграничный выбор в творчестве! Тем не менее, легче начать работу, если вы знаете несколько основных советов и терминов, которые помогут вам определить , какой тип проволоки использовать для ваших ювелирных проектов.Узнайте о различных формах, калибрах и материалах для изготовления проволоки.
Найдите полные учебные пособия, ювелирные изделия и расходные материалы.

Содержание

-Сортировка по цене — От высокой к низкой цене — От низкой к высокой Имя — Сортировка от А до Я Имя — Сортировка от Я до А

Калибры для проволоки

Калибр куска проволоки является мерой его ширины (диаметра). Калибр часто обозначается аббревиатурой «га», таким образом, 20 калибр = 20 га.Для определения размера проволоки ремесленниками и ремесленниками используются две основные системы калибров. Американский калибр проволоки — это обычно (но не всегда) способ измерения ювелирной проволоки в Соединенных Штатах и ​​Канаде. Стандартный калибр проволоки (SWG) обычно (но не всегда) система измерения, используемая в Великобритании. В большинстве других европейских стран размер провода измеряется в миллиметрах. Цифры

работают противоположно тому, что вы ожидаете. Чем больше калибр, тем меньше диаметр проволоки. Это связано с тем, что числа изначально определялись исходя из того, сколько раз кусок проволоки должен был пройти через вытяжную пластину , прежде чем был произведен калибровка.Чем больше раз будет проходить через пластину, тем тоньше будет проволока.

Обычное использование проволоки в ювелирных изделиях по калибру (AWG):
  • 32-28 калибра очень тонкие, обычно используются для сложной работы с проволокой, такой как плетение проволоки, вязание крючком и вязание викингов.
  • 26-24 калибра — хорошие размеры для нанизывания жемчуга и бусин с небольшими отверстиями. 26ga также хорошо подходит для вязания викингов.
  • Калибр 22-20 — хорошие универсальные, универсальные размеры проволоки, достаточно тонкие, чтобы их можно было нанизать на большинство бусинок.Если вы используете полутвердую проволоку (или более мягкую проволоку для закалки), эти калибры также достаточно прочные, чтобы держать свою форму для изготовления цепочек ручной работы, ушных шв, булавок для глаз, прыгунов и легких застежек. 20ga хорошо подходит для браслетов и ожерелий.
  • Калибр 18–16 хорошо подходят для изготовления прочных застежек и прыгающих колец (дополнительную информацию см. В разделе о твердости проволоки). Они также великолепны в качестве проволоки для ожерелья и браслета. Сплошная (не плакированная и не заполненная) проволока в этих калибрах обычно используется для изготовления заклепок.18ga тоже делает хорошие швензы. В зависимости от металла калибр 16ga может быть трудно согнуть.
  • Калибр 14 в основном используется для создания толстых, сверхпрочных компонентов, таких как застежки, кольца, браслеты-манжеты и браслеты-браслеты. Его также можно использовать для создания оправ для проектов из смолы и смешанной техники, а также в качестве структурной поддержки для многих стилей ювелирных изделий. Для изготовления заклепок можно использовать сплошную проволоку 14га. В зависимости от металла этот калибр может быть трудно согнуть. Проволока 14-го калибра часто бывает только в очень мягком состоянии.
  • 12-й калибр популярен для изготовления колец, шейных воротников, браслетов-браслетов и браслетов-манжет. Обычно он доступен только в мертвой мягкой ткани и может потребовать сверхмощных кусачков или ювелирной пилы.
  • Калибр 10 также хорошо подходит для браслетов-браслетов и браслетов-манжет. Обычно он доступен только в мертвой мягкости и обычно требует тяжелых ювелирных инструментов как для резки, так и для придания формы.

Формы проводов

Форма провода относится к тому, что вы видите, когда смотрите на его поперечное сечение (т.е.е. обрезанный конец).
Круглая проволока является наиболее распространенной формой проволоки и стандартной формой, используемой в большинстве операций с проволокой.
Квадратная проволока иногда выбирается из чисто эстетических соображений, поскольку углы квадратной проволоки придают другой вид готовым украшениям. Это также имеет практическое преимущество, когда вы хотите разместить несколько кусков проволоки заподлицо друг с другом. Плоские стороны квадратной проволоки укладываются заподлицо в отличие от круглой проволоки.Это делает квадратную проволоку предпочтительной в конструкциях бандажей . Кроме того, вы можете использовать тиски со штырями для скручивания проволоки квадратного сечения для получения эффекта искрения.
Полукруглый провод обычно используется для соединения нескольких соседних отрезков квадратного провода. Плоская сторона полукруглой проволоки прилегает к квадратной проволоке, а закругленная сторона остается открытой в готовом дизайне. Это называется полосой .
Скрученная (также известная) проволока используется для придания текстурных и эстетических качеств проволочной работе.Он может быть сформирован из круглой или квадратной проволоки. Вы можете купить готовую витую проволоку или сделать ее самостоятельно с помощью тисков или устройства для скручивания проволоки Beadalon®. Делая свой собственный, имейте в виду, что готовая модная проволока будет толще, чем отдельные проволоки, с которых вы начали.

Металлическая проволока

У вас есть много вариантов выбора, из каких металлов сделана проволока для изготовления ювелирных изделий, в том числе проволока из драгоценных металлов и проволока из недрагоценных металлов. Возможны варианты: сплошная металлическая проволока, проволока с наполнителем, проволока с покрытием, цветная проволока с эмалевым покрытием и анодированная проволока.
Подробнее о том, как выбрать, какой тип провода использовать, см. В разделе Dead Soft vs. Half Hard Wire.

Dead Soft vs. Half Hard Wire

Иногда у вас есть возможность выбрать «мертвую мягкую» проволоку или «полутвердую» проволоку. Как следует из названия, мертвую мягкую проволоку очень легко согнуть даже руками. Полутвердый провод оказывает некоторое сопротивление, когда вы пытаетесь его согнуть. Преимущество мертвой мягкой проволоки в том, что ее легко формовать. Преимущество полужесткой проволоки в том, что после придания ей формы она лучше сохраняет форму.

Чем больше вы работаете с куском проволоки, тем больше она затвердевает. Это называется наклеп на проволоку . Когда вы добьетесь желаемой формы, вы можете ударить по проволоке молотком, чтобы она затвердела. Использование молотка с шариковой ударной головкой придаст проволоке пятнистую текстуру, чеканный молоток может красиво сплющить ее, а осторожное использование нейлонового или сыромятного молотка может укрепить ее, не изменяя формы.

Покупать полутвердый или мертвый мягкий — часто вопрос личных предпочтений.Тем не менее, вот несколько общих рекомендаций, которые помогут вам начать работу:

  • Dead soft хорошо подходит для создания плавных кривых и спиралей.
  • Half Hard создает хорошие острые углы.
  • Dead soft обычно используется для плетения и обертывания проволоки, включая обернутые кабошоны и «скульптурные» украшения из проволоки.
  • Полутвердый хорошо подходит для изготовления деталей, которые должны сохранять свою форму (швензы, застежки, прыгающие кольца, основы ожерелья, формы браслетов и т. Д.).
  • Проволока с золотым наполнением и серебряным наполнением обычно тверже, чем мертвое мягкое серебро или тонкая серебряная проволока, и часто ближе к полутвердости.

Шкала твердости для проволоки марки Beadalon®



В случае сомнений выбирайте мертвую мягкую проволоку. Проволока становится более жесткой и хрупкой, чем больше с ней работать. Это называется наклеп . Если вы случайно купили проволоку, которая слишком податлива для вашей цели, вы можете самостоятельно укрепить ее с помощью молотка с нейлоновой головкой, Wire Whacker, вытяжной пластины или тумблера. Чтобы повторно размягчить проволоку, которая слишком жесткая для вашей цели, вам нужно отжечь (нагреть, а затем постепенно охладить) — более сложный процесс.

Руководства и проекты

Как наклеивать проволоку


Сообщение в блоге Briolette

Как закрепить плетку


Бижутерия из бисера Сообщение в блоге

Как сделать


проволочную обертку в елочку Сообщение в блоге

Сделайте нестандартные провода для ушей


с проводом памяти Сообщение в блоге

Купить расходные материалы

Готовы сделать украшения из проволоки на заказ?